
1 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

Machine Learning – Lecture 12 

Deep Learning 
 

14.06.2016 

Bastian Leibe 
 

RWTH Aachen 

http://www.vision.rwth-aachen.de 

 

leibe@vision.rwth-aachen.de 

 

 

 TexPoint fonts used in EMF.  

Read the TexPoint manual before you delete this box.: 
AAAAAAAAAAAAAAAAAAAAAAAAAAAA 

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g
 

M
a

c
h

in
e

 L
e

a
rn

in
g

, 
S

u
m

m
e

r 
‘1

6
 

Course Outline 

• Fundamentals (2 weeks) 

 Bayes Decision Theory 

 Probability Density Estimation 
 

• Discriminative Approaches (5 weeks) 

 Linear Discriminant Functions 

 Statistical Learning Theory & SVMs 

 Ensemble Methods & Boosting 

 Randomized Trees, Forests & Ferns 

 Deep Learning 
 

• Generative Models (4 weeks) 

 Bayesian Networks 

 Markov Random Fields 
 

B. Leibe 
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i(N) =
X

i6=j
p(CijN)p(Cj jN) =

1

2

2
41¡

X

j

p2(Cj jN)

3
5

Recap: Decision Tree Training 

• Goal 

 Select the query (=split) that decreases impurity the most 

 

 
 

 

• Impurity measures 

 Entropy impurity (information gain):  

 

 
 

 Gini impurity: 
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4i(N) = i(N)¡PLi(NL)¡ (1¡PL)i(NR)

i(N) = ¡
X

j

p(CjjN) log2 p(CjjN)

i(P )

P

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001 
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Recap: Randomized Decision Trees 

• Decision trees: main effort on finding good split 

 Training runtime:  

 This is what takes most effort in practice. 

 Especially cumbersome with many attributes (large D). 
 

• Idea: randomize attribute selection 

 No longer look for globally optimal split. 

 Instead randomly use subset of K attributes on which to base 

the split. 

 Choose best splitting attribute e.g. by maximizing the 

information gain (= reducing entropy): 

4 
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O(DN2 logN)

4E =

KX

k=1

jSkj
jSj

NX

j=1

pj log2(pj)
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Recap: Ensemble Combination 

 

 

 

 

 
 

• Ensemble combination 

 Tree leaves (l,´) store posterior probabilities of the target 

classes. 
 

 Combine the output of several trees by averaging their 

posteriors (Bayesian model combination) 
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Recap: Random Forests (Breiman 2001) 

• General ensemble method 

 Idea: Create ensemble of many (50 - 1,000) trees. 
 

• Injecting randomness 

 Bootstrap sampling process  

– On average only 63% of training examples used for building the tree 

– Remaining 37% out-of-bag samples used for validation. 

 Random attribute selection 

– Randomly choose subset of K attributes to select from at each node. 

– Faster training procedure. 
 

• Simple majority vote for tree combination 

• Empirically very good results 

 Often as good as SVMs (and sometimes better)! 

 Often as good as Boosting (and sometimes better)! 
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Recap: Ferns 

• Ferns 

 Ferns are semi-naïve Bayes classifiers. 

 They assume independence between sets of 

features (between the ferns)… 

 …and enumerate all possible outcomes  

inside each set. 

 

• Interpretation 

 Combine the tests fl,…,fl+S into a binary number. 

 Update the “fern leaf” corresponding to that number. 
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Update leaf 1002 = 4 
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Recap: Ferns (Semi-Naïve Bayes Classifiers) 

• Ferns 

 A fern F is defined as a set of S binary features {fl,…,fl+S}. 

 M: number of ferns, Nf = S¢M. 

 This represents a compromise: 

 

 

 

 
 

 

 

 Model with              parameters (“Semi-Naïve”). 

