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Announcement 

• Problems with exam registration fixed... 

 ...for Master CS and Master SSE 

 You should now be able to register 

 I extended the registration deadline until this Friday (30.05.) 

 

• Exchange students can register directly with us 

 If registration is not possible via ZPA 

 

• Please let us know if problems persist. 
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Course Outline 

• Single-Object Tracking 

 Background modeling 

 Template based tracking 

 Color based tracking 

 Contour based tracking 

 Tracking by online classification 

 Tracking-by-detection 
 

• Bayesian Filtering 

 Kalman filters 

 Particle filters 

 Case studies 
 

• Multi-Object Tracking 
 

• Articulated Tracking 
3 
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Today: Beyond Gaussian Error Models 
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Figure from Isard & Blake 
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Topics of This Lecture 

• Recap: Extended Kalman Filter 
 Detailed algorithm 

 

• Particle Filters: Detailed Derivation 
 Recap: Basic idea 

 Importance Sampling 

 Sequential Importance Sampling (SIS) 

 Transitional prior 

 Resampling 

 Generic Particle Filter 

 Sampling Importance Resampling (SIR) 
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Recap: Kalman Filter 

• Algorithm summary 

 Assumption: linear model 

 

 
 

 Prediction step 

 

 

 

 Correction step 
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Recap: Extended Kalman Filter (EKF) 

• Algorithm summary 

 Nonlinear model 

 

 
 

 Prediction step 

 

 

 

 Correction step 
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Topics of This Lecture 

• Recap: Extended Kalman Filter 
 Detailed algorithm 

 

• Particle Filters: Detailed Derivation 
 Recap: Basic idea 

 Importance Sampling 

 Sequential Importance Sampling (SIS) 

 Transitional prior 

 Resampling 

 Generic Particle Filter 

 Sampling Importance Resampling (SIR) 
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Recap: Propagation of General Densities 
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Recap: Factored Sampling 

 

 

 

 

 
 

• Idea: Represent state distribution non-parametrically 

 Prediction: Sample points from prior density for the state, P(X) 

 Correction: Weight the samples according to P(Y |X) 
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Particle Filtering 

• Many variations, one general concept: 

 Represent the posterior pdf by a set of randomly chosen 

weighted samples (particles) 

 

 

 

 

 

 

 

 Randomly Chosen = Monte Carlo (MC) 

 As the number of samples become very large – the 

characterization becomes an equivalent representation  

of the true pdf. 
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Particle filtering 

• Compared to Kalman Filters and their extensions 

 Can represent any arbitrary distribution 

 Multimodal support 

 Keep track of as many hypotheses as there are particles 

 Approximate representation of complex model rather than exact 

representation of simplified model 

 

• The basic building-block: Importance Sampling 
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Recap: Monte-Carlo Sampling 

• Objective:  

 Evaluate expectation of a function f(z)  

w.r.t. a probability distribution p(z). 

 

 

• Monte Carlo Sampling idea 

 Draw L independent samples z(l) with l = 1,…,L from p(z). 

 This allows the expectation to be approximated by a finite sum 

 

 
 

 As long as the samples z(l) are drawn independently from p(z), 

then 
 

 Unbiased estimate, independent of the dimension of z! 
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Monte Carlo Integration 

• We can use the same idea for computing integrals 

 Assume we are trying to estimate a complicated integral of a 

function f over some domain D: 

 

 

 

 Also assume there exists some PDF p defined over D. Then 

 

 

 

 For any pdf p over D, the following holds 

 

 

14 
B. Leibe 

xdxfF
D


 )(

xdxp
xp

xf
xdxfF

DD






  )(

)(

)(
)(

px
xp

xf
Exdxp

xp

xf

D
~,

)(

)(
)(

)(

)(








 








Slide adapted from Michael Rubinstein 

P
e
rc

e
p
tu

a
l 
a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I
I,
 S

u
m

m
e

r’
1

4
 

Monte Carlo Integration 

• Idea (cont’d) 

 Now, if we have i.i.d random samples x1,..., xN sampled from p, 

then we can approximate the expectation 

 

 
 

 by 

 

 
 

 Guaranteed by law of large numbers: 

 

 

 

 Since it guides sampling, p is often called a proposal distribution. 
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Importance Sampling 

• Let’s consider an example 

 

 
 

 f/p is the importance weight of a  

sample. 

