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Outline of This Lecture 

• Single-Object Tracking 
 

• Bayesian Filtering 

 Kalman Filters, EKF 

 Particle Filters 
 

• Multi-Object Tracking 

 Data association 

 MHT, (JPDAF, MCMCDA) 

 Network flow optimization 
 

• Articulated Tracking 

 GP body pose estimation 

 (Model-based tracking, AAMs) 

 Pictorial Structures 

 2 
Image sources: Andreas Ess, Deva Ramanan, Ian Matthews 
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Recap: Linear Assignment Formulation 

• Form a matrix of pairwise similarity scores 

• Example: Similarity based on motion prediction 

 Predict motion for each trajectory and assign scores for each 

measurement based on inverse (Mahalanobis) distance, such  

that closer measurements get higher scores. 

 

 

 

 

 

 

 
 

 Choose at most one match in each row and column to maximize 

sum of scores 
3 

B. Leibe Slide credit: Robert Collins 
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Recap: Linear Assignment Problem 

• Formal definition 
 

 Maximize 

 
 

 

subject to  

 

 

 

 

 The permutation matrix constraint ensures that we can only 

match up one object from each row and column. 
 

 Note: Alternatively, we can minimize  

cost rather than maximizing weights. 

4 
B. Leibe Slide adapted from Robert Collins 

Those constraints  

ensure that Z is a  

permutation matrix 
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Recap: Optimal Solution 

• Greedy Algorithm 

 Easy to program, quick to run, and yields “pretty good” 

solutions in practice. 

 But it often does not yield the optimal solution 
 

• Hungarian Algorithm 

 There is an algorithm called Kuhn-Munkres or “Hungarian” 

algorithm specifically developed to efficiently solve the linear 

assignment problem. 

 Reduces assignment problem to bipartite graph matching. 

 When starting from an N£N matrix, it runs in O(N3).  

 If you need LAP, you should use it. 
 

5 
B. Leibe Slide credit: Robert Collins 
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Recap: Min-Cost Flow 

 

 

 

 

 

 

 

 
 

• Conversion into flow graph 

 Transform weights into costs 

 Add source/sink nodes with 0 cost. 

 Directed edges with a capacity of 1. 
6 

B. Leibe Slide credit: Robert Collins 
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Recap: Min-Cost Flow 

 

 

 

 

 

 

 

 
 

• Conversion into flow graph 

 Pump N units of flow from source to sink. 

 Internal nodes pass on flow ( flow in =  flow out). 

 Find the optimal paths along which to ship the flow. 

 
7 

B. Leibe Slide credit: Robert Collins 
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Recap: Min-Cost Flow 

 

 

 

 

 

 

 

 
 

• Conversion into flow graph 

 Pump N units of flow from source to sink. 

 Internal nodes pass on flow ( flow in =  flow out). 

 Find the optimal paths along which to ship the flow. 

 
8 

B. Leibe Slide credit: Robert Collins 
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Recap: Using Network Flow for Tracking 

 

 

 

 

 

 

 

 
 

• Complication 1 

 Tracks can start later than frame1 (and end earlier than frame4) 

 Connect the source and sink nodes to all intermediate nodes. 

9 
B. Leibe Slide credit: Robert Collins 
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Recap: Using Network Flow for Tracking 

 

 

 

 

 

 

 

 
 

• Complication 2 

 Trivial solution: zero cost flow! 

