

Machine Learning - Lecture 9

Nonlinear SVMs

30.05.2016

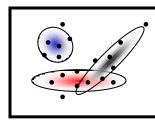
Machine Learning, Summer '16

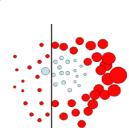
Bastian Leibe RWTH Aachen http://www.vision.rwth-aachen.de/

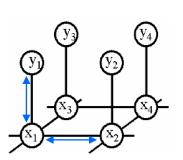
leibe@vision.rwth-aachen.de

Course Outline

- Fundamentals (2 weeks)
 - Bayes Decision Theory
 - Probability Density Estimation
- Discriminative Approaches (5 weeks)
 - Linear Discriminant Functions
 - Statistical Learning Theory & SVMs
 - Ensemble Methods & Boosting
 - Randomized Trees, Forests & Ferns
- Generative Models (4 weeks)
 - Bayesian Networks
 - Markov Random Fields







Topics of This Lecture

Support Vector Machines (Recap)

- Lagrangian (primal) formulation
- > Dual formulation
- Soft-margin classification

• Nonlinear Support Vector Machines

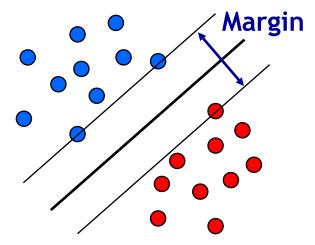
- Nonlinear basis functions
- The Kernel trick
- Mercer's condition
- Popular kernels
- Analysis
 - VC dimensions
 - Error function

Applications

Recap: Support Vector Machine (SVM)

- Basic idea
 - The SVM tries to find a classifier which maximizes the margin between pos. and neg. data points.
 - > Up to now: consider linear classifiers

$$\mathbf{w}^{\mathrm{T}}\mathbf{x} + b = 0$$



- Formulation as a convex optimization problem
 - Find the hyperplane satisfying

$$\argmin_{\mathbf{w},b} \frac{1}{2} \|\mathbf{w}\|^2$$

under the constraints

$$t_n(\mathbf{w}^{\mathrm{T}}\mathbf{x}_n+b) \ge 1 \quad \forall n$$

based on training data points \mathbf{x}_n and target values $t_n \in \{-1, 1\}$.

Recap: SVM - Primal Formulation

Lagrangian primal form

$$L_{p} = \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{n=1}^{N} a_{n} \{t_{n}(\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b) - 1\}$$
$$= \frac{1}{2} \|\mathbf{w}\|^{2} - \sum_{n=1}^{N} a_{n} \{t_{n}y(\mathbf{x}_{n}) - 1\}$$

- The solution of L_p needs to fulfill the KKT conditions
 - Necessary and sufficient conditions

$$a_n \ge 0$$

 $t_n y(\mathbf{x}_n) - 1 \ge 0$

$$a_n \left\{ t_n y(\mathbf{x}_n) - 1 \right\} = 0$$

KKT:
$$\lambda \geq 0$$
 $f(\mathbf{x}) \geq 0$ $\lambda f(\mathbf{x}) = 0$

RWTHAACHEN UNIVERSITY

Recap: SVM - Solution

- Solution for the hyperplane
 - Computed as a linear combination of the training examples

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$

- Sparse solution: $a_n \neq 0$ only for some points, the support vectors \Rightarrow Only the SVs actually influence the decision boundary!
- Compute b by averaging over all support vectors:

$$b = \frac{1}{N_{\mathcal{S}}} \sum_{n \in \mathcal{S}} \left(t_n - \sum_{m \in \mathcal{S}} a_m t_m \mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n \right)$$

Recap: SVM - Support Vectors

Origi

- The training points for which a_n > 0 are called "support vectors".
- Graphical interpretation:
 - The support vectors are the points on the margin.
 - They define the margin and thus the hyperplane.
 - ⇒ All other data points can be discarded!

W

0

Ο

0

0

w

Recap: SVM - Dual Formulation

• Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$$

under the conditions

$$a_n \geq 0 \quad \forall n$$

 $\sum_{n=1}^N a_n t_n = 0$

Comparison

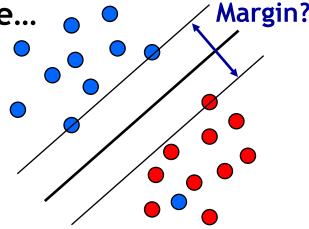
- > L_d is equivalent to the primal form L_p , but only depends on a_n .
- > L_p scales with $\mathcal{O}(D^3)$.
- > L_d scales with $\mathcal{O}(N^3)$ in practice between $\mathcal{O}(N)$ and $\mathcal{O}(N^2)$.

Slide adapted from Bernt Schiele

RWTHAACHEN UNIVERSITY

So Far...

- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points.



SVM - Non-Separable Data

- Non-separable data
 - I.e. the following inequalities cannot be satisfied for all data points

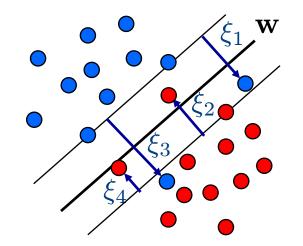
$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b \ge +1 \qquad \text{for} \quad t_{n} = +1$$
$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b \cdot -1 \qquad \text{for} \quad t_{n} = -1$$

Instead use

$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b \ge +1 - \xi_{n} \quad \text{for} \quad t_{n} = +1$$
$$\mathbf{w}^{\mathrm{T}}\mathbf{x}_{n} + b \cdot -1 + \xi_{n} \quad \text{for} \quad t_{n} = -1$$

SVM - Soft-Margin Classification

- Slack variables
 - > One slack variable $\xi_n \geq 0$ for each training data point.
- Interpretation
 - > $\xi_n = 0$ for points that are on the correct side of the margin.
 - > $\xi_n = |t_n y(\mathbf{x}_n)|$ for all other points (linear penalty).



Point on decision boundary: $\xi_n = 1$

Misclassified point: $\xi_n>1$

> We do not have to set the slack variables ourselves! \Rightarrow They are jointly optimized together with w.

