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Announcement

¢ Problems with exam registration fixed...
» ...for Master CS and Master SSE
» You should now be able to register

» | extended the registration deadline until this Friday (30.05.)

¢ Exchange students can register directly with us
~ If registration is not possible via ZPA

¢ Please let us know if problems persist.

B. Leibe

Course Outline

¢ Single-Object Tracking
Background modeling

Template based tracking

Color based tracking

Contour based tracking
Tracking by online classification
Tracking-by-detection

v

v

v

v

v

v

¢ Bayesian Filtering
» Kalman filters
» Particle filters
» Case studies
¢ Multi-Object Tracking

e Articulated Tracking

Computer Vision Il, Summer’14
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Today: Beyond Gaussian Error Models

observaion
density

4
Eioure from Isard & Blakd
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Topics of This Lecture

¢ Recap: Extended Kalman Filter
-~ Detailed algorithm

¢ Particle Filters: Detailed Derivation
» Recap: Basic idea
» Importance Sampling

Sequential Importance Sampling (SIS)

Transitional prior

Resampling

Generic Particle Filter

Sampling Importance Resampling (SIR)

v
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Recap: Kalman Filter

e Algorithm summary
» Assumption: linear model
x = Dixm1 44
vi = Mix;+ 6,
» Prediction step
x;, = Dix,
=, = D,/ D! +3x,
» Correction step
K. = &, M/ (M,S, M; +Z,,,,)
x,Jr = x; +K; (y, — M;xf)
= = 1I-KM)Z,

B. Leibe
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Recap: Extended Kalman Filter (EKF) Topics of This Lecture
¢ Algorithm summary
> Nonlinear model g
X = g(Xe—1)t+e ¢ Particle Filters: Detailed Derivation
¥: = hixy)+04, » Recap: Basic idea
. ith the Jacobi » Importance Sampling
- Prediction step wi @ Jacobians » Sequential Importance Sampling (SIS)
< - (ot < aes .
T x, = g(x ) T . Transitional prior
g - + AT dg(x) H > Resamplin
E ®, = G,E Gl +3, G £ E pling
‘% ! - " ! [ - § . Generic Particle Filter
= » Correction step o - = » Sampling Importance Resampling (SIR)
§ K - =0 (HEH +5,)" #w - 2% 5
S + — — ax x=x, >
5 x{ = x; +Ki (v —h(x)) : 2
H B = (1-KH)Z, H
3 3
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Recap: Propagation of General Densities

pix pit)

Recap: Factored Sampling

[
Prebability p——
danaty
@ wmighied

” i::ire) - o State *

st st

g stochastic diffusion 3 « ldea: Represent state distribution non-parametrically

§ . z Pl f:)‘ . Prediction: Sample points from prior density for the state, P(X)

= | = » Correction: Weight the samples according to P(Y'|X)

2 S

7] 7]

$ J\/_\ _/_/\ g P(x.| )= P(Y, | X P(X, | Youeen Vi)

2o 2o t y01~- - yt -

: 3 TP I XOP(X 1 Yooy Ve JOX,
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ide credit: Svetlana | azebnik B. Leibe Fioue from 1sard & Blakel ide credit: Svetlanalazebnik B. Leibe Eiguce from lsard & Blaic
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Particle Filtering Particle filtering

e Many variations, one general concept:

» Represent the posterior pdf by a set of randomly chosen
weighted samples (particles)

¢ Compared to Kalman Filters and their extensions
» Can represent any arbitrary distribution

Multimodal support

Keep track of as many hypotheses as there are particles

Approximate representation of complex model rather than exact
representation of simplified model

v

Posterior

ps s
B H
E 2| * The basic building-block: Importance Sampling
tl=) Sample space ¢I=J
e H
2 . Randomly Chosen = Monte Carlo (MC) 5
§ » As the number of samples become very large - the ;
":;:'. characterization becomes an equivalent representation ‘g
£ of the true pdf. H
o o
ide adapted from Michael Ruhinstei B. Leibe " ide adapted from Michael Ruhinstei B. Leibe i




Recap: Monte-Carlo Sampling

¢ Objective:
» Evaluate expectation of a function f(z)
w.r.t. a probability distribution p(z).
Bif) = [ faia)ta
¢ Monte Carlo Sampling idea

. Draw L independent samples z() with [ = 1,..., L from p(z).
» This allows the expectation to be approximated by a finite sum

. As long as the samples z() are drawn independently from p(z),
then RF| — K]

= Unbiased estimate, independent of the dimension of z!

