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Topics of This Lecture

* Recap: Probabllistic View on Regression

* Properties of Linear Regression
— Loss functions for regression
— Basis functions
— Multiple Outputs

« Regularization revisited
— Regqularized Least-squares
— The Lasso
— Discussion
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Recap: Probabilistic Regression

 First assumption:

— QOur target function values y are generated by adding noise to the
function estimate:

Target function __» = y(x, W‘K Noise
value / \

Regression function Input value Weights or
parameters

« Second assumption:
— The noise is Gaussian distributed '

p(t‘X,W,ﬁ) :N(t\y(x, W)a/@_l) o, w)
/" \

Mean Variance
(G precision) %o z
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Recap: Probabilistic Regression

* Given
— Training data points: X = [X1,...,%Xp] € RAxn

— Associated function values: t1,. .., tn]T

ﬁ
|

« Conditional Iikelihood (assuming i.i.d. data)

p(t|X, w, 3) = HNt y(%n, W HNt [w b(xa), 57

= Maximize w.r.t. w, (3 /

Generalized linear

regression function
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Recap: Maximum Likelihood Regression

Vuw log p(t|X, w, 3) —ﬁZ — W p(x)) b (%)

 Setting the gradient to zero:

N
0 = —p Z(tn - WTqb(Xn))Cb(Xn)
o 3 tlxn) = [Z qb(xn)cb(xn)T} w

& Pt= 0w ® = [p(x1), - - B(xn)
& wy, = (P17 1dt Same as in least-squares
regression!

= Least-squares regression is equivalent to Maximum Likelihood under
the assumption of Gaussian noise.
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Recap: Role of the Precision Parameter

* Also use ML to determlne the precision parameter 3.

log p(t| X, w, 3) 6 Z{t —wlp(x,) } + — logﬁ N log(27r)

* Gradient w.r.t. (3:

|
|
DN
——
o
i
@
N
s
—~—’
Do
|
I

1

i lEN:{t —wlo(x )}2
BML N ~ ! "

= The inverse of the noise precision is given by the residual variance
of the target values around the regression function.
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Recap: Predictive Distribution

 Having determined the parameters w and 3, we can now
make predictions for new values of x.

p(t|X,WML,5ML) = N(ﬂy(X,WML)ﬁMi)

* This means
— Rather than giving a point (L
estimate, we can now also
give an estimate of the _
estimation uncertainty. or 7
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Recap: Maximum-A-Posteriori Estimation

* Introduce a prior distribution over the coefficients w.
— For simplicity, assume a zero-mean Gaussian distribution

(M41)/2
p(wla) = N(w|0,a ') = (%) exp {—%WTW}

— New hyperparameter @ controls the distribution of model parameters.

« Express the posterior distribution over w.
— Using Bayes’ theorem:

p(w|X,t, 8, a) x p(t|X, w, B)p(w|a)

— We can now determine w by maximizing the posterior.
— This technique is called maximum-a-posteriori (MAP).
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Recap: MAP Solution

« Minimize the negative logarithm
—logp(w|X,t,8,a) o —logp(t|X,w, ) —log p(w|a)

N
—log p(t| X, w,3) = g Z{y(xn, w) — t,n}2 + const
n=1

a

—logp(w|a) = oW W + const

* The MAP solution Is therefore the solution of
N
5 2 8
§ E {y(xn,w) o t?’b} + EWTW
n—=—1

= Maximizing the posterior distribution is equiv&dent to minimizing the
regularized sum-of-squares error (with ) = —).
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MAP Solution (2)

N
Vwlogp(w|X,t,8,0) = =8 (tn — W' ¢(xn))P(xn) +aw
=1

« Setting the gradient to Zero:

= —ﬂz — W' ¢(x5))(xn) + aw

o3 tofx) = [Z B(xn) 5 (x

& Pt = (<I><I>T + gI) w P = [p(x1),...,D(Xn)]

W+ —W

G
o \ L Effect of regularization:
& WMAP = (<I><I>T + —I) Pt Keeps the inverse
o well-conditioned
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Recap: Bayesian Curve Fitting

« Given
— Training data points: X = [X1,...,%Xp] € RAxn
— Associated function values: t = [t1, N .,tn]T

— Our goal is to predict the value of ¢ for a new point x.