 Flexible solution that allows complexity/performance tuning. 
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p(f1; : : : ; fNf
jCk) ¼

MY

j=1

p(FjjCk)

M ¢ 2S

= p(f1; : : : ; fSjCk) ¢ p(fS+1; : : : ; f2SjCk) ¢ : : :

Full joint  

inside fern 

Naïve Bayes 

between ferns 
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Today’s Topic 

10 
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Deep Learning 
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Topics of This Lecture 

• Perceptrons 
 Definition 

 Loss functions 

 Regularization 

 Limits 
 

• Multi-Layer Perceptrons 
 Definition 

 Learning with hidden units 
 

• Obtaining the Gradients 
 Naive analytical differentiation 

 Numerical differentiation 

 Backpropagation  

 Computational graphs 

 Automatic differentiation 
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• Standard Perceptron 

 

 

 

 
 

• Input Layer 

 Hand-designed features based on common sense 
 

• Outputs 

 Linear outputs          Logistic outputs 

 
 

• Learning = Determining the weights w 

Perceptrons (Rosenblatt 1957) 
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Input layer 

Weights 

Output layer 
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• One output node per class 

 

 

 

 

 

• Outputs 

 Linear outputs          Logistic outputs 

 

 

 

 Can be used to do multidimensional linear regression or 

multiclass classification. 

Extension: Multi-Class Networks 

13 
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Input layer 

Weights 

Output layer 
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• Straightforward generalization 

 

 

 

 

 

 

 

• Outputs 

 Linear outputs          Logistic outputs 

 

 

Extension: Non-Linear Basis Functions 

14 
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Feature layer 

Weights 

Output layer 

Input layer 

Mapping (fixed) 

Wkd’ 
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• Straightforward generalization 

 

 

 

 

 

 

 

• Remarks 

 Perceptrons are generalized linear discriminants! 

 Everything we know about the latter can also be applied here. 

 Note: feature functions Á(x) are kept fixed, not learned! 

 

 

Extension: Non-Linear Basis Functions 
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Feature layer 

Weights 

Output layer 

Input layer 

Mapping (fixed) 

Wkd’ 
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Perceptron Learning 

• Very simple algorithm 
 

• Process the training cases in some permutation 

 If the output unit is correct, leave the weights alone. 

 If the output unit incorrectly outputs a zero, add the input 

vector to the weight vector. 

 If the output unit incorrectly outputs a one, subtract the input 

vector from the weight vector. 
 

• This is guaranteed to converge to a correct solution if 

such a solution exists. 

16 
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Perceptron Learning 

• Let’s analyze this algorithm... 
 

• Process the training cases in some permutation 

 If the output unit is correct, leave the weights alone. 

 If the output unit incorrectly outputs a zero, add the input 

vector to the weight vector. 

 If the output unit incorrectly outputs a one, subtract the input 

vector from the weight vector. 
 

• Translation 
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w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)
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Perceptron Learning 

• Let’s analyze this algorithm... 
 

• Process the training cases in some permutation 

 If the output unit is correct, leave the weights alone. 

 If the output unit incorrectly outputs a zero, add the input 

vector to the weight vector. 

 If the output unit incorrectly outputs a one, subtract the input 

vector from the weight vector. 
 

• Translation 

 

 

 This is the Delta rule a.k.a. LMS rule! 

 Perceptron Learning corresponds to 1st-order (stochastic) 

Gradient Descent of a quadratic error function!  
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w
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Loss Functions 

• We can now also apply other loss functions 
 

 L2 loss 

 
 

 L1 loss: 

 
 

 Cross-entropy loss 

 
 

 Hinge loss 

 
 

 Softmax loss 

19 
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 Logistic regression 

 Least-squares regression 

 Median regression 

L(t; y(x)) = ¡
P

n

P
k

n
I (tn = k) ln

exp(yk(x))P
j exp(yj(x))

o

 SVM classification 

 Multi-class probabilistic classification 
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Regularization 

• In addition, we can apply regularizers 

 E.g., an L2 regularizer 

 

 

 This is known as weight decay in Neural Networks.  
 

 We can also apply other regularizers, e.g. L1  sparsity 
 

 Since Neural Networks often have many parameters, 

regularization becomes very important in practice. 

