
1

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Machine Learning – Lecture 12

Deep Learning

14.06.2016

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

leibe@vision.rwth-aachen.de

 TexPoint fonts used in EMF.

Read the TexPoint manual before you delete this box.:
AAAAAAAAAAAAAAAAAAAAAAAAAAAA

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Course Outline

• Fundamentals (2 weeks)

 Bayes Decision Theory

 Probability Density Estimation

• Discriminative Approaches (5 weeks)

 Linear Discriminant Functions

 Statistical Learning Theory & SVMs

 Ensemble Methods & Boosting

 Randomized Trees, Forests & Ferns

 Deep Learning

• Generative Models (4 weeks)

 Bayesian Networks

 Markov Random Fields

B. Leibe
2

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

i(N) =
X

i6=j
p(CijN)p(Cj jN) =

1

2

2
41¡

X

j

p2(Cj jN)

3
5

Recap: Decision Tree Training

• Goal

 Select the query (=split) that decreases impurity the most

• Impurity measures

 Entropy impurity (information gain):

 Gini impurity:

3
B. Leibe

4i(N) = i(N)¡PLi(NL)¡ (1¡PL)i(NR)

i(N) = ¡
X

j

p(CjjN) log2 p(CjjN)

i(P)

P

Image source: R.O. Duda, P.E. Hart, D.G. Stork, 2001

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Recap: Randomized Decision Trees

• Decision trees: main effort on finding good split

 Training runtime:

 This is what takes most effort in practice.

 Especially cumbersome with many attributes (large D).

• Idea: randomize attribute selection

 No longer look for globally optimal split.

 Instead randomly use subset of K attributes on which to base

the split.

 Choose best splitting attribute e.g. by maximizing the

information gain (= reducing entropy):

4
B. Leibe

O(DN2 logN)

4E =

KX

k=1

jSkj
jSj

NX

j=1

pj log2(pj)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Recap: Ensemble Combination

• Ensemble combination

 Tree leaves (l,´) store posterior probabilities of the target

classes.

 Combine the output of several trees by averaging their

posteriors (Bayesian model combination)

5
B. Leibe

pl;´(Cjx)

p(Cjx) =
1

L

LX

l=1

pl;´(Cjx)

a

a

a

a

a a

T1 T2 T3

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Recap: Random Forests (Breiman 2001)

• General ensemble method

 Idea: Create ensemble of many (50 - 1,000) trees.

• Injecting randomness

 Bootstrap sampling process

– On average only 63% of training examples used for building the tree

– Remaining 37% out-of-bag samples used for validation.

 Random attribute selection

– Randomly choose subset of K attributes to select from at each node.

– Faster training procedure.

• Simple majority vote for tree combination

• Empirically very good results

 Often as good as SVMs (and sometimes better)!

 Often as good as Boosting (and sometimes better)!

6
B. Leibe

2

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Recap: Ferns

• Ferns

 Ferns are semi-naïve Bayes classifiers.

 They assume independence between sets of

features (between the ferns)…

 …and enumerate all possible outcomes

inside each set.

• Interpretation

 Combine the tests fl,…,fl+S into a binary number.

 Update the “fern leaf” corresponding to that number.

8
B. Leibe

0

0

1

Update leaf 1002 = 4

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Recap: Ferns (Semi-Naïve Bayes Classifiers)

• Ferns

 A fern F is defined as a set of S binary features {fl,…,fl+S}.

 M: number of ferns, Nf = S¢M.

 This represents a compromise:

 Model with parameters (“Semi-Naïve”).

 Flexible solution that allows complexity/performance tuning.

9
B. Leibe

p(f1; : : : ; fNf
jCk) ¼

MY

j=1

p(FjjCk)

M ¢ 2S

= p(f1; : : : ; fSjCk) ¢ p(fS+1; : : : ; f2SjCk) ¢ : : :

Full joint

inside fern

Naïve Bayes

between ferns

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Today’s Topic

10
B. Leibe

Deep Learning

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Topics of This Lecture

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation

 Computational graphs

 Automatic differentiation

 11
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

• Standard Perceptron

• Input Layer

 Hand-designed features based on common sense

• Outputs

 Linear outputs Logistic outputs

• Learning = Determining the weights w

Perceptrons (Rosenblatt 1957)

12
B. Leibe

Input layer

Weights

Output layer

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

• One output node per class

• Outputs

 Linear outputs Logistic outputs

 Can be used to do multidimensional linear regression or

multiclass classification.