Computer Vision Il, Summer’14
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ide adapted from Rernt Schiele

Monte Carlo Integration

¢ Idea (cont’d)
» Now, if we have i.i.d random samples x,,.
then we can approximate the expectation

.., zy sampled from p,

E{f(i)}

p(x)

gl 1R
NN = p(%)

» Guaranteed by law of large numbers:

a.s f X
N — oo, Fy %E[ (ﬂ)}=
p(x)
p is often called a proposal distribution.
15
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» Since it guides sampling,

B. Leibe

ide adapted from Michael
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Proposal Distributions: Other Uses

¢ Similar Problem
» For many distributions, sampling directly from p(z) is difficult.
» But we can often easily evaluate p(z) (up to some normalization
factor Z,): 1
p(z) = ZP(Z)
¢ Idea

» Take some simpler distribution ¢(z) as proposal distribution
from which we can draw samples and which is non-zero.

kqlz)
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8. Leibe \mage source: CM. Bishop, 200

ide credit: Bernt Schiele
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Monte Carlo Integration

* We can use the same idea for computing integrals

~ Assume we are trying to estimate a complicated integral of a
function f over some domain D:

F= j f (X)dx
D
» Also assume there exists some PDF p defined over D. Then

F =ID f(x’)dz:j E ; p(X)dx

~ For any pdf p over D, the following holds

1D - LD,

P(X) (X)

ide adapted from Michael B. Leibe

RWTHZACHE

Importance Sampling

¢ Let’s consider an example
15 f(X)
N = p(X)

N

» [/p is the importance weight of a
sample.
~ What can go wrong here?

e What if p(z)=0?
» If p is very small, then f/p can get arbitrarily large!

= Design p such that f/p is bounded.
» Effect: get more samples in “important” areas of f,
i.e., where fis large.

ide adapted from Michael B, Letbe

Image source: CM, Bishoo, 200
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Recap: Importance Sampling

¢ Idea

Use a proposal distribution ¢(z) from which it is easy to draw
samples and which is close in shape to f.

Express expectations in the form of a finite sum over samples
{z"} drawn from ¢(z

E[f] = /f pzdszf }%q

()

£

E

12
th
=2 |=
R

with importance weights
p(=)
q(z")

T =

ide credit: Bernt Schiele B. Leibe Image source: CM, Bishoo
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RWTHCHEN
Illustration of Importance Factors

¢ Goal: Approximate target density f

Computer Vision Il, Summer’14

2
B. Leibe Figure source: Thrun, Burgard, Fo;
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RWTHCHEN
lllustration of Importance Factors

¢ Goal: Approximate target density f
~ Instead of sampling from f directly, we can only sample from g.

B. Leibe
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RWTHCHEN
Illustration of Importance Factors

¢ Goal: Approximate target density f
- Instead of sampling from f directly, we can only sample from g.

» A sample of fis obtained by attaching the weight f/g to each
sample x.

Computer Vision I, Summer’14

2
B. Leibe Eigure source: Thrun, Burgard, Fo:
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Interpretation for Tracking

Tracking application:
Posterior of the
current frame

Tracking application;|
Posterior from the
previous frame

¢ Goal: Approximate target density f
-~ Instead of sampling from f directly, we can only sample from g.

» Asample of fis obtained by attaching the weight f/g to each
sample x.

. 2!
8. Leibe Figure source: Thrun, Burgard, Fo
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Importance Sampling for Bayesian Estimation

E[f(X)] = ff@m%kauM%n

= [ s
¢ Applying Importance Sampling

» Characterize the posterior pdf using a set of samples (particles)
and their weights N
LT

» Then the joint posterior is approx1mated by

Lw (X0t — i)

IJ Xo:t | ¥t
( ‘ )F(Xw Y1 l)fl'xl::f
’1‘ Xul‘yu

PX0:t|¥1:) =
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ide adapted from Michael B. Leibe
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RWTH/CHEN
Importance Sampling for Bayesian Estimation

E[f(X)] = [fummumwuwmﬂ

~ [ s

¢ Applying Importance Sampling
» Draw the samples from the importance density g(x,. | y.) with
importance weights p(x0u |y 1)
q(x0:e|y1:¢)
» Sequential update (after some calculation)