10 
B. Leibe Slide credit: Robert Collins 
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Recap: Network Flow Approach 

 

11 

Zhang, Li, Nevatia, Global Data Association for Multi-Object Tracking 

using Network Flows, CVPR’08. 

image source: [Zhang, Li, Nevatia, CVPR’08] 

Solution: Divide 

each detection 

into 2 nodes 
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Recap: Min-Cost Formulation 

• Objective Function 

 

 

 

 
 

• subject to 

 Flow conservation at all nodes 

 

 
 

 Edge capacities 

 

12 
B. Leibe Slide credit: Laura Leal 

vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
vision.cse.psu.edu/courses/Tracking/vlpr12/lzhang_cvpr08global.pdf
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Topics of This Lecture 

• Articulated Tracking 
 Motivation 

 Classes of Approaches 
 

• Body Pose Estimation as High-Dimensional Regression 
 Representations 

 Training data generation 

 Latent variable space 

 Learning a mapping between pose and appearance 
 

• Review: Gaussian Processes 
 Formulation 

 GP Prediction 

 Algorithm 
 

• Applications 
 Articulated Tracking under Egomotion 
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Articulated Tracking 

• Examples 

 Recover a person’s body articulation 

 Track facial expressions 

 Track detailed hand motion 

 ... 
 

• Common properties 

 Detailed parameterization in terms of  

joint locations or joint angles 

 Two steps 

– Pose estimation (in single frame) 

– Tracking (using dynamics model) 

 Challenging problem 

– High-dimensional 

– Hitting the limits of sensor data 

 
14 

image sources: T. Svoboda, D. Ramanan, I. Matthews, J. Oikonomidis 
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Basic Classes of Approaches 

• Global methods 

 Entire body configuration is treated as a point 

in some high-dimensional space. 

 Observations are also global feature vectors. 

 View of pose estimation as a high-dimensional  

regression problem. 

 Often in a subspace of “typical” motions... 
 

• Part-based methods 

 Body configuration is modeled as an assembly 

of movable parts with kinematic constraints. 

 Local search for part configurations that 

provide a good explanation for the observed 

appearance under the kinematic constraints. 

 View of pose estimation as probabilistic 
inference in a dynamic Graphical Model. 
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= 

= 

image sources: T. Jaeggli, D. Ramanan, T. Svoboda 
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Why Is It Difficult? 

 

 

 

 

 

 

 

• Challenges 

 Poor imaging, motion blur, occlusions, etc. 

 Difficult to extract sufficiently good figure-ground information 

 Mapping is generally multi-modal: an image observation can 

represent more than one pose! 

16 
B. Leibe Slide credit: Raquel Urtasun 
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Topics of This Lecture 

• Articulated Tracking 
 Motivation 

 Classes of Approaches 
 

• Body Pose Estimation as High-Dimensional Regression 
 Representations 

 Training data generation 

 Latent variable space 

 Learning a mapping between pose and appearance 
 

• Review: Gaussian Processes 
 Formulation 

 GP Prediction 

 Algorithm 
 

• Applications 
 Articulated Tracking under Egomotion 
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Body Representation 

• The body can be approximated as kinematic tree 

 

• Parametrization via 

 Joint locations 

 Joint angles 

 Relative joint angles along kinematic chain 

 ... 
 

 

 

• Example using in the following 

 3D joint locations of 20 joints  

 60-dimensional space 

 

 
18 

B. Leibe Slide adapted from Raquel Urtasun image source: R. Urtasun 
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Image Representation 

• Many possibilities... 
 

• Popular choice: Silhouettes 

 Easy to extract using background  

modeling techniques. 

 Capture important information 

about body shape. 

 We will use them as an example 

for today’s lecture... 

 

19 
B. Leibe Video source: Hedvig Sidhenbladh 
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Another Advantage of Silhouette Data 

• Synthetic training data generation possible! 

 Create sequences of „Pose + Silhouette“ pairs 

 Poses recorded with Mocap, used to animate 3D model 

 Silhouette via 3D rendering pipeline 

 

20 
B. Leibe 

Motion  

Capture 

3D Rendering 

Orientation () 

Pose Data (p) Silhouettes (s) 

Slide adapted from Stefan Gammeter 
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Synthetic Training Data Generation 
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Different clothes models Varying body proportions 

Animate with MoCap data Resulting synthetic training data 

(depth, body part labels, silhouette) 

Image source: Umer Rafi 
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Synthetic Training Data Generation 

22 
Video source: Umer Rafi 

 

 

 

 

 

 

 

 

 

 

 Example training sequence 
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• Appearance prediction 

 Regression problem 

 High-dimensional data on both sides 

 Low-dim. representation needed  

 for learning! 