SVM - Non-Separable Data

• Separable data $\frac{1}{2} \|\mathbf{w}\|^2$ **Trade-off** Minimize parameter! • Non-separable data 1 ξ_n Minimize \triangleright $\overline{2}$ n=10 0 W $\overline{\mathbf{n}}$ 0 -D 0 W 0 Ο

SVM - New Primal Formulation

• New SVM Primal: Optimize

$$L_p = \frac{1}{2} \|\mathbf{w}\|^2 + C \sum_{n=1}^{N} \xi_n - \sum_{n=1}^{N} a_n \left(t_n y(\mathbf{x}_n) - 1 + \xi_n\right) - \sum_{n=1}^{N} \mu_n \xi_n$$

$$\underbrace{\mathbf{Constraint}}_{t_n y(\mathbf{x}_n) \ge 1 - \xi_n} \underbrace{\mathbf{Constraint}}_{\xi_n \ge 0} \underbrace{\mathbf{Constraint}}_{\xi_n \ge 0}$$

• KKT conditions

$$a_n \geq 0 \qquad \mu_n \geq 0 \qquad \begin{array}{ll} \mathsf{KKT:} \\ \lambda \geq 0 \\ t_n y(\mathbf{x}_n) - 1 + \xi_n \geq 0 \\ a_n \left(t_n y(\mathbf{x}_n) - 1 + \xi_n
ight) = 0 \qquad \mu_n \xi_n = 0 \end{array} \qquad \begin{array}{ll} \mathsf{KKT:} \\ \lambda \geq 0 \\ f(\mathbf{x}) \geq 0 \\ \lambda f(\mathbf{x}) = 0 \end{array}$$

()

0

SVM - New Dual Formulation

• New SVM Dual: Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m(\mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n)$$

under the conditions

 $\frac{\mathbf{0} \cdot \mathbf{a}_n \cdot \mathbf{C}}{\sum_{n=1}^{N} a_n t_n} = \mathbf{0}$ $n \equiv 1$

This is all that changed!

This is again a quadratic programming problem
 ⇒ Solve as before... (more on that later)

SVM - New Solution

- Solution for the hyperplane
 - Computed as a linear combination of the training examples

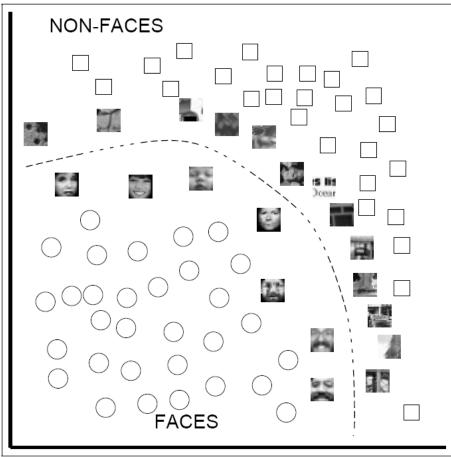
$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \mathbf{x}_n$$

- > Again sparse solution: $a_n = 0$ for points outside the margin.
- \Rightarrow The slack points with $\xi_n > 0$ are now also support vectors!
- > Compute b by averaging over all $N_{\mathcal{M}}$ points with $0 < a_n < C$:

$$b = \frac{1}{N_{\mathcal{M}}} \sum_{n \in \mathcal{M}} \left(t_n - \sum_{m \in \mathcal{M}} a_m t_m \mathbf{x}_m^{\mathrm{T}} \mathbf{x}_n \right)$$

Interpretation of Support Vectors

- Those are the hard examples!
 - > We can visualize them, e.g. for face detection



Topics of This Lecture

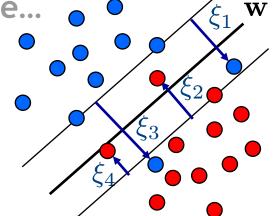
- Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - > Dual formulation
 - Soft-margin classification

• Nonlinear Support Vector Machines

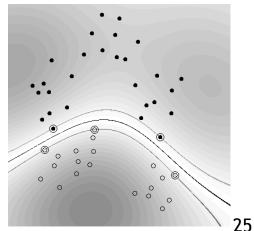
- Nonlinear basis functions
- The Kernel trick
- Mercer's condition
- Popular kernels
- Analysis
 - VC dimensions
 - Error function
- Applications

So Far...

- Only looked at linearly separable case...
 - Current problem formulation has no solution if the data are not linearly separable!
 - Need to introduce some tolerance to outlier data points.
 - \Rightarrow Slack variables.

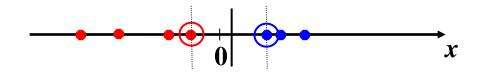


- Only looked at linear decision boundaries...
 - > This is not sufficient for many applications.
 - Want to generalize the ideas to non-linear boundaries.

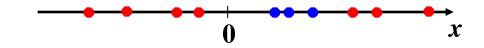


Nonlinear SVM

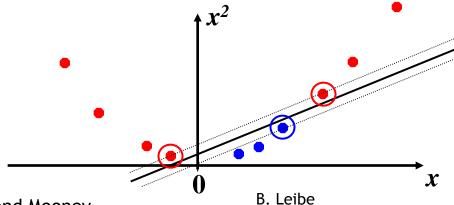
- Linear SVMs
 - > Datasets that are linearly separable with some noise work well:



> But what are we going to do if the dataset is just too hard?



