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Topics of This Lecture

* Recap: Extended Kalman Filter

« Particle Filters: Detailed Derivation
— Recap: Basic idea
— Importance Sampling
— Sequential Importance Sampling (SIS)
— Transitional prior
— Resampling
— Generic Particle Filter
— Sampling Importance Resampling (SIR)
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Recap: Kalman Filter — Detailed Algorithm

« Algorithm summary
— Assumption: linear model
xy = Dyxeo1 &

yvi = Mpx; +4d;
— Prediction step
x, = Dix,
B, = DB D/ +%,
— Correction step
K, = srM! (MzrM!l 4z,
x| = x; + K (v - Mix;)
= = (I-KM)Z,
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Extended Kalman Filter (EKF)

* Algorithm summary
— Nonlinear model
Xt = BlXe-1) +er

vi = hix:)+ & with the Jacobians

— Prediction step

t

X, = glx

o=l .;) . e(x)

B = GEL,G, +3, G = i +
— Correction step 9h(x) o

K, - ¥H (HE/af+x,.)"  H - L;(XXJ

X =% K (v —hi(x)) o

I = (I-KH)X;
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ics of This Lecture

« Particle Filters: Detailed Derivation
— Recap: Basic idea
— Importance Sampling
— Sequential Importance Sampling (SIS)
— Transitional prior
— Resampling
— Generic Particle Filter
— Sampling Importance Resampling (SIR)
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Recap: Propagation of General Densities

pixl pixl
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stochastic diffusion
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Probablity

@ amro .. e State *

« Idea: Represent state distribution non-parametrically
— Prediction: Sample points from prior density for the state, P(X)
— Correction: Weight the samples according to P(Y|X)

PO XP(X, 1 Y- Vo)

P(yl | XI)P(Xl | yl)""Y ylfl)dxl
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Particle Filtering

» Many variations, one general concept:
— Represent the posterior pdf by a set of randomly chosen weighted
samples (particles)

Posterior

Sample space

— Randomly Chosen = Monte Carlo (MC)
— As the number of samples become very large — the characterization
becomes an equivalent representation of the true pdf.
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rticle filtering

» Compared to Kalman Filters and their extensions
— Can represent any arbitrary distribution
— Multimodal support
— Keep track of as many hypotheses as there are particles
— Approximate representation of complex model rather than exact
representation of simplified model

* The basic building-block: Importance Sampling
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Recap: Monte-Carlo Samplin

 Objective:
- Evaluate expectation of a function f(z)
w.r.t. a probability distribution p(z).

B[f] = f F)p(z)dz

* Monte Carlo Sampling idea
— Draw L independent samples z® with [ = 1,...,L from p(z).
— This allows the expectation to be approximated by a finite sum

N R
=52 I
— As long as the samples z(® arel::liawn independently from p(z), then
E[f] - Elf]
= Unbiased estimate, independent of the dimension of z!
b e e ) | W
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Monte Carlo Integration

* We can use the same idea for computing integrals
— Assume we are trying to estimate a complicated integral of a function f
over some domain D:

F= j f (X)dx
D
— Also assume there exists some PDF p defined over D. Then

F= jD f (X)d% = L% p(X)dx

— For any pdf p over D, the following holds

_[D G p(X)dx = { f(i)} X~p

p(X) p(X)
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Monte Carlo Integration

* Idea (cont'd)
— Now, if we have i.i.d random samples z,..., y sampled from p, then
we can approximate the expectation

- 1Y (R

— Guaranteed by law of large numbers:
a.s X
N —> oo, F, eE[f(T)}:F
p(X)

— Since it guides sampling, p is often called a proposal distribution.
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Importance Sampling

« Let's consider an example

_15 )
YON A (%)
— f/p s the importance weight of a

sample.
— What can go wrong here?

* Whatif p(z)=0 ?
— If pis very small, then f/p can get arbitrarily large!
= Design p such that f/p is bounded.

— Effect: get more samples in “important” areas of f,

i.e., where fis large.
O i

Lecture: Computer Vision 2 (SS 2016) ~ Particle Filters.
Prof. Dr. Bastian Leibe, Dr. Jorg Stickler
ide adaniad from Michasl Rubinsl "

Proposal Distributions: Other Uses

* Similar Problem
— For many distributions, sampling directly from p(z) is difficult.
— But we can often easily evaluate p(z) (up to some normalization
factor Z,): 1.
p(z) = Z—pp(Z)

* ldea
— Take some simpler distribution g(z) as proposal distribution from which
we can draw samples and which is non-zero.

Fqlz) Falz)
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Recap: Importance Sampling

* ldea
— Use a proposal distribution g(z) from which it is easy to draw samples
and which is close in shape to f.
— Express expectations in the form of a finite sum over samples {z(}
drawn from ¢(z).

