Advanced Machine Learning Summer 2019

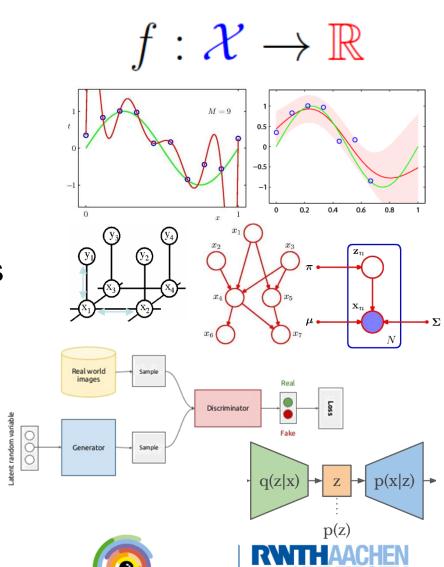
Part 3 – Linear Regression II 10.04.2019

Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

Course Outline

- Regression Techniques
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Bayesian Regression
- Deep Reinforcement Learning
- Probabilistic Graphical Models
 - Bayesian Networks
 - Markov Random Fields
 - Inference (exact & approximate)
- Deep Generative Models
 - Generative Adversarial Networks
 - Variational Autoencoders



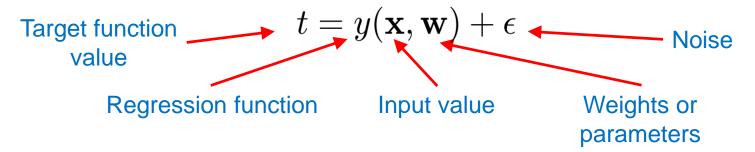
Visual Computing

Topics of This Lecture

- Recap: Probabilistic View on Regression
- Properties of Linear Regression
 - Loss functions for regression
 - Basis functions
 - Multiple Outputs
- Regularization revisited
 - Regularized Least-squares
 - The Lasso
 - Discussion

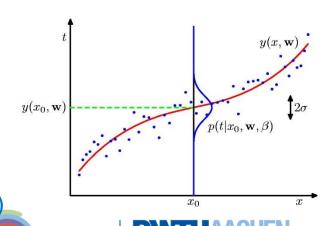
Recap: Probabilistic Regression

- First assumption:
 - Our target function values y are generated by adding noise to the function estimate:



- Second assumption:
 - The noise is Gaussian distributed

$$p(t|\mathbf{x},\mathbf{w},\beta) = \mathcal{N}(t|y(\mathbf{x},\mathbf{w}),\beta^{-1})$$
 Mean Variance (β precision)



Visual Computing

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 3 – Linear Regression II

Slide credit: Bernt Schiele

Recap: Probabilistic Regression

- Given
 - Training data points:
 - Associated function values:

- $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{d \times n}$
 - $\mathbf{t} = [t_1, \dots, t_n]^T$

Conditional likelihood (assuming i.i.d. data)

$$p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \prod_{n=1}^{N} \mathcal{N}(t_n|y(\mathbf{x}_n, \mathbf{w}), \beta^{-1}) = \prod_{n=1}^{N} \mathcal{N}(t_n|\mathbf{w}^T \phi(\mathbf{x}_n), \beta^{-1})$$

 \Rightarrow Maximize w.r.t. \mathbf{w} , β

Generalized linear regression function

Recap: Maximum Likelihood Regression

$$\nabla_{\mathbf{w}} \log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n)$$

Setting the gradient to zero:

$$0 = -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n)$$

$$\Leftrightarrow \sum_{n=1}^{N} t_n \phi(\mathbf{x}_n) = \left[\sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T \right] \mathbf{w}$$

$$\Leftrightarrow \mathbf{\Phi} \mathbf{t} = \mathbf{\Phi} \mathbf{\Phi}^T \mathbf{w} \qquad \mathbf{\Phi} = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_n)]$$

$$\Leftrightarrow \mathbf{w}_{\mathrm{ML}} = (\mathbf{\Phi} \mathbf{\Phi}^T)^{-1} \mathbf{\Phi} \mathbf{t} \qquad \text{Same as in least-squares regression!}$$

⇒ Least-squares regression is equivalent to Maximum Likelihood under the assumption of Gaussian noise.