How about... mapping data to a higher-dimensional space:

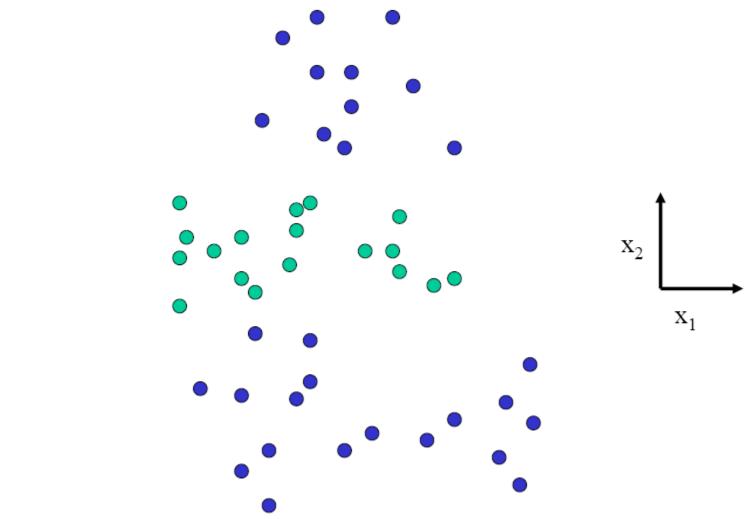


Machine Learning, Summer '16

26

Another Example

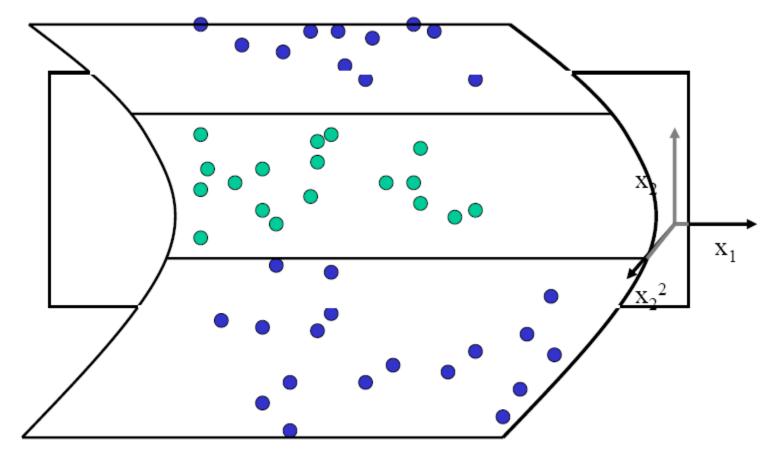
Non-separable by a hyperplane in 2D



Slide credit: Bill Freeman

Another Example

• Separable by a surface in 3D

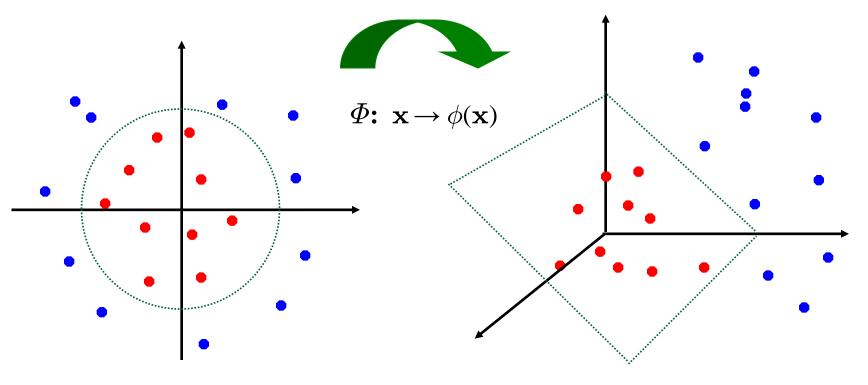


Slide credit: Bill Freeman

Machine Learning, Summer '16

Nonlinear SVM - Feature Spaces

 General idea: The original input space can be mapped to some higher-dimensional feature space where the training set is separable:



Nonlinear SVM

- General idea
 - > Nonlinear transformation ϕ of the data points \mathbf{x}_n :

$$\mathbf{x} \in \mathbb{R}^D \quad \phi : \mathbb{R}^D \to \mathcal{H}$$

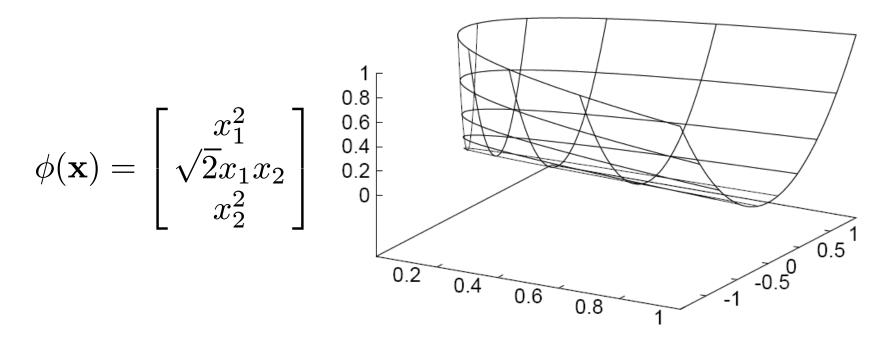
> Hyperplane in higher-dim. space \mathcal{H} (linear classifier in \mathcal{H})

$$\mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}) + b = 0$$

 \Rightarrow Nonlinear classifier in \mathbb{R}^D .

What Could This Look Like?

- Example:
 - > Mapping to polynomial space, $\mathbf{x}, \, \mathbf{y} \in \mathbb{R}^2$:



- > Motivation: Easier to separate data in higher-dimensional space.
- But wait isn't there a big problem?
 - How should we evaluate the decision function?

UNIVERSI Problem with High-dim. Basis Functions

- Problem
 - In order to apply the SVM, we need to evaluate the function

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}}\phi(\mathbf{x}) + b$$

Using the hyperplane, which is itself defined as

$$\mathbf{w} = \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)$$

 \Rightarrow What happens if we try this for a million-dimensional feature space $\phi(\mathbf{x})$?

> Oh-oh...

Solution: The Kernel Trick

- Important observation
 - > $\phi(\mathbf{x})$ only appears in the form of dot products $\phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{y})$:

$$y(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \phi(\mathbf{x}) + b$$
$$= \sum_{n=1}^{N} a_n t_n \phi(\mathbf{x}_n)^{\mathrm{T}} \phi(\mathbf{x}) + b$$

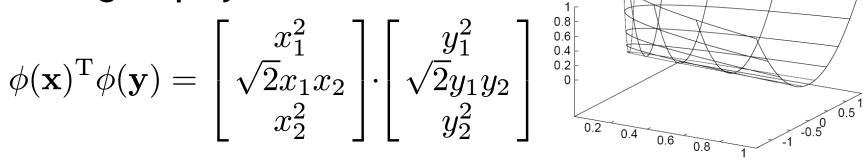
- > Trick: Define a so-called kernel function $k(\mathbf{x},\mathbf{y}) = \phi(\mathbf{x})^{\mathsf{T}}\phi(\mathbf{y})$.
- Now, in place of the dot product, use the kernel instead:

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n k(\mathbf{x}_n, \mathbf{x}) + b$$

> The kernel function *implicitly* maps the data to the higherdimensional space (without having to compute $\phi(\mathbf{x})$ explicitly)!