« Evaluate the predictive distribution

pltlz, X, t) = / p(t|, w)p(w|X, t)dw

- AN /)
Y '

—
What we just computed for MAP

— Noise distribution — again assume a Gaussian here

p(tlz, w) = N(tly(x,w),67")

— Assume that parameters a and 3 are fixed and known for now.
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Bayesian Curve Fitting

« Under those assumptions, the posterior distribution is a
Gaussian and can be evaluated analytically:

ptlz, X, t) = N(t{m(z), s*(z))

— where the mean and variance are given by

m(z) = B¢(x)"S > d(xn)tn |

s(x)* =71 + ¢(x)" So(x) :
—and S is the regularized covariance matrix 6 :
N
S l=al+7 Z O(Xn ) (%)
n=1
RWNTH
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Analyzing the result

« Analyzing the variance of the predictive distribution

=71+ ¢(2)" So(x)

N

Uncertainty in the predicted Uncertainty in the parameters w
value due to noise on the (consequence of Bayesian
target variables treatment)

(expressed already in ML)
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Recap: Bayesian Predictive Distribution

0 1
« Important difference to previous example
— Uncertainty may vary with test point z!

. s(z)? = 71 + ()" Sé()
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Topics of This Lecture

» Properties of Linear Regression
— Loss functions for regression
— Basis functions
— Multiple Outputs
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Loss Functions for Regression

- Given p(y, X, w, 3), how do we actually estimate a function
value y, for a new point x,?

« We need a loss function, just as in the classification case
L: RxR — RT
(tn,y(xn))  —  L(tn, y(xp))

« Optimal prediction: Minimize the expected loss

// (t,y(x))p(x,t)dx dt
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Loss Functions for Regression

// (t,y(x))p(x,t)dxdt
« Simplest case

— Squared loss: Lt,y(x)) = {y(x) — t}’
— Expected loss

:/ {y(x)—t}2p(x,t) dx dt

oo =2 [y - o Lo

Oy(x)
& /tp(x, t)dt y(x)/p(x, t)dt
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Loss Functions for Regression

/tp(xt = /p

& y(x) =

= yx) = [tIX]

 Important result
— Under Squared loss, the optimal regression function is the

mean [E [t|x] of the posterior p(t|x).

— Also called mean prediction.
— For our generalized linear regression function and square loss, we

obtain as result

y(x) = ] N (tlw $(x), 51 dt = w'(x)
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Visualization of Mean Prediction

mean prediction

Y(zg) pm==mm————————s

>

o X
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Loss Functions for Regression

« Different derivation: Expand the square term as follows

{y(x) — t}* = {y(x) — Eft|x] + E[t|x] — ¢}
= {y(x) — Eft[x]}* + {E[t[x] - ¢}’
+2{y(x) — E[t|x] H{E[t|x] —t}
« Substituting into the loss function
— The cross-term vanishes, and we end up with

(L) = [ {u(x) ~Blt)peo dx+ [ var 1 plx) dx

H_)
Optimal least-squares predictor Intrinsic variability of target data
given by the conditional mean = Irreducible minimum value

of the loss function
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Other Loss Functions

* The squared loss is not the only possible choice
— Poor choice when conditional distribution p(¢|x) is multimodal.

» Simple generalization: Minkowski loss
L(t,y(x)) = |y(x) — t|*
— Expectation

BIL,) = [ [ 1v(x) — t1p(x thaxat
* Minimum of E[L ] is given by

— Conditional mean for q = 2,

— Conditional median for g = 1,
— Conditional mode for g = 0.
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Minkowski Loss Functions
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Topics of This Lecture

» Properties of Linear Regression
— Loss functions for regression
— Basis functions
— Multiple Outputs
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Linear Basis Function Models

« Generally, we consider models of the following form

— where ¢,(x) are known as basis functions.
— Typically, ¢y(x) = 1, so that w, acts as a bias.

— In the simplest case, we use linear basis functions: ¢,(x) = z,.

» Let’s take a look at some other possible basis functions...
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Linear Basis Function Models (2)

« Polynomial basis functions

¢i(z) = 7

* Properties
— Global

= A small change in x affects all
basis functions.
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Linear Basis Function Models (3)

 Gaussian basis functions

by (o) = exp { - Lol |

252

* Properties
— Local

= A small change in x affects
only nearby basis functions.

— p;and s control location and
scale (width).
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Linear Basis Function Models (4)

« Sigmoid basis functions

¢j(x) =0 (m _Suj)

— where
1

7(a) = 1+ exp(—a)

* Properties
— Local

— A small change in x affects

only nearby basis functions.

— p;and s control location and

scale (slope).
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Topics of This Lecture

» Properties of Linear Regression
— Loss functions for regression
— Basis functions
— Multiple Outputs
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Multiple Outputs

e Multiple Output Formulation
— So far only considered the case of a single target variable t.

— We may wish to predict K > 1 target variables in a vector t.
— We can write this in matrix form

Y(Xa W) — WTCb(X)

— wWhere

T
.V:[yla---ayK]

¢(X) — [17 qbl(x)v T ¢M—1(X)7]T

Wo.1

)

W =

| WpMm—-1,1
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Multiple Outputs (2)

* Analogously to the single output case we have:

p(tlx, W,58) = N(tly(W,x),57"'T)
= N(tW'o(x),57'D).