I’ X0: r‘yu

0:t) q(xm )ﬂ:z)dxn:a
q(xo: L‘.Yi t)

M

- Particle update X~ (%%, 1)

i plndxbp(xilx_,)

- Weight update wi = w! -
N qbalxy )

25
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Sequential Importance Sampling Algorithm
function {{x;.u*,’}j\: lJ = 81§ [{XLL- u-;fl}:v L y,J
=0
for i = 1:N

Initialize

X, ~ q(xe|x;_ 1, ¥¢) Sample from proposal pdf|
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X )p(x |
wy = w;_ M Update weights
a(x(x; 1. ¥1)
n=n+ u.':: Update norm. factor
end
for i = I:N
w, = wi/n Normalize weights
end 2
ide adapted from Michael B. Leibe
RWTHCHEN
Choice of Importance Density
¢ Most common choice
~» Transitional prior
q(x \XL]-%) = P(be(;—l)
» With this choice, the weight update equation simplifies to
wi = i PO _)
‘ T gl ye)
- i PO x| )Pégp._l)
- “1—1
2 1)
= wj_p(yx)
ide adapted from Michael B. Leibe =
RWTHCHEN

SIS Algorithm with Transitional Prior
function {{x;.u*,’}j\' lJ = 81§ [{XLL- “':—l}:\'l'ny
n=0
for i = I:N
Draw Sj from noise distribution
x; =g (%) +e

wy = wi_ p(yilxi)

Initialize

Sample from proposal pdf|

Update weights

n=n+ u.':: Update norm. factor
end
for i = I:N
wi = wiin Normalize weights

end

ide adapted from Michael

30
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Sequential Importance Sampling Algorithm
function {{x;.u*,’}j\: lJ = 81§ [{XLL- u-;fl}:v L y,J

?] _ 0

for i = I:N

Initialize

Xp ~ q(X¢ X1, ¥¢)

Sample from proposal pdf]

Update weights
Update norm. factor
d For a concrete algorithm,
en we need to define the
for i = I:N importance density g¢(.|.)!
u:f = w: n Normalize weights
end -
ide adapted from Michael B. Leibe
RWTHCHEN

SIS Algorithm with Transitional Prior
function {{x;.u*,’}j\: lJ = 81§ [{XLL- u-;fl}:v L y,J

n=0
for i = I:N

Initialize

Xi ~plx, XLL) Sample from proposal pdf]
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wy = wi_p(yi|x;) Update weights
n=n+ u.':: Update norm. factor

end
for i = I:N

wi=wlin Normalize weights
end "
ide adapted from Michael B. Leibe
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The Degeneracy Phenomenon

¢ Unavoidable problem with SIS
» After a few iterations, most particles have negligible weights.

» Large computational effort for updating particles with very small
contribution to p(x; | y.)-

Measure of degeneracy
» Effective sample size

Nog =

i, (w)?

e

» Uniform: fo =N
- Severe degeneracy: Ny=1

B. Leibe




Resampling

¢ |dea

~ Eliminate particles with low importance weights and increase
the number of particles with high importance weight.

» The new set is generated by sampling with replacement from
the discrete representation of p(x, | y,,,) such that

T B
Ii{x, xl} wy

Computer Vision Il, Summer’14
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ide adapted from Michael Rubinstei B. Leibe

Resampling

¢ How to do that in practlce7

- We want to resample {x; } from the discrete pdf given by

i=1

the weighted samples { x}, w

N
- l.e., we want to draw N new samples {x;} _ with replacement

where the probability of drawing xf is given by u;ii

¢ There are many algorithms for this
» We will look at two simple algorithms here...