Back to Our Previous Example...

• 2nd degree polynomial kernel:



$$= x_1^2 y_1^2 + 2x_1 x_2 y_1 y_2 + x_2^2 y_2^2$$

$$= (\mathbf{x}^{\mathrm{T}}\mathbf{y})^2 =: k(\mathbf{x}, \mathbf{y})$$

> Whenever we evaluate the kernel function $k(\mathbf{x},\mathbf{y}) = (\mathbf{x}^{\mathsf{T}}\mathbf{y})^2$, we implicitly compute the dot product in the higher-dimensional feature space.

RWTHAACHEN UNIVERSITY

SVMs with Kernels

- Using kernels
 - Applying the kernel trick is easy. Just replace every dot product by a kernel function...

$$\mathbf{x}^{\mathrm{T}}\mathbf{y} \quad
ightarrow \quad k(\mathbf{x},\mathbf{y})$$

- …and we're done.
- Instead of the raw input space, we're now working in a higherdimensional (potentially infinite dimensional!) space, where the data is more easily separable.

"Sounds like magic..."

- > The kernel needs to define an implicit mapping to a higher-dimensional feature space $\phi(\mathbf{x})$.
- When is this the case?

Which Functions are Valid Kernels?

- Mercer's theorem (modernized version):
 - Every positive definite symmetric function is a kernel.

 Positive definite symmetric functions correspond to a positive definite symmetric Gram matrix:

	$k(\mathbf{x}_1, \mathbf{x}_1)$	$k(\mathbf{x}_1, \mathbf{x}_2)$	$k(\mathbf{x}_1,\mathbf{x}_3)$	 $k(\mathbf{x}_1,\mathbf{x}_n)$
	$k(\mathbf{x}_2, \mathbf{x}_1)$	$k(\mathbf{x}_2,\mathbf{x}_2)$	$k(\mathbf{x}_2,\mathbf{x}_3)$	$k(\mathbf{x}_2,\mathbf{x}_n)$
K =				
	$k(\mathbf{x}_n, \mathbf{x}_1)$	$k(\mathbf{x}_n, \mathbf{x}_2)$	$k(\mathbf{x}_n, \mathbf{x}_3)$	 $k(\mathbf{x}_n, \mathbf{x}_n)$

(positive definite = all eigenvalues are > 0)

<u>Machine</u> Learning, Summer '16

B. Leibe

Kernels Fulfilling Mercer's Condition

Polynomial kernel

$$k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\mathrm{T}}\mathbf{y} + 1)^{p}$$

Radial Basis Function kernel

$$k(\mathbf{x}, \mathbf{y}) = \exp\left\{-rac{(\mathbf{x} - \mathbf{y})^2}{2\sigma^2}
ight\}$$
 e.g. Gaussian

• Hyperbolic tangent kernel

$$k(\mathbf{x},\mathbf{y}) = anh(\mathbf{x}\mathbf{x}^{\mathrm{T}}\mathbf{y} + \delta)$$
 e.g. Sigmoid

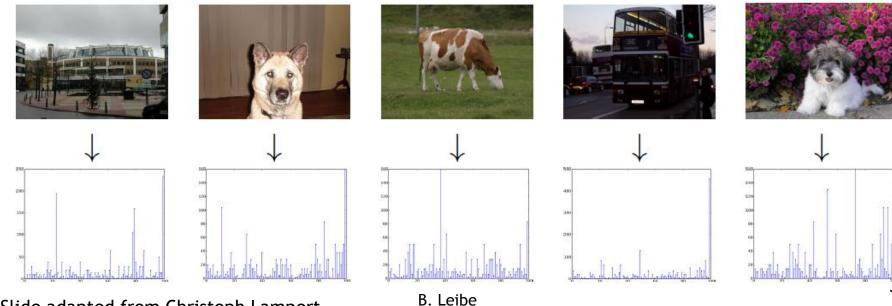
Actually, this was wrong in the original SVM paper...

(and many, many more...)

Example: Bag of Visual Words Representation

- General framework in visual recognition
 - Create a codebook (vocabulary) of prototypical image features
 - Represent images as histograms over codebook activations
 - > Compare two images by any histogram kernel, e.g. χ^2 kernel

$$k_{\chi^2}(h, h') = \exp\left(-\frac{1}{\gamma}\sum_j \frac{(h_j - h'_j)^2}{h_j + h'_j}\right)$$



Slide adapted from Christoph Lampert

Nonlinear SVM - Dual Formulation

• SVM Dual: Maximize

$$L_d(\mathbf{a}) = \sum_{n=1}^{N} a_n - \frac{1}{2} \sum_{n=1}^{N} \sum_{m=1}^{N} a_n a_m t_n t_m \mathbf{k}(\mathbf{x}_m, \mathbf{x}_n)$$

under the conditions

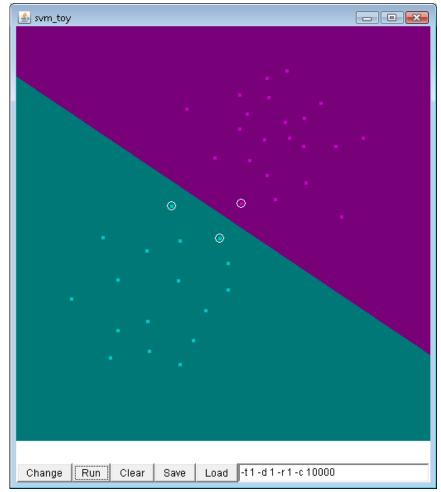
$$\begin{array}{rcl}
0 \cdot & a_n \cdot & C\\ \sum_{n=1}^N a_n t_n &= & 0
\end{array}$$