» Given observed inputs, x — x1,... 7X]§ujnd targets,
—[ty,... tyWE obtain the log likelihood function

N
np(TIX,W,8) = > InN(t,|W'o(xy), 3 'T)

n=1

NK l
= b (zi) =23 e = W)
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Multiple Outputs (3)

« Maximizing with respect to W, we obtain
—1
Wi, = (<I>T<I>) 37T,
* If we consider a single target variable, ¢,, we see that
—1
Wy = (<I>T<I>) Ty, — &'t

— where ty = [tig, .

.., tnk]T which is identical with the single
output case.
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Topics of This Lecture

* Regularization revisited
— Regqularized Least-squares
— The Lasso
— Discussion

33
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Regularization Revisited

* Consider the error function

Data term + Regularization term

« With the sum-of-squares error function and a quadratic
regularizer, we get

] A
5 Z{tn —wip(x,)) + §WTW
n=1

« which is minimized by

) A is called the
W — ()\I n <I>T<I>)_ Tt regularization
coefficient.
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Reqgularized Least-Squares

* Let's look at more general regularizers

—Z{t — W ()} + Zl‘wg\q

aydhyan
NN VAuD

“Lq norms”

q=1 q=2 q=4
“Lasso” “‘Ridge
Regression”
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Recall: Lagrange Multipliers
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Reqgularized Least-Squares

 We want to minimize

1 g
5 D At = WTo(xa)}? + 5D wyf
n=1 1=1

 This is equivalent to minimizing
N
1
B Z{tn —w' (xn)}?
n=1

— Subject to the constraint
M

> fwsl* <

j=1
— (for some suitably chosen n)
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Reqgularized Least-Squares

« Effect: Sparsity for g < 1.

— Minimization tends to set many coefficients to zero

Optimum for
least-squares

error without \@
regularization

Constraint /
from >
regularizer K/
— Why is this good?
— Why don’t we always do it, then? Any problems?
RWTH
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The Lasso

» Consider the following regressor

N M
1
WlLasso — al'g m‘;lfn § z_:l{tn — WT¢(XW)}2 + A Z ‘wﬂ‘

j=1
— This formulation is known as the Lasso.

* Properties

— L, regularization = The solution will be sparse
(only few coefficients will be non-zero) <

w2

— The L, penalty makes the problem non-linear.
= There Is no closed-form solution.
= Need to solve a quadratic programming problem.

— However, efficient algorithms are available with \ / h
the same computational cost as for ridge regression.
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Lasso as Bayes Estimation

* Interpretation as Bayes Estimation
| N M
s . . T 2 19
o= gmin 3 3 {tn = W)} + Y o
n=— J=
— We can think of |w |7 as the log-prior density for w.

« Prior for Lasso (¢ = 1): Laplacian distribution

p(w)=-expi—|w[/T} with 7=+
2T A
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« Equicontours of the prior distribution

Q'—4 Q—Q Q'—l = 0.5 q:O.l
-AnaIyS|s

— For ¢ < 1, the prior is not uniform in direction, but
concentrates more mass on the coordinate directions.

— The case g = 1 (lasso) is the smallest g such that the constraint region
IS convex.
= Non-convexity makes the optimization problem more difficult.

— Limit for ¢ = 0: regularization term becomes 2,-; \, 1 = M.
— This is known as Best Subset Selection.
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Discussion

« Bayesian analysis

— Lasso, Ridge regression and Best Subset Selection are Bayes
estimates with different priors.

— However, derived as maximizers of the posterior.
— Should ideally use the posterior mean as the Bayes estimate!

= Ridge regression solution is also the posterior mean, but Lasso and
Best Subset Selection are not.

« We might also try using other values of ¢ besides 0,1,2...
— However, experience shows that this is not worth the effort.

— Values of ¢ € (1,2) are a compromise between lasso and ridge
— However, |w |? with ¢ > 1 is differentiable at 0.
= Loses the ability of lasso for setting coefficients exactly to zero.
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Topics of This Lecture

— Discussion
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References and Further Reading

« More information on linear regression, including a discussion
on regularization can be found in Chapters 1.5.5 and 3.1-3.2
of the Bishop book.

= e
Christopher M. Bishop ﬁ PATTERN RECOGNITION %
Pattern Recognition and Machine Learning

Springer, 2006

Data Mining, Inference, and Prediction

T. Hastie, R. Tibshirani, J. Friedman
Elements of Statistical Learning
2nd edition, Springer, 2009
« Additional information on the Lasso, including efficient
algorithms to solve it, can be found in Chapter 3.4 of the

Hastie book.
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