 More complex regularization techniques exist  

(and are an active field of research) 
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Limitations of Perceptrons 

• What makes the task difficult? 

 Perceptrons with fixed, hand-coded input features can model 

any separable function perfectly... 

 ...given the right input features. 
 

 For some tasks this requires an exponential number of input 

features. 

– E.g., by enumerating all possible binary input vectors as separate 

feature units (similar to a look-up table). 

– But this approach won’t generalize to unseen test cases! 

 It is the feature design that solves the task! 
 

 Once the hand-coded features have been determined, there are 

very strong limitations on what a perceptron can learn. 

– Classic example: XOR function. 
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Wait... 

• Didn’t we just say that... 

 Perceptrons correspond to generalized linear discriminants 

 And Perceptrons are very limited... 

 Doesn’t this mean that what we have been doing so far in  

this lecture has the same problems??? 
 

• Yes, this is the case.  

 A linear classifier cannot solve certain problems 

(e.g., XOR). 

 However, with a non-linear classifier based on  

the right kind of features, the problem becomes solvable. 

 So far, we have solved such problems by hand-designing good 

features Á and kernels Á>Á. 
 

  Can we also learn such feature representations? 
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Topics of This Lecture 

• Perceptrons 
 Definition 

 Loss functions 

 Regularization 

 Limits 
 

• Multi-Layer Perceptrons 
 Definition 

 Learning with hidden units 
 

• Obtaining the Gradients 
 Naive analytical differentiation 

 Numerical differentiation 

 Backpropagation  

 Computational graphs 

 Automatic differentiation 
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Multi-Layer Perceptrons 

• Adding more layers 

 

 

 

 

 

 

 

• Output 
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Hidden layer 

Output layer 

Input layer 

Slide adapted from Stefan Roth 
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Multi-Layer Perceptrons 

 

 

 

• Activation functions g(k): 

 For example: g(2)(a) = ¾(a), g(1)(a) = tanh(a) 
 

• The hidden layer can have an arbitrary number of nodes 

 There can also be multiple hidden layers. 
 

• Universal approximators 

 A 2-layer network (1 hidden layer) can approximate any 

continuous function of a compact domain arbitrarily well! 

(assuming sufficient hidden nodes) 

25 
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Learning with Hidden Units 

• Networks without hidden units are very limited in what 

they can learn 

 More layers of linear units do not help  still linear 

 Fixed output non-linearities are not enough. 

 

• We need multiple layers of adaptive non-linear hidden 

units. But how can we train such nets? 

 Need an efficient way of adapting all weights, not just the last 

layer. 

 Learning the weights to the hidden units = learning features 

 This is difficult, because nobody tells us what the hidden units 

should do. 
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Learning with Hidden Units 

• How can we train multi-layer networks efficiently? 

 Need an efficient way of adapting all weights, not just the last 

layer. 

 

• Idea: Gradient Descent 

 Set up an error function 

 

 

with a loss L(¢) and a regularizer (¢). 
 

 E.g., 

 

 
 

 Update each weight          in the direction of the gradient             
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L2 loss  

L2 regularizer 

(“weight decay”)  
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Gradient Descent 

• Two main steps 

1. Computing the gradients for each weight 
 

2. Adjusting the weights in the direction of  

the gradient 
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Topics of This Lecture 

• Perceptrons 
 Definition 

 Loss functions 

 Regularization 

 Limits 
 

• Multi-Layer Perceptrons 
 Definition 

 Learning with hidden units 
 

• Obtaining the Gradients 
 Naive analytical differentiation 

 Numerical differentiation 

 Backpropagation  

 Computational graphs 

 Automatic differentiation 
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Obtaining the Gradients 

• Approach 1: Naive Analytical Differentiation 

 

 

 

 

 

 

 

 Compute the gradients for each variable analytically. 
 