• Classify new data points using

$$y(\mathbf{x}) = \sum_{n=1}^{N} a_n t_n \mathbf{k}(\mathbf{x}_n, \mathbf{x}) + b$$

RWTHAACHEN UNIVERSITY

SVM Demo



Applet from libsvm (<u>http://www.csie.ntu.edu.tw/~cjlin/libsvm/</u>)

Summary: SVMs

- Properties
 - Empirically, SVMs work very, very well.
 - SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
 - SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
 - > SVM techniques have been applied to a variety of other tasks
 - e.g. SV Regression, One-class SVMs, ...
 - The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use
 - e.g. Kernel PCA, kernel FLD, ...
 - Good overview, software, and tutorials available on http://www.kernel-machines.org/

RWTHAACHEN UNIVERSITY

Summary: SVMs

- Limitations
 - How to select the right kernel?
 - Best practice guidelines are available for many applications
 - How to select the kernel parameters?
 - (Massive) cross-validation.
 - Usually, several parameters are optimized together in a grid search.
 - Solving the quadratic programming problem
 - Standard QP solvers do not perform too well on SVM task.
 - Dedicated methods have been developed for this, e.g. SMO.
 - Speed of evaluation
 - Evaluating $y(\mathbf{x})$ scales linearly in the number of SVs.
 - Too expensive if we have a large number of support vectors.
 - \Rightarrow There are techniques to reduce the effective SV set.
 - > Training for very large datasets (millions of data points)
 - Stochastic gradient descent and other approximations can be used

Topics of This Lecture

- Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - > Dual formulation
 - Soft-margin classification
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - > The Kernel trick
 - Mercer's condition
 - Popular kernels

• Analysis

- VC dimensions
- Error function

• Applications

RWTHAACHEN UNIVERSITY Recap: Kernels Fulfilling Mercer's Condition

Polynomial kernel

$$k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\mathrm{T}}\mathbf{y} + 1)^{p}$$

Radial Basis Function kernel

$$k(\mathbf{x}, \mathbf{y}) = \exp\left\{-rac{(\mathbf{x} - \mathbf{y})^2}{2\sigma^2}
ight\}$$
 e.g. Gaussian

• Hyperbolic tangent kernel

$$k(\mathbf{x},\mathbf{y}) = anh(\mathbf{x}\mathbf{x}^{\mathrm{T}}\mathbf{y} + \delta)$$
 e.g. Sigmoid

Actually, that was wrong in the original SVM paper...

(and many, many more...)

VC Dimension for Polynomial Kernel

Polynomial kernel of degree p:

$$k(\mathbf{x}, \mathbf{y}) = (\mathbf{x}^{\mathrm{T}} \mathbf{y})^p$$

Dimensionality of
$$\mathcal{H}$$
: $\begin{pmatrix} D+p-1\\p \end{pmatrix}$

- > Example: $D = 16 \times 16 = 256$ p = 4 $\dim(\mathcal{H}) = 183.181.376$
- $\succ\,$ The hyperplane in ${\cal H}$ then has VC-dimension

 $\dim(\mathcal{H})+1$

VC Dimension for Gaussian RBF Kernel

• Radial Basis Function:

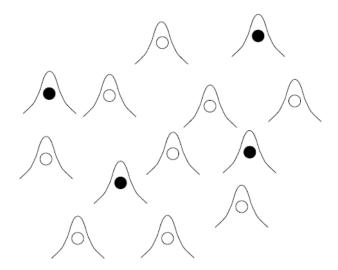
$$k(\mathbf{x}, \mathbf{y}) = \exp\left\{-\frac{(\mathbf{x} - \mathbf{y})^2}{2\sigma^2}\right\}$$

- > In this case, \mathcal{H} is infinite dimensional! $\exp(\mathbf{x}) = 1 + \frac{\mathbf{x}}{1!} + \frac{\mathbf{x}^2}{2!} + \ldots + \frac{\mathbf{x}^n}{n!} + \ldots$
- Since only the kernel function is used by the SVM, this is no problem.
- > The hyperplane in \mathcal{H} then has VC-dimension

$$\dim(\mathcal{H}) + 1 = \infty$$

VC Dimension for Gaussian RBF Kernel

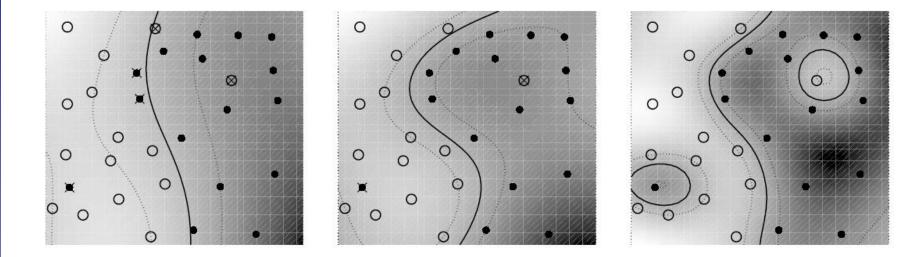
- Intuitively
 - If we make the radius of the RBF kernel sufficiently small, then each data point can be associated with its own kernel.



However, this also means that we can get finite VC-dimension if we set a lower limit to the RBF radius.

Example: RBF Kernels

Decision boundary on toy problem



RBF Kernel width (σ)

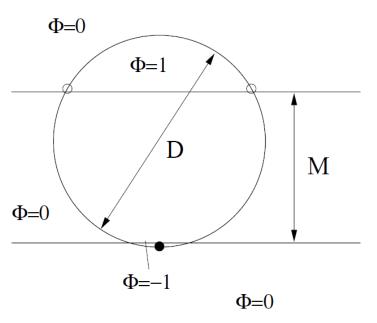
But... but... but...

- Don't we risk overfitting with those enormously highdimensional feature spaces?
 - > No matter what the basis functions are, there are really only up to N parameters: a_1 , a_2 ,..., a_N and most of them are usually set to zero by the maximum margin criterion.
 - > The data effectively lives in a low-dimensional subspace of \mathcal{H} .
- What about the VC dimension? I thought low VC-dim was good (in the sense of the risk bound)?
 - > Yes, but the maximum margin classifier "magically" solves this.
 - Reason (Vapnik): by maximizing the margin, we can reduce the VC-dimension.
 - > Empirically, SVMs have very good generalization performance.