Blf ~ [ fapta)da - /'f(z)%q(z)dz
L

b4

] o
> B )

= 9

==

— with importance weights
=) .

= - i
q(2®) -

lllustration of Importance Factors

» Goal: Approximate target density f
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lllustration of Importance Factors

» Goal: Approximate target density f
— Instead of sampling from f directly, we can only sample from g.
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lllustration of Importance Factors

+ Goal: Approximate target density f
— Instead of sampling from f directly, we can only sample from g.
— Asample of fis obtained by attaching the weight f/g to each sample x
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lllustration of Importance Factors

Tracking application
Posterior from the
previous frame

Tracking application:
Posterior of the ,
current frame

» Goal: Approximate target density f
— Instead of sampling from f directly, we can only sample from g.
— Asample of fis obtained by attaching the weight f/g to each sample x
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Importance Sampling for Bayesian Estimation

B[f(X)] = ] F 000 )p(knt Y1)

D(X0:0|Y1:
[ T (x0:¢ ;xl.:gl :1 q(%0:¢ |y 1:6 )lx0:e

« Applying Importance Sampling
— Characterize the posterior pdf using a set of samples (particles) and
their weights
2 * N
1 %p 0k }a:]
— Then the joint posterior is approximated by
N

P(X0:|¥1a) = Z wy b (X0 — Xp)

i=1
Lectue: ComputerVison 2 (55 2010 s Fters
ol O, Sastan Lebe.Br. Sorg Sk ° | RWTH

Importance Sampling for Bayesian Estimation

E[f(X)] = [ Fxo)p(kolyre)dxon

x
= [ Ao B oy

Xm|y'1r

* Applying Importance Sampling
— Draw the samples from the importance density g(xg., | y1.;) with
importance weights D% Y120)
wy X ———
X0 ¥1:e)
— Sequential update (after some calculation)
Xe ~ (X, ‘X;,p)ﬁ)
plyexi)p(xilxi )
TN

= Particle update

= Weight update u‘," = 1:';71

Sequential Importance Sampling Algorithm

I

function [{x;.u':};;lJ ~ 818 [{x;,l,w;,,}‘:1 .y,J

=10 Initialize
for i = I:N
X~ g% \X;_l‘ ¥t) Sample from proposal pdf
{ ! p(xd i
wi =i ply r)!i( txi_1) Update weights
a(xepe_y,ye)
0=+ Update norm. factor
end
for i = I:N
t(=:' - 'wf_;"‘rf Normalize weights
end
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Seq ial Importance Samplin

Algorithm oice of Importance Density

. i N i i N .
function l{x,,‘ur,_}‘:lJ = SIS “x,_l.u',_l}';l .y;J + Most common choice
— Transitional prior

=1 Initialize
for i = LN alxelx) . ye) = plxxi_y)
x§ ~qlxxi_, ye) Sample from proposal pdf — With this choice, the weight update reduces to
. plye|x)p(xe|x
Update weights w, = ::'j_lj—(yrl JPxefi_y)

a(xe|x;_y.¥)
n—n-+w Update norm. factor o oplydx );M
| .

= w;_

end For a concrete algorithm, " )
) ! t—1
for i = 1:N we need to define the
importance density ¢(.|.)! J i
wh — wify P ya(l) Normalize weights — wi_p(yilxi)
end
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SIS Algorithm with Transitional Prior Implementation of Sampling Step

function [{x;u,’}‘\:lJ = SIS “x;_l.u',"_l}:\;l .y;J function [{x;u}}:\:lJ = SIS l{xv{—l-“';—l}i1 .y,J
=1 Initialize =0 Initialize
for i = 1:N for i = I:N

Draw &} from noise distribution

P p[X:\XLJ Sample from proposal pdf xi=g (x;_l) Le Sample from proposal pdf
wy, = wi_ply:|x}) Update weights wi = wi_ plyx}) Update weights
n— 1+ Update norm. factor i — 1y Update norm. factor
end end
for i = 1:N for i = I:N
u=} = uu},“-,; Normalize weights -((:j_ = ““ff'?l' Normalize weights
end end
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The Degeneracy Phenomenon Resampling

» Unavoidable problem with SIS * ldea
— After a few iterations, most particles have negligible weights. — Eliminate particles with low importance weights and increase the
— Large computational effort for updating particles with very small number of particles with high importance weight.
contribution to p(x, | ¥1.)- N AR
i in
(x, i}, - {x,_ T}
=1

» Measure of degeneracy

- Effective sample size — The new set is generated by sampling with replacement from the

discrete representation of p(x, | y.,) such that

Pr {x:_* = xf} =w}

— Uniform: N=N
— Severe degeneracy: N, ;; = 1
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Resampling Inverse Ti m Sampli

* How to do that in practice? * Idea
- We want to resample{x; };71 from the discrete pdf given by - Itis easy to sample from a discrete distribution using the cumulative
TN distribution function F'(r) = p(X < x) X N
the weighted samples {x;. w; }, c(k) = 2“}.; Wi