 What is the problem when doing this? 
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Excursion: Chain Rule of Differentiation 

• One-dimensional case: Scalar functions 

32 
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Excursion: Chain Rule of Differentiation 

• Multi-dimensional case: Total derivative 

 

 

 

 

 

 

 

 

 Need to sum over all paths that lead to the target 
variable x. 
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Obtaining the Gradients 

• Approach 1: Naive Analytical Differentiation 

 

 

 

 

 

 

 

 Compute the gradients for each variable analytically. 
 

 What is the problem when doing this? 

 With increasing depth, there will be exponentially many paths! 

 Infeasible to compute this way. 
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Topics of This Lecture 

• Perceptrons 
 Definition 

 Loss functions 

 Regularization 

 Limits 
 

• Multi-Layer Perceptrons 
 Definition 

 Learning with hidden units 
 

• Obtaining the Gradients 
 Naive analytical differentiation 

 Numerical differentiation 

 Backpropagation  

 Computational graphs 

 Automatic differentiation 
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Obtaining the Gradients 

• Approach 2: Numerical Differentiation 

 

 

 

 

 

 

 

 Given the current state W(¿), we can evaluate E(W(¿)). 

 Idea: Make small changes to W(¿) and accept those that improve 

E(W(¿)). 

 Horribly inefficient! Need several forward passes for each 

weight. Each forward pass is one run over the entire dataset! 
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Topics of This Lecture 

• Perceptrons 
 Definition 

 Loss functions 

 Regularization 

 Limits 
 

• Multi-Layer Perceptrons 
 Definition 

 Learning with hidden units 
 

• Obtaining the Gradients 
 Naive analytical differentiation 

 Numerical differentiation 

 Backpropagation  

 Computational graphs 

 Automatic differentiation 
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Obtaining the Gradients 

• Approach 3: Incremental Analytical Differentiation 

 

 

 

 

 

 

 

 Idea: Compute the gradients layer by layer. 

 Each layer below builds upon the results of the layer above. 

 The gradient is propagated backwards through the layers. 

 Backpropagation algorithm 
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Backpropagation Algorithm 

• Core steps 

1. Convert the discrepancy 

between each output and its 

target value into an error 

derivate. 

 
 

2. Compute error derivatives in 

each hidden layer from error 

derivatives in the layer above. 

 
 

3. Use error derivatives w.r.t. 

activities to get error derivatives 

w.r.t. the incoming weights 
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• Notation 

 yj Output of layer j    Connections:  

 zj Input of layer j   

Backpropagation Algorithm 

40 
B. Leibe Slide adapted from Geoff Hinton 

E.g. with sigmoid output nonlinearity 
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• Notation 

 yj Output of layer j    Connections:  

 zj Input of layer j   

Backpropagation Algorithm 
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• Notation 

 yj Output of layer j    Connections:  

 zj Input of layer j   

Backpropagation Algorithm 
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• Efficient propagation scheme 

 yi is already known from forward pass! (Dynamic Programming) 

 Propagate back the gradient from layer j and multiply with  yi.  

Backpropagation Algorithm 
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Summary: MLP Backpropagation 

• Forward Pass 

 

for  k = 1, ..., l do 

 

 
 

endfor 

 

 

 

• Notes 

 For efficiency, an entire batch of data X is processed at once. 

 ¯ denotes the element-wise product 
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• Backward Pass 

 

for  k = l, l-1, ...,1 do 

 

 

 

 

endfor 
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Analysis: Backpropagation 

• Backpropagation is the key to make deep NNs tractable 

 However... 

 

• The Backprop algorithm given here is specific to MLPs 

 It does not work with more complex architectures, 

e.g. skip connections or recurrent networks! 

 Whenever a new connection function induces a 

different functional form of the chain rule, you  

have to derive a new Backprop algorithm for it. 

 Tedious... 

 

• Let’s analyze Backprop in more detail 

 This will lead us to a more flexible algorithm formulation 

 Next lecture… 
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References and Further Reading 

• More information on Neural Networks can be found in 

Chapters 6 and 7 of the Goodfellow & Bengio book 
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