Recap: Role of the Precision Parameter

• Also use ML to determine the precision parameter β :

$$\log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = -\frac{\beta}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right\}^2 + \frac{N}{2} \log \beta - \frac{N}{2} \log(2\pi)$$

• Gradient w.r.t. β :

$$\nabla_{\beta} \log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = -\frac{1}{2} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right\}^2 + \frac{N}{2} \frac{1}{\beta}$$

$$\frac{1}{\beta_{\text{ML}}} = \frac{1}{N} \sum_{n=1}^{N} \left\{ t_n - \mathbf{w}^T \phi(\mathbf{x}_n) \right\}^2$$

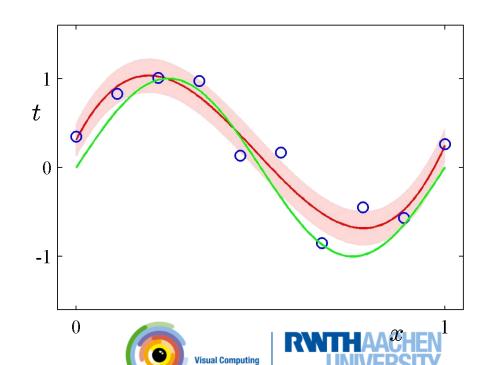
⇒ The inverse of the noise precision is given by the residual variance of the target values around the regression function.

Recap: Predictive Distribution

• Having determined the parameters \mathbf{w} and β , we can now make predictions for new values of \mathbf{x} .

$$p(t|\mathbf{X}, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1})$$

- This means
 - Rather than giving a point estimate, we can now also give an estimate of the estimation uncertainty.



Recap: Maximum-A-Posteriori Estimation

- Introduce a prior distribution over the coefficients w.
 - For simplicity, assume a zero-mean Gaussian distribution

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^T\mathbf{w}\right\}$$

- New hyperparameter α controls the distribution of model parameters.
- Express the posterior distribution over w.
 - Using Bayes' theorem:

$$p(\mathbf{w}|\mathbf{X}, \mathbf{t}, \beta, \alpha) \propto p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

- We can now determine ${f w}$ by maximizing the posterior.
- This technique is called maximum-a-posteriori (MAP).

Recap: MAP Solution

Minimize the negative logarithm

$$-\log p(\mathbf{w}|\mathbf{X}, \mathbf{t}, \beta, \alpha) \propto -\log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) - \log p(\mathbf{w}|\alpha)$$
$$-\log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_{n}, \mathbf{w}) - t_{n}\}^{2} + \text{const}$$
$$-\log p(\mathbf{w}|\alpha) = \frac{\alpha}{2} \mathbf{w}^{T} \mathbf{w} + \text{const}$$

The MAP solution is therefore the solution of

$$\frac{\beta}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w}$$

 \Rightarrow Maximizing the posterior distribution is equivalent to minimizing the regularized sum-of-squares error (with $\lambda = \frac{1}{2}$).

MAP Solution (2)

$$\nabla_{\mathbf{w}} \log p(\mathbf{w}|\mathbf{X}, \mathbf{t}, \beta, \alpha) = -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n) + \alpha \mathbf{w}$$

Setting the gradient to zero:

$$0 = -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n) + \alpha \mathbf{w}$$

$$\Leftrightarrow \sum_{n=1}^{N} t_n \phi(\mathbf{x}_n) = \left[\sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T \right] \mathbf{w} + \frac{\alpha}{\beta} \mathbf{w}$$

$$\Leftrightarrow \mathbf{\Phi} \mathbf{t} = \left(\mathbf{\Phi} \mathbf{\Phi}^T + \frac{\alpha}{\beta} \mathbf{I} \right) \mathbf{w} \qquad \mathbf{\Phi} = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_n)]$$

$$\Leftrightarrow \mathbf{w}_{\text{MAP}} = \left(\mathbf{\Phi}\mathbf{\Phi}^T + \frac{\alpha}{\beta}\mathbf{I}\right)^{-1}\mathbf{\Phi}\mathbf{t}$$

Effect of regularization: Keeps the inverse well-conditioned

Recap: Bayesian Curve Fitting

Given

– Training data points:

 $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{d \times n}$

– Associated function values:

- $\mathbf{t} = [t_1, \dots, t_n]^T$
- Our goal is to predict the value of t for a new point \mathbf{x} .
- Evaluate the predictive distribution

$$p(t|x, \mathbf{X}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{X}, \mathbf{t}) d\mathbf{w}$$

What we just computed for MAP

Noise distribution – again assume a Gaussian here

$$p(t|x, \mathbf{w}) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

- Assume that parameters α and β are fixed and known for now.

Bayesian Curve Fitting

 Under those assumptions, the posterior distribution is a Gaussian and can be evaluated analytically:

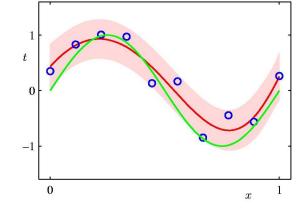
$$p(t|x, \mathbf{X}, \mathbf{t}) = \mathcal{N}(t|m(x), s^2(x))$$

where the mean and variance are given by

$$m(x) = \beta \phi(x)^T