 

 
 

• Training with Motion-capture stimuli 

 Real dynamics from human actors 

 Synthesized silhouettes for training 

 Background subtraction for test 

 

Learning a Mapping b/w Pose and Appearance 

23 

•  3D joint locations 

•  ~60-dim. 

•  segm. image 

•  ~2500-dim. 

T. Jaeggli,  E. Koller-Meier,  L. Van Gool,  "Learning Generative Models for 

Monocular Body Pose Estimation",  ACCV 2007. 
image source: T. Jaeggli 

P
e
rc

e
p
tu

a
l 
a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I
I,
 S

u
m

m
e

r’
1

4
 

Latent Variable Models 

 

 

 

 

 

 

 
 

• Joint angle pose space is huge! 

 Only a small portion contains valid body poses. 

 Restrict estimation to the subspace of valid poses for the task 

 Latent variable models: PCA, FA, GPLVM, etc.  

24 
B. Leibe image source: R. Urtasun 

ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
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Example: Subspace of Walking Motion 

 

 

 

 

 

 

 

 

• Pose modeling in a subspace 

 Pose model has 60 (highly dependent) DoF 

 But gait is cyclic, can be represented by a 2D latent space 

 Capture the dependency by dimensionality reduction 

(PCA, FA, CCA, LLE, GPLVM, ...) 
25 

B. Leibe image sources: S. Gammeter, T. Jaeggli 
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Articulated Motion in the Latent Space 

 

 

 

 

 

 

 
 

• Regression from latent space to 

 Pose    p(pose | z) 

 Silhouette  p(silhouette | z) 
 

• Regressors need to be learned from training data. 

26 
B. Leibe 

walking cycles have one 

main (periodic) DOF  

additional DOF encode 

„walking style“ 

Slide adapted from Stefan Gammeter 
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Learning a Generative Mapping 
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projection (BPCA)  

Learn dim. red. (LLE) 

reconstruct 
pose 

Body Pose 

Appearance 

X : Body Pose 

(high dim.) 

x : Body Pose 

(low dim.) 

Y : Image 

(high dim.) 

y : Appearance  

Descriptor: (low dim.) 

dynamic prior 

likelihood 

g
e
n
e
ra

ti
v
e
 m

a
p
p
in

g
 

Slide credit: Tobias Jaeggli 

T. Jaeggli,  E. Koller-Meier,  L. Van Gool,  "Learning Generative Models for 

Monocular Body Pose Estimation",  ACCV 2007. P
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Example Results 

• Difficulties 

 Changing viewpoints 

 Low resolution (50 px) 

 Compression artifacts 

 Disturbing objects (umbrella, bag) 
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B. Leibe 

Original video 

Video sources: Hedvig Sidhenbladh,  Tobias Jaeggli 
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Representing Multiple Activities 

• Learn multiple models 

 One model per activity 

 Separate LLE embedding 

 Separate dynamics 

 

 

• Learn transition function 

 Link the LLE spaces 

 Find similar pose pairs 

 Learn smooth transition 
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B. Leibe 

Body Pose 

Appearance 

X x 

Y y 

Body Pose 

Appearance 

X x 

Y y 

Body Pose 

Appearance 

X x 

Y y 

walk run 

Slide credit: Tobias Jaeggli 
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Switching b/w Multiple Activities 

• Activity switching 

 Low-res. traffic scene 

 Transition from Walking to Running 

 

30 
B. Leibe 

Activity switching 

Original video 

Pose Estim. Input 

Videos by Tobias Jaeggli 

ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
ftp://ftp.vision.ee.ethz.ch/publications/proceedings/eth_biwi_00514.pdf
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Topics of This Lecture 