 What can go wrong here? 

 

• What if p(x)=0 ? 

 If p is very small, then f/p can get arbitrarily large! 
 

 Design p such that f/p is bounded. 

 Effect: get more samples in “important” areas of f,  

i.e., where f is large. 
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Proposal Distributions: Other Uses 

• Similar Problem 

 For many distributions, sampling directly from p(z) is difficult. 

 But we can often easily evaluate p(z) (up to some normalization 

factor Zp): 

 
 

• Idea 

 Take some simpler distribution q(z) as proposal distribution 

from which we can draw samples and which is non-zero. 
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p(z) =
1

Zp

~p(z)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006 

P
e
rc

e
p
tu

a
l 
a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I
I,
 S

u
m

m
e

r’
1

4
 

Recap: Importance Sampling 

• Idea 

 Use a proposal distribution q(z) from which it is easy to draw 

samples and which is close in shape to f. 

 Express expectations in the form of a finite sum over samples 

{z(l)} drawn from q(z). 

 

 

 

 

 

 

 with importance weights 
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rl =
p(z(l))

q(z(l))

Image source: C.M. Bishop, 2006 
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Illustration of Importance Factors 

 

 

 

 

 

 

 

 
 

• Goal: Approximate target density f 
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B. Leibe Figure source: Thrun, Burgard, Fox 
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Illustration of Importance Factors 

 

 

 

 

 

 

 

 
 

• Goal: Approximate target density f 

 Instead of sampling from f directly, we can only sample from g. 

21 
B. Leibe Figure source: Thrun, Burgard, Fox 
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Illustration of Importance Factors 

 

 

 

 

 

 

 

 
 

• Goal: Approximate target density f 

 Instead of sampling from f directly, we can only sample from g. 

 A sample of f is obtained by attaching the weight f/g to each 

sample x. 
22 
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Interpretation for Tracking 

 

 

 

 

 

 

 

 
 

• Goal: Approximate target density f 

 Instead of sampling from f directly, we can only sample from g. 

 A sample of f is obtained by attaching the weight f/g to each 

sample x. 
23 
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Tracking application:  

Posterior from the 

previous frame 

Tracking application:  

Posterior of the 

current frame 
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Importance Sampling for Bayesian Estimation 

 

 

 

 

• Applying Importance Sampling 

 Characterize the posterior pdf using a set of samples (particles) 

and their weights 

 
 

 Then the joint posterior is approximated by  
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Importance Sampling for Bayesian Estimation 

 

 

 

 

• Applying Importance Sampling 

 Draw the samples from the importance density q(x0:t | y1:t) with 

importance weights 

 
 

 Sequential update (after some calculation) 
 

– Particle update 

 

– Weight update 
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Sequential Importance Sampling Algorithm 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 
 

end 
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Sample from proposal pdf 

Update weights 

Update norm. factor 

Normalize weights 
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Sequential Importance Sampling Algorithm 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 
 

end 
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Sample from proposal pdf 

Update weights 

Update norm. factor 

Normalize weights 

Initialize 

Slide adapted from Michael Rubinstein 

For a concrete algorithm, 

we need to define the 

importance density q(.|.)! 
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Choice of Importance Density 

• Most common choice 

 Transitional prior 

 

 

 With this choice, the weight update equation simplifies to  
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SIS Algorithm with Transitional Prior 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 
 

end 
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Update norm. factor 
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SIS Algorithm with Transitional Prior 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 
 

end 
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Sample from proposal pdf 
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Update norm. factor 

Normalize weights 
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The Degeneracy Phenomenon 

• Unavoidable problem with SIS 

 After a few iterations, most particles have negligible weights. 

 Large computational effort for updating particles with very small 

contribution to p(xt | y1:t). 

 

• Measure of degeneracy 

 Effective sample size 

 

 

 

 

 Uniform:   Neff = N 

 Severe degeneracy: Neff = 1 
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Resampling 

• Idea 

 Eliminate particles with low importance weights and increase 

the number of particles with high importance weight. 