Extension: Multi-Class Networks

13
B. Leibe Slide adapted from Stefan Roth

Input layer

Weights

Output layer

3

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

• Straightforward generalization

• Outputs

 Linear outputs Logistic outputs

Extension: Non-Linear Basis Functions

14
B. Leibe

Feature layer

Weights

Output layer

Input layer

Mapping (fixed)

Wkd’

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

• Straightforward generalization

• Remarks

 Perceptrons are generalized linear discriminants!

 Everything we know about the latter can also be applied here.

 Note: feature functions Á(x) are kept fixed, not learned!

Extension: Non-Linear Basis Functions

15
B. Leibe

Feature layer

Weights

Output layer

Input layer

Mapping (fixed)

Wkd’

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Perceptron Learning

• Very simple algorithm

• Process the training cases in some permutation

 If the output unit is correct, leave the weights alone.

 If the output unit incorrectly outputs a zero, add the input

vector to the weight vector.

 If the output unit incorrectly outputs a one, subtract the input

vector from the weight vector.

• This is guaranteed to converge to a correct solution if

such a solution exists.

16
B. Leibe Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Perceptron Learning

• Let’s analyze this algorithm...

• Process the training cases in some permutation

 If the output unit is correct, leave the weights alone.

 If the output unit incorrectly outputs a zero, add the input

vector to the weight vector.

 If the output unit incorrectly outputs a one, subtract the input

vector from the weight vector.

• Translation

17
B. Leibe Slide adapted from Geoff Hinton

w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Perceptron Learning

• Let’s analyze this algorithm...

• Process the training cases in some permutation

 If the output unit is correct, leave the weights alone.

 If the output unit incorrectly outputs a zero, add the input

vector to the weight vector.

 If the output unit incorrectly outputs a one, subtract the input

vector from the weight vector.

• Translation

 This is the Delta rule a.k.a. LMS rule!

 Perceptron Learning corresponds to 1st-order (stochastic)

Gradient Descent of a quadratic error function!

18
B. Leibe Slide adapted from Geoff Hinton

w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Loss Functions

• We can now also apply other loss functions

 L2 loss

 L1 loss:

 Cross-entropy loss

 Hinge loss

 Softmax loss

19
B. Leibe

 Logistic regression

 Least-squares regression

 Median regression

L(t; y(x)) = ¡
P

n

P
k

n
I (tn = k) ln

exp(yk(x))P
j exp(yj(x))

o

 SVM classification

 Multi-class probabilistic classification

4

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Regularization

• In addition, we can apply regularizers

 E.g., an L2 regularizer

 This is known as weight decay in Neural Networks.

 We can also apply other regularizers, e.g. L1 sparsity

 Since Neural Networks often have many parameters,

regularization becomes very important in practice.

 More complex regularization techniques exist

(and are an active field of research)

20
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Limitations of Perceptrons

• What makes the task difficult?

 Perceptrons with fixed, hand-coded input features can model

any separable function perfectly...

 ...given the right input features.

 For some tasks this requires an exponential number of input

features.

– E.g., by enumerating all possible binary input vectors as separate

feature units (similar to a look-up table).

– But this approach won’t generalize to unseen test cases!

 It is the feature design that solves the task!

 Once the hand-coded features have been determined, there are

very strong limitations on what a perceptron can learn.

– Classic example: XOR function.

21
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Wait...

• Didn’t we just say that...

 Perceptrons correspond to generalized linear discriminants

 And Perceptrons are very limited...

 Doesn’t this mean that what we have been doing so far in

this lecture has the same problems???

• Yes, this is the case.

 A linear classifier cannot solve certain problems

(e.g., XOR).

 However, with a non-linear classifier based on

the right kind of features, the problem becomes solvable.

 So far, we have solved such problems by hand-designing good

features Á and kernels Á>Á.

 Can we also learn such feature representations?

22
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Topics of This Lecture

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation

 Computational graphs

 Automatic differentiation

 23
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Multi-Layer Perceptrons

• Adding more layers

• Output

24
B. Leibe

Hidden layer

Output layer

Input layer

Slide adapted from Stefan Roth

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Multi-Layer Perceptrons

• Activation functions g(k):

 For example: g(2)(a) = ¾(a), g(1)(a) = tanh(a)

• The hidden layer can have an arbitrary number of nodes

 There can also be multiple hidden layers.

• Universal approximators

 A 2-layer network (1 hidden layer) can approximate any

continuous function of a compact domain arbitrarily well!

(assuming sufficient hidden nodes)

25
B. Leibe Slide credit: Stefan Roth

5

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Learning with Hidden Units

• Networks without hidden units are very limited in what

they can learn

 More layers of linear units do not help still linear

 Fixed output non-linearities are not enough.

• We need multiple layers of adaptive non-linear hidden

units. But how can we train such nets?

 Need an efficient way of adapting all weights, not just the last

layer.