• Articulated Tracking 
 Motivation 

 Classes of Approaches 
 

• Body Pose Estimation as High-Dimensional Regression 
 Representations 

 Training data generation 

 Latent variable space 

 Learning a mapping between pose and appearance 
 

• Review: Gaussian Processes 
 Formulation 

 GP Prediction 

 Algorithm 
 

• Applications 
 Articulated Tracking under Egomotion 
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Classification vs. Regression 

 

32 
B. Leibe 

In classification: y 2 {-1, 1} In regression: y 2 R 

Slide credit: Raquel Urtasun 
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Gaussian Process Regression 

• “Regular” regression: 

 

 

 

 

 

• GP regression: 

 

33 
B. Leibe 

x 

y f(x) 

x 

y 
μ (x) 

μ (x)+σ(x) 

μ (x)-σ(x) 

Slide credit: Stefan Gammeter 
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Gaussian Process Regression 

• GP Regression 

 Very easy to apply 

 Automatic confidence estimate of the result 

 Well-suited for pose regression tasks 

 

• In the following, I will give a quick intro to GPs 

 Focus on main concepts and results 

 A far more detailed discussion will be given in the Advanced 

Machine Learning lecture (next semester). 

34 
B. Leibe 
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Gaussian Process 

• Gaussian distribution 

 Probability distribution over scalars / vectors. 
 

• Gaussian process (generalization of Gaussian distrib.) 

 Describes properties of functions. 

 Function: Think of a function as a long vector where each entry 

specifies the function value f(xi) at a particular point xi. 

 Issue: How to deal with infinite number of points? 

– If you ask only for properties of the function at a finite number of 
points…  

– Then inference in Gaussian Process gives you the same answer if 

you ignore the infinitely many other points. 
 

• Definition 

 A Gaussian process (GP) is a collection of random variables any 

finite number of which has a joint Gaussian distribution. 

 
35 

B. Leibe Slide credit: Bernt Schiele 
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Gaussian Process 

• Example prior over functions p(f)  

 Represents our prior belief about  

functions before seeing any data. 

 Although specific functions don’t have  

mean of zero, the mean of f(x) values  

for any fixed x is zero (here). 
 

 Favors smooth functions 

– I.e. functions cannot vary too rapidly 

– Smoothness is induced by the covariance function of the  

Gaussian Process. 
 

 Learning in Gaussian processes 

– Is mainly defined by finding suitable properties of the covariance 

function. 

36 
B. Leibe Slide credit: Bernt Schiele Image source: Rasmussen & Williams, 2006 
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Gaussian Process 

• A Gaussian process is completely defined by 

 Mean function m(x) and 

 

 

 Covariance function k(x,x’)  

 

 

 
 

 We write the Gaussian process (GP) 

37 
B. Leibe 

m(x) = E[f(x)]

k(x;x0) = E[(f(x)¡m(x)(f(x0)¡m(x0))]

f(x) » GP(m(x); k(x;x0))

Slide adapted from Bernt Schiele 
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Gaussian Process: Squared Exponential 

• Typical covariance function 

 Squared exponential (SE) 

– Covariance function specifies the covariance between pairs of 

random variables 

 

 
 

• Remarks 

 Covariance between the outputs is written as a function 

between the inputs. 

 The squared exponential covariance function corresponds to a 

Bayesian linear regression model with an infinite number of 

basis functions. 

 For any positive definite covariance function k(.,.), there exists 

a (possibly infinite) expansion in terms of basis functions. 

38 
B. Leibe Slide credit: Bernt Schiele 
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Gaussian Process: Prior over Functions 

• Distribution over functions: 

 Specification of covariance function implies distribution over 

functions. 

 I.e. we can draw samples from the distribution of functions 

evaluated at a (finite) number of points. 

 

 Procedure 

– We choose a number of input points 

– We write the corresponding covariance 

matrix (e.g. using SE) element-wise: 

 
 

– Then we generate a random Gaussian 
vector with this covariance matrix: 

 

39 
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X?

K(X?;X?)

f? »N(0;K(X?;X?))