 

 

 

 The new set is generated by sampling with replacement from 

the discrete representation of p(xt | y1:t) such that 
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Resampling 

• How to do that in practice? 

 We want to resample               from the discrete pdf given by  
 

the weighted samples                    . 

 

 I.e., we want to draw N new samples               with replacement 
 

where the probability of drawing      is given by      . 

 

• There are many algorithms for this 

 We will look at two simple algorithms here... 
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Inverse Transform Sampling 

• Idea 

 It is easy to sample from a discrete distribution using the 

cumulative distribution function                             . 
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• Idea 

 It is easy to sample from a discrete distribution using the 

cumulative distribution function                             . 

 
 

• Procedure 

1. Generate uniform u in  

the range [0,1]. 

2. Visualize a horizontal  

line intersecting the  

bars. 

3. If index of intersected  

bar is j, output new  

sample xj. 

Inverse Transform Sampling 
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More Efficient Approach 

• From Arulampalam paper: 
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Basic idea: choose one initial 

small random number; deter- 

ministically sample the rest 

by “crawling” up the cdf.  

This is O(N)! 

Slide adapted from Robert Collins 
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Generic Particle Filter 

function  
 

Apply SIS filtering 
 

Calculate Neff 
 

if  Neff < Nthr 
 

 

 

 
 

end 

 

• We can also apply resampling selectively 

 Only resample when it is needed, i.e., Neff is too low. 

 Avoids drift when there the tracked state is stationary. 
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Other Variant of the Algorithm 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 

 

 
 

end 
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Generate new samples 

Update weights 

Resample 

Initialize 

Slide adapted from Michael Rubinstein 

Sample 

Draw i with probability 

Add      to Xt 
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Other Variant of the Algorithm 

function  

 
 

for  i = 1:N 
 

 

 

 

 

 

 

 

end 

for  i = 1:N 

 

 

 
 

end 
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Important property: 

Slide adapted from Michael Rubinstein 

Sample 

Draw i with probability 

Add      to Xt 

Particles are distributed 

according to pdf from 

previous time step. 

Particles are distributed  

according to posterior  

from this time step. 
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Particle Filtering: Condensation Algorithm 

Start with weighted 

samples from previous 

time step 
 

Sample and shift 

according to dynamics 

model 
 

Spread due to 

randomness; this is pre-

dicted density p(xt|yt-1) 
 

Weight the samples 

according to observation 

density 
 

Arrive at corrected 

density estimate  

p(xt|yt) 
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M. Isard and A. Blake, CONDENSATION -- conditional density propagation for 

visual tracking, IJCV 29(1):5-28, 1998 

Slide credit: Svetlana Lazebnik Figure source: M. Isard & A. Blake 
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Summary: Particle Filtering 

• Pros: 

 Able to represent arbitrary densities 

 Converging to true posterior even for non-Gaussian and 

nonlinear system 

 Efficient: particles tend to focus on regions with high probability 

 Works with many different state spaces 

– E.g. articulated tracking in complicated joint angle spaces 

 Many extensions available 
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Summary: Particle Filtering 

• Cons / Caveats: 

 #Particles is important performance factor 

– Want as few particles as possible for efficiency. 

– But need to cover state space sufficiently well. 

 Worst-case complexity grows exponentially in the dimensions 

 Multimodal densities possible, but still single object 

– Interactions between multiple objects require special treatment. 

– Not handled well in the particle filtering framework 

(state space explosion). 
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References and Further Reading 

• A good description of Particle Filters can be found in 

Ch.4.3 of the following book 

 S. Thrun, W. Burgard, D. Fox. Probabilistic  

Robotics. MIT Press, 2006. 

 

 

• A good tutorial on Particle Filters 

 M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. A Tutorial  

on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian 

Tracking. In IEEE Transactions on Signal Processing, Vol. 50(2), 

pp. 174-188, 2002. 
 

• The CONDENSATION paper 

 M. Isard and A. Blake, CONDENSATION - conditional density 

propagation for visual tracking, IJCV 29(1):5-28, 1998 
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