Computer Vision Il, Summer’14
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Inverse Transform Sampling
e |dea

It is easy to sample from a discrete distribution using the
cumulative distribution function F'() = p(X < z).
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ide adapted from Robert Collins B. Leibe
UNIVERSITY
More Efficient Approach
¢ From Arulampalam paper:
Algor.].thm 2: Resampling Algor.lthm
[ wi, )] = RESAMELE [{x}, wi}{]
* Inltlallze the CDF: ¢ =0
® FOR i =
= Consnuct CDF: ¢ = i 1+w“
# END FOR
< # Start at the bottom of the CDF: i=1
% # Draw a starting point: gy~ U0, N7t
£ % FOR j=1: Ng
g Move along the CDF: a; =u +N7Hj—1)
@ WHILE u; > ¢
] & Ceger Basic idea: ch initial
s _ END WHILE asic 1dea: choose one initia
2 Assign sample: xi* = x sn:|a_ll ljandom number; deter-
5 Assign weight: 1 mlnlshcal!y sample the rest
3 Assign parent: i by “crawling” up the cdf.
§ * END FOR This is O(N)!
38
ide adapted from Robert Collin: B. Leibe

Inverse Transform Sampling

¢ Idea

» It is easy to sample from a discrete distribution using the
cumulative distribution function F'() = p(X < z].

k N
* Procedure )= Z “"/Z“"
E k
1. Generate uniform u in N\
the range [0,1].

. Visualize a horizontal
line intersecting the
bars.

3. If index of intersected *

bar is j, output new
sample x;.

N

Computer Vision Il, Summer’14

ide adapted from Robert Callin: B, Letbe

Generic Particle Filter
function Hx’,, w,l};\: IJ =rF “xf?l -u*ffl}:v . ,y,,J
Apply SIS filtering [{xi u'f}f lJ = 5IS “Xi—x- w:_l};v L .y,J
Calculate N,z
if Ny < Ny,
[{xwi} L, | = RESAMPLE |{x{,u}} |
end
¢ We can also apply resampling selectively

» Only resample when it is needed, i.e., IV, is too low.
= Avoids drift when there the tracked state is stationary.
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Other Variant of the Algorithm
function [X;] = SIR[X,_1. v

X=x=0
for i = 1:N

Initialize

Sample x; ~ p(x,|x;_|) Generate new samples

wy = P(yt,‘x:) Update weights
end
for i = I:N

Draw i with probability = w;

. Resample

Add x; to X,
end 41
ide adapted from Michael B. Leibe
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Particle Filtering: Condensation Algorithm

Start with weighted

@] samples from previous
time step
drilt
Sample and shift
—=( according to dynamics
model
difuse

Spread due to

— randomness; this is pre-
dicted density p(x;|Y;.1)

measure WWeight the samples

- according to observation

density

Arrive at corrected

density estimate

P(Xc|ye)

observaion
density

M. Isard and A. Blake, CONDENSATION -- conditional densit:
visual tracking, IJCV 29(1):5-28, 1998
B. Leibe

ropagation for

43
ide credit: Svetlana lazebnik Eigure source: M, Isard & A, Blakel

Other Variant of the Algorithm

function [X;] = SIR[X,_1. v

X=x=0
for i = I:N

Important property:

Sample x; ~ p(x,x]_|} Particles are distributed
according to pdf from
wi = Ji(ydx:) previous time step.

end

for i = I:N

Particles are distributed
according to posterior
from this time step.

Draw i with probability = w;

Add x} to X,

Computer Vision Il, Summer’14

end

ide adapted from Michael

42
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Summary: Particle Filtering

e Pros:
» Able to represent arbitrary densities
~ Converging to true posterior even for non-Gaussian and
nonlinear system
Efficient: particles tend to focus on regions with high probability
Works with many different state spaces
- E.g. articulated tracking in complicated joint angle spaces
Many extensions available

v

v

v
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Summary: Particle Filtering

¢ Cons / Caveats:
» #Particles is important performance factor
- Want as few particles as possible for efficiency.
- But need to cover state space sufficiently well.
» Worst-case complexity grows exponentially in the dimensions
» Multimodal densities possible, but still single object
- Interactions between multiple objects require special treatment.

- Not handled well in the particle filtering framework
(state space explosion).

45
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References and Further Reading

¢ A good description of Particle Filters can be found in
Ch.4.3 of the following book F 13

> S. Thrun, W. Burgard, D. Fox. Probabilistic
Robotics. MIT Press, 2006. | tic
i ROBOTICS
¢ A good tutorial on Particle Filters k
> M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. A Tutorial
on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. In IEEE Transactions on Signal Processing, Vol. 50(2),
pp. 174-188, 2002.

¢ The CONDENSATION paper

» M. Isard and A. Blake, CONDENSATION - conditional density
propagation for visual tracking, IJCV 29(1):5-28, 1998

B. Leibe
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