Example of 3 functions  

sampled 
Slide credit: Bernt Schiele Image source: Rasmussen & Williams, 2006 
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GP Prediction with Noisy Observations 

• Assume we have a set of observations: 

 

• Joint distribution of the training outputs f and test 

outputs f* according to the prior: 

 

 

 K(X, X*) contains covariances for all pairs of training and test 

points. 
 

• To get the posterior (after including the observations) 

 We need to restrict the above prior to contain only those 

functions which agree with the observed values. 

 Think of generating functions from the prior and rejecting those 

that disagree with the observations (obviously prohibitive). 
40 

B. Leibe Slide credit: Bernt Schiele 

with noise ¾n 
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Result: Prediction with Noisy Observations 

• Calculation of posterior: 

 Corresponds to conditioning the joint Gaussian prior distribution 

on the observations: 

 

 

 

 with: 

 

 

 
 

 This is the key result that defines Gaussian process regression! 

– The predictive distribution is a Gaussian whose mean and variance 

depend on the test points X* and on the kernel k(x,x’), evaluated 

on the training data X. 

41 
B. Leibe Slide credit: Bernt Schiele 

¹f? = E[f?jX;X?; t]
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GP Regression Algorithm 

• Very simple algorithm 

 

 

 

 

 

 

 

 Based on the following equations (Matrix inv.   Cholesky fact.) 

42 
B. Leibe Image source: Rasmussen & Williams, 2006 



8 

P
e
rc

e
p
tu

a
l 
a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

C
o

m
p

u
te

r 
V

is
io

n
 I
I,
 S

u
m

m
e

r’
1

4
 

Computational Complexity 

• Complexity of GP model 

 Training effort: O(N3) through matrix inversion 

 Test effort: O(N2) through vector-matrix multiplication 
 

• Complexity of basis function model 

 Training effort: O(M3)  

 Test effort: O(M2)  
 

• Discussion 

 Exact GP methods become infeasible for large training sets. 

 Need to use approximate techniques whenever #training 

examples > 2500-3000. 

43 
B. Leibe 
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Topics of This Lecture 

• Articulated Tracking 
 Motivation 

 Classes of Approaches 
 

• Body Pose Estimation as High-Dimensional Regression 
 Representations 

 Training data generation 

 Latent variable space 

 Learning a mapping between pose and appearance 
 

• Review: Gaussian Processes 
 Formulation 

 GP Prediction 

 Algorithm 
 

• Applications 
 Articulated Tracking under Egomotion 
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45 

Articulated Multi-Person Tracking using GP 

 

 

 

 

 

 

• Idea: Only perform articulated tracking where it’s easy! 

• Multi-person tracking  

 Solves hard data association problem 

• Articulated tracking  

 Only on individual “tracklets” between occlusions 

 GP regression on full-body pose 

1...N 

[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08] 
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46 

 

 

 

 

 

 

 
 

• Multi-Person tracking 
 Recovers trajectories and solves data association 

 

• Articulated Tracking 
 Estimates detailed body pose for each tracked person 

Articulated Multi-Person Tracking 

[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08] 
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• Guided segmentation for each frame 

 No reliance on background modeling 

 Approach applicable to scenarios with moving camera 

 Feedback from body pose estimate to improve segmentation 

 
47 

Articulated Tracking under Egomotion 

[Gammeter, Ess, Jaeggli, Schindler, Leibe, Van Gool, ECCV’08] 
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Summary: Articulated Tracking with Global Models 

• Pros: 

 View as regression problem (pose  appearance) 

 Lots of machine learning techniques available 

 Research focus on handling the ambiguities 

 Training on MoCap data possible 

– Accurate models for human dynamics 
 

• Cons: 

 High-dimensional problem 

 Global model 

– Can handle only those articulations it has previously seen 

– Not robust against partial occlusion 

 Difficult to get good appearance representation 

– MoCap data  Can synthesize silhouettes, but not appearance 

– Restricted to background subtraction 
48 

B. Leibe 