Theoretical Justification for Maximum Margins

Gap Tolerant Classifier

- > Classifier is defined by a ball in \mathbb{R}^d with diameter D enclosing all points and two parallel hyperplanes with distance M (the margin).
- Points in the ball are assigned class {-1,1} depending on which side of the margin they fall.



• VC dimension of this classifier depends on the margin

- > $M \le 3/4 D$ \Rightarrow 3 points can be shattered
- ▶ 3/4 D < M < D \Rightarrow 2 points can be shattered
- > $M \ge D$ \Rightarrow 1 point can be shattered

 \Rightarrow By maximizing the margin, we can minimize the VC dimension

Theoretical Justification for Maximum Margins

- For the general case, Vapnik has proven the following:
 - The class of optimal linear separators has VC dimension h bounded from above as $\int D^2 = D^2$

$$h \le \min\left\{ \left| \frac{D^2}{\rho^2} \right|, m_0 \right\} + 1$$

where ρ is the margin, D is the diameter of the smallest sphere that can enclose all of the training examples, and m_0 is the dimensionality.

- Intuitively, this implies that regardless of dimensionality m_0 we can minimize the VC dimension by maximizing the margin ρ .
- Thus, complexity of the classifier is kept small regardless of dimensionality.

Machine Learning, Summer '16

Topics of This Lecture

- Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - > Dual formulation
 - Soft-margin classification
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - > The Kernel trick
 - Mercer's condition
 - > Popular kernels
- Analysis
 - VC dimensions
 - > Error function
- Applications

SVM - Analysis

• Traditional soft-margin formulation

$$\min_{\mathbf{w}\in\mathbb{R}^{D},\,\boldsymbol{\xi}_{n}\in\mathbb{R}^{+}}\frac{1}{2}\|\mathbf{w}\|^{2}+C\sum_{n=1}^{N}\boldsymbol{\xi}_{n}$$

"Maximize the margin"

subject to the constraints

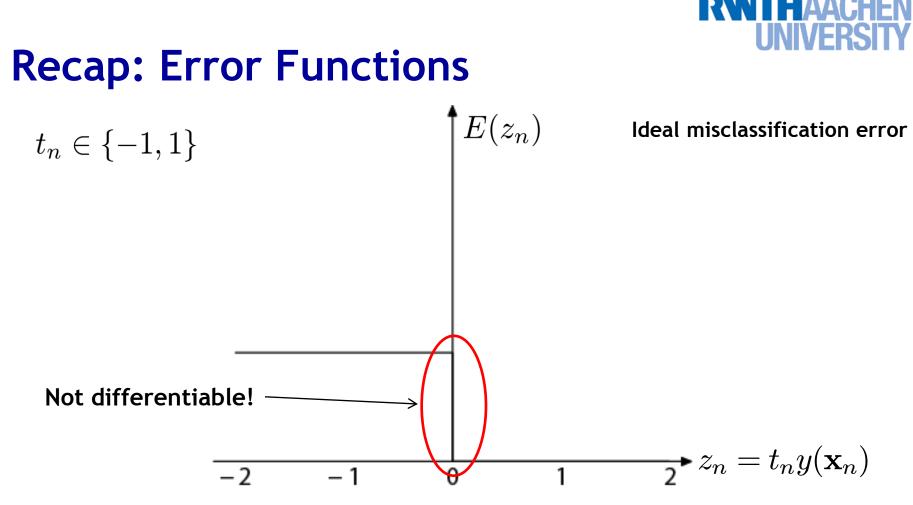
$$t_n y(\mathbf{x}_n) \geq 1 - \boldsymbol{\xi}_n$$

"Most points should be on the correct side of the margin"

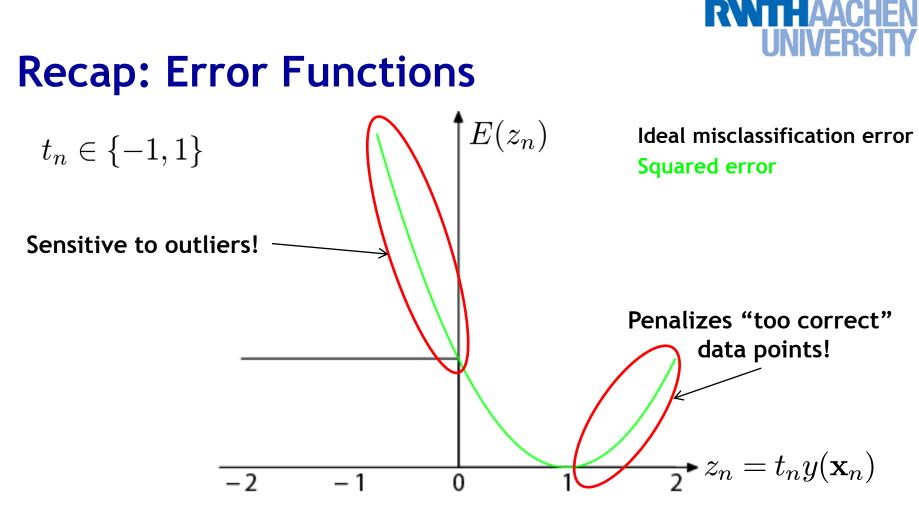
- Different way of looking at it
 - > We can reformulate the constraints into the objective function.

$$\min_{\mathbf{w}\in\mathbb{R}^{D}} \frac{1}{2} \|\mathbf{w}\|^{2} + C \sum_{n=1}^{N} [1 - t_{n}y(\mathbf{x}_{n})]_{+}$$
$$\mathbf{L}_{2} \text{ regularizer} \quad \text{``Hinge loss''}$$
$$\text{here } [x]_{+} := \max\{0, x\}.$$