— l.e., we want to draw N new samples {xﬁ} _, With replacement

i

where the probability of drawing x,’ is given by ur’ Wi
* There are many algorithms for this
— We will look at two simple algorithms here...
1 k N
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Inverse Transform Sampling More Efficient Approach

* ldea « From Arulampalam paper:
— Itis easy to sample from a discrete distribution using the cumulative Algfl‘l;hm 2& Resampling Algorlt,h“mﬂ
" Wi 11— rEa 1N
distribution function £'(z) = p(X < z) i N [xs wyr #};2)] = RESAMPLE [{x],, wi}2]
&) / # Initialize the CDF: ¢ =
clk) = Z w; 2 Wi * FOR i =2: N
* Procedure _ ) f ! — construct CDF: ¢ =)+ wj
1. Generate uniform  in ® END FOR
the range [0,1]_ # Start at the bottom of the CDF: ¢
. . . ® Draw a startin oint: gy ~ L0,
2. Visualize a horizontal s FOR j =1t N, ar 2o 0.
- N =1: N,
line intersecting the — Move along the CDF: wu;=uy + N7 (j—1}
bars. — WHILE wu; > ¢
3. Ifindex of intersected % #i=4+t1 Basic idea: choose one initial
bar is 7, output new — END WHILE i small random number; deter-
— hssign sample: ministically sample the rest
sample X — Resign weight: wj “ -y " P
; by “crawling” up the cdf.
— Resign parent: ¢ .. |
* END FOR This is O(V)!
e S G e b S s i e ) |
e addaiad teom Rabes Cal e adaciad o Rabes Cal

Generic Particle Filter Sampling-Importance-Resampling (SIR)
N Y
function [{x;: “';}5:1] = PF [{XZ—L-"";—I}L:l ,y,} function [X;] = SIR [X;_1, ¥
I ;N i AN X=X =0 Initialize
Apply SIS filtering [ X, wp b ] = SIS [ X LWy b J L=
{ 1 f}._l { t—1> 1}'—1 yi for i = I:N

lculate N, . .
Calculate N, Sample x! ~ p(x|x!_,} Generate new samples
if N <N, ; :
o Nepy \f’hr . wy — plyfx;) Update weights

[{x, wi} L, | = RESAMPLE [{x{,ui} | end
end for i = I:N

S i

» We can also apply resampling selectively Draw i with probability Resample

— Only resample when it is needed, i.e., N, is too low. Add x: to X,

= Avoids drift when the tracked state is stationary. end

1 %) | e 1 O T
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Other Variant of the Algorithm

function [X,] = SIR [X,_ .,y

Xo=X="0 Important property:
for i = I:N

Particles are distributed
according to pdf from
previous time step.

Sample x; ~ p(x|x} ;)

wy — p(ye|x;)

end
for i = I:N

Particles are distributed
. according to posterior
Add x; to X, from this time step.

end
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Draw i with probability

Recap: Condensation Algorithm

Start with weighted
samples from previous
time step

" Sample and shift

——() according to dynamics
model

Spread due to

P & randomness; this is pre-
dicted density P(X|Y,4)
Jo Weight the samples

- o - according to observation
density

Arrive at corrected densit
estimate P(X{|Y,)

chservafion
densily

M. Isard and A. Blake, CONDENSATION -- conditional density propagation for
visual tracking, IJCV 29(1):5-28, 1998
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Summary: Particle Filtering

* Pros:

— Able to represent arbitrary densities

— Converging to true posterior even for non-Gaussian and nonlinear
system

— Efficient: particles tend to focus on regions with high probability

— Works with many different state spaces
= E.g. articulated tracking in complicated joint angle spaces

— Many extensions available
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References and Further Reading

* A good description of Particle Filters can be found in Ch.4.3
of the following book =

— S. Thrun, W. Burgard, D. Fox. Probabilistic
Robotics. MIT Press, 2006.

babilist
ROBOTICS

» A good tutorial on Particle Filters
— M.S. Arulampalam, S. Maskell, N. Gordon, T. Clapp. A Tutorial
on Particle Filters for Online Nonlinear/Non-Gaussian Bayesian
Tracking. In IEEE Transactions on Signal Processing, Vol. 50(2), pp.
174-188, 2002.

* The CONDENSATION paper

— M. Isard and A. Blake, CONDENSATION - conditional density
propagation for visual tracking, IJCV 29(1):5-28, 1998

Summary: Particle Filtering

* Cons / Caveats:
— #Particles is important performance factor
= Want as few particles as possible for efficiency.
= But need to cover state space sufficiently well.
— Worst-case complexity grows exponentially in the dimensions
— Multimodal densities possible, but still single object
= Interactions between multiple objects require special treatment.

= Not handled well in the particle filtering framework
(state space explosion).
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