 Learning the weights to the hidden units = learning features

 This is difficult, because nobody tells us what the hidden units

should do.

26
B. Leibe Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Learning with Hidden Units

• How can we train multi-layer networks efficiently?

 Need an efficient way of adapting all weights, not just the last

layer.

• Idea: Gradient Descent

 Set up an error function

with a loss L(¢) and a regularizer (¢).

 E.g.,

 Update each weight in the direction of the gradient

28
B. Leibe

L2 loss

L2 regularizer

(“weight decay”)

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Gradient Descent

• Two main steps

1. Computing the gradients for each weight

2. Adjusting the weights in the direction of

the gradient

29
B. Leibe

today

next lecture

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Topics of This Lecture

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation

 Computational graphs

 Automatic differentiation

 30
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Obtaining the Gradients

• Approach 1: Naive Analytical Differentiation

 Compute the gradients for each variable analytically.

 What is the problem when doing this?

31
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Excursion: Chain Rule of Differentiation

• One-dimensional case: Scalar functions

32
B. Leibe

6

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Excursion: Chain Rule of Differentiation

• Multi-dimensional case: Total derivative

 Need to sum over all paths that lead to the target
variable x.

33
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Obtaining the Gradients

• Approach 1: Naive Analytical Differentiation

 Compute the gradients for each variable analytically.

 What is the problem when doing this?

 With increasing depth, there will be exponentially many paths!

 Infeasible to compute this way.

34
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Topics of This Lecture

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation

 Computational graphs

 Automatic differentiation

 35
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Obtaining the Gradients

• Approach 2: Numerical Differentiation

 Given the current state W(¿), we can evaluate E(W(¿)).

 Idea: Make small changes to W(¿) and accept those that improve

E(W(¿)).

 Horribly inefficient! Need several forward passes for each

weight. Each forward pass is one run over the entire dataset!
36

B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Topics of This Lecture

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning with hidden units

• Obtaining the Gradients
 Naive analytical differentiation

 Numerical differentiation

 Backpropagation

 Computational graphs

 Automatic differentiation

 37
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Obtaining the Gradients

• Approach 3: Incremental Analytical Differentiation

 Idea: Compute the gradients layer by layer.

 Each layer below builds upon the results of the layer above.

 The gradient is propagated backwards through the layers.

 Backpropagation algorithm

38
B. Leibe

7

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Backpropagation Algorithm

• Core steps

1. Convert the discrepancy

between each output and its

target value into an error

derivate.

2. Compute error derivatives in

each hidden layer from error

derivatives in the layer above.

3. Use error derivatives w.r.t.

activities to get error derivatives

w.r.t. the incoming weights

39
B. Leibe Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

• Notation

 yj Output of layer j Connections:

 zj Input of layer j

Backpropagation Algorithm

40
B. Leibe Slide adapted from Geoff Hinton

E.g. with sigmoid output nonlinearity

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

• Notation

 yj Output of layer j Connections:

 zj Input of layer j

Backpropagation Algorithm

41
B. Leibe Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

• Notation

 yj Output of layer j Connections:

 zj Input of layer j

Backpropagation Algorithm

42
B. Leibe Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

• Efficient propagation scheme

 yi is already known from forward pass! (Dynamic Programming)

 Propagate back the gradient from layer j and multiply with yi.

Backpropagation Algorithm

43
B. Leibe Slide adapted from Geoff Hinton

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Summary: MLP Backpropagation

• Forward Pass

for k = 1, ..., l do

endfor

• Notes

 For efficiency, an entire batch of data X is processed at once.

 ¯ denotes the element-wise product

44
B. Leibe

• Backward Pass

for k = l, l-1, ...,1 do

endfor

8

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

Analysis: Backpropagation

• Backpropagation is the key to make deep NNs tractable

 However...

• The Backprop algorithm given here is specific to MLPs

 It does not work with more complex architectures,

e.g. skip connections or recurrent networks!

 Whenever a new connection function induces a

different functional form of the chain rule, you

have to derive a new Backprop algorithm for it.

 Tedious...

• Let’s analyze Backprop in more detail

 This will lead us to a more flexible algorithm formulation

 Next lecture…

45
B. Leibe

P
e
rc

e
p
tu

a
l

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

M
a

c
h

in
e

 L
e

a
rn

in
g

,
S

u
m

m
e

r
‘1

6

References and Further Reading

• More information on Neural Networks can be found in

Chapters 6 and 7 of the Goodfellow & Bengio book

B. Leibe
55

Ian Goodfellow, Aaron Courville, Yoshua Bengio

Deep Learning

MIT Press, in preparation

https://goodfeli.github.io/dlbook/