W

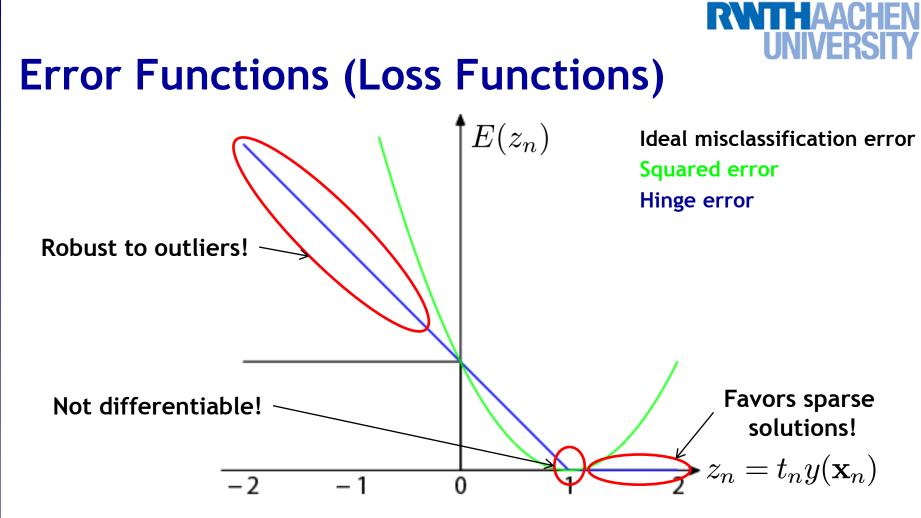


- Ideal misclassification error function (black)
 - > This is what we want to approximate,
 - > Unfortunately, it is not differentiable.
 - The gradient is zero for misclassified points.
 - \Rightarrow We cannot minimize it by gradient descent.



• Squared error used in Least-Squares Classification

- Very popular, leads to closed-form solutions.
- > However, sensitive to outliers due to squared penalty.
- Penalizes "too correct" data points
- \Rightarrow Generally does not lead to good classifiers.



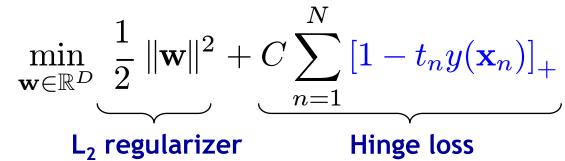
• "Hinge error" used in SVMs

- > Zero error for points outside the margin ($z_n > 1$) \Rightarrow sparsity
- > Linear penalty for misclassified points ($z_n < 1$) \Rightarrow robustness
- Not differentiable around $z_n = 1 \Rightarrow$ Cannot be optimized directly?

Image source: Bishop, 2006

SVM - Discussion

SVM optimization function



- Hinge loss enforces sparsity
 - Only a subset of training data points actually influences the decision boundary.
 - This is different from sparsity obtained through the regularizer! There, only a subset of input dimensions are used.
 - > Unconstrained optimization, but non-differentiable function.
 - Solve, e.g. by subgradient descent
 - Currently most efficient: stochastic gradient descent

Slide adapted from Christoph Lampert

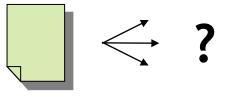
Topics of This Lecture

- Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - > Dual formulation
 - Soft-margin classification
- Nonlinear Support Vector Machines
 - Nonlinear basis functions
 - > The Kernel trick
 - Mercer's condition
 - > Popular kernels
- Analysis
 - > VC dimensions
 - Error function

Applications

UNIVERSIT Example Application: Text Classification

- Problem:
 - Classify a document in a number of categories



• Representation:

- "Bag-of-words" approach
- > Histogram of word counts (on learned dictionary)
 - Very high-dimensional feature space (~10.000 dimensions)
 - Few irrelevant features
- This was one of the first applications of SVMs
 - T. Joachims (1997)

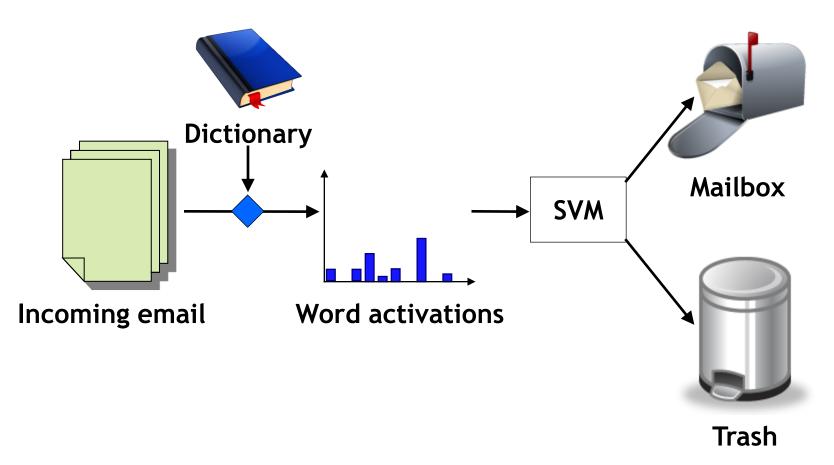
Example Application: Text Classification

• Results:

					SVM (poly)				SVM (rbf)				
					degree $d =$			width $\gamma =$					
	Bayes	Rocchio	C4.5	k-NN	1	2	3	4	5	0.6	0.8	1.0	1.2
earn	95.9	96.1	96.1	97.3	98.2	98.4	98.5	98.4	98.3	98.5	98.5	98.4	98.3
acq	91.5	92.1	85.3	92.0	92.6	94.6	95.2	95.2	95.3	95.0	95.3	95.3	95.4
money-fx	62.9	67.6	69.4	78.2	66.9	72.5	75.4	74.9	76.2	74.0	75.4	76.3	75.9
grain	72.5	79.5	89.1	82.2	91.3	93.1	92.4	91.3	89.9	93.1	91.9	91.9	90.6
crude	81.0	81.5	75.5	85.7	86.0	87.3	88.6	88.9	87.8	88.9	89.0	88.9	88.2
trade	50.0	77.4	59.2	77.4	69.2	75.5	76.6	77.3	77.1	76.9	78.0	77.8	76.8
interest	58.0	72.5	49.1	74.0	69.8	63.3	67.9	73.1	76.2	74.4	75.0	76.2	76.1
ship	78.7	83.1	80.9	79.2	82.0	85.4	86.0	86.5	86.0	85.4	86.5	87.6	87.1
wheat	60.6	79.4	85.5	76.6	83.1	84.5	85.2	85.9	83.8	85.2	85.9	85.9	85.9
corn	47.3	62.2	87.7	77.9	86.0	86.5	85.3	85.7	83.9	85.1	85.7	85.7	84.5
microavg.	72.0	79.9	79.4	82.3	84.2	85.1	85.9	86.2	85.9	86.4	86.5	86.3	86.2
					combined: 86.0			combined: 86.4					

Example Application: Text Classification

 This is also how you could implement a simple spam filter...



Example Application: OCR

Handwritten digit recognition

- > US Postal Service Database
- Standard benchmark task for many learning algorithms

See

Historical Importance

- USPS benchmark
 - > 2.5% error: human performance
- Different learning algorithms
 - > 16.2% error: Decision tree (C4.5)
 - **5.9% error: (best) 2-layer Neural Network**
 - 5.1% error: LeNet 1 (massively hand-tuned) 5-layer network

Different SVMs

- 4.0% error: Polynomial kernel (p=3, 274 support vectors)
- > 4.1% error: Gaussian kernel (σ =0.3, 291 support vectors)

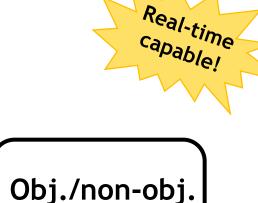
Example Application: OCR

- Results
 - > Almost no overfitting with higher-degree kernels.

degree of	dimensionality of	support	raw
polynomial	feature space	vectors	error
1	256	282	8.9
2	pprox 33000	227	4.7
3	$pprox 1 imes 10^6$	274	4.0
4	$\approx 1 \times 10^9$	321	4.2
5	$pprox 1 imes 10^{12}$	374	4.3
6	$pprox 1 imes 10^{14}$	377	4.5
7	$pprox 1 imes 10^{16}$	422	4.5

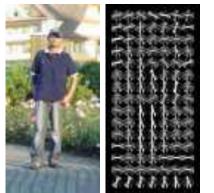
Example Application: Object Detection

Sliding-window approach



Classifier

- E.g. histogram representation (HOG)
 - Map each grid cell in the input window to a histogram of gradient orientations.
 - Train a linear SVM using training set of pedestrian vs. non-pedestrian windows.



[Dalal & Triggs, CVPR 2005]

Example Application: Pedestrian Detection

N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005

Many Other Applications

- Lots of other applications in all fields of technology
 - > OCR
 - Text classification
 - Computer vision

> ...

- High-energy physics
- Monitoring of household appliances
- Protein secondary structure prediction
- > Design on decision feedback equalizers (DFE) in telephony

(Detailed references in Schoelkopf & Smola, 2002, pp. 221)

Topics of This Lecture

- Support Vector Machines (Recap)
 - Lagrangian (primal) formulation
 - > Dual formulation
 - > Soft-margin classification
 - » Nonlinear Support Vector Machines
- Analysis
 - > VC dimensions
 - > Error function
- Applications
- Extensions
 - > One-class SVMs

Summary: SVMs

- Properties
 - Empirically, SVMs work very, very well.
 - SVMs are currently among the best performers for a number of classification tasks ranging from text to genomic data.
 - SVMs can be applied to complex data types beyond feature vectors (e.g. graphs, sequences, relational data) by designing kernel functions for such data.
 - > SVM techniques have been applied to a variety of other tasks
 - e.g. SV Regression, One-class SVMs, ...
 - The kernel trick has been used for a wide variety of applications. It can be applied wherever dot products are in use
 - e.g. Kernel PCA, kernel FLD, ...
 - Good overview, software, and tutorials available on http://www.kernel-machines.org/

RWTHAACHEN UNIVERSITY

Summary: SVMs

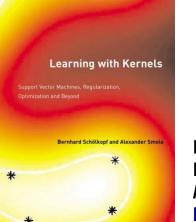
- Limitations
 - How to select the right kernel?
 - Requires domain knowledge and experiments...
 - How to select the kernel parameters?
 - (Massive) cross-validation.
 - Usually, several parameters are optimized together in a grid search.
 - Solving the quadratic programming problem
 - Standard QP solvers do not perform too well on SVM task.
 - Dedicated methods have been developed for this, e.g. SMO.
 - Speed of evaluation
 - Evaluating $y(\mathbf{x})$ scales linearly in the number of SVs.
 - Too expensive if we have a large number of support vectors.
 - \Rightarrow There are techniques to reduce the effective SV set.
 - > Training for very large datasets (millions of data points)
 - Stochastic gradient descent and other approximations can be used

You Can Try It At Home...

- Lots of SVM software available, e.g.
 - svmlight (<u>http://svmlight.joachims.org/</u>)
 - Command-line based interface
 - Source code available (in C)
 - Interfaces to Python, MATLAB, Perl, Java, DLL,...
 - > libsvm (<u>http://www.csie.ntu.edu.tw/~cjlin/libsvm/</u>)
 - Library for inclusion with own code
 - C++ and Java sources
 - Interfaces to Python, R, MATLAB, Perl, Ruby, Weka, C+ .NET,...
 - Both include fast training and evaluation algorithms, support for multi-class SVMs, automated training and cross-validation, ...
 ⇒ Easy to apply to your own problems!

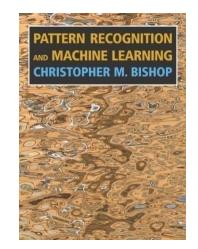
References and Further Reading

 More information on SVMs can be found in Chapter 7.1 of Bishop's book. You can also look at Schölkopf & Smola (some chapters available online).



Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

B. Schölkopf, A. Smola Learning with Kernels MIT Press, 2002 <u>http://www.learning-with-kernels.org/</u>



- A more in-depth introduction to SVMs is available in the following tutorial:
 - C. Burges, <u>A Tutorial on Support Vector Machines for Pattern</u> <u>Recognition</u>, Data Mining and Knowledge Discovery, Vol. 2(2), pp. 121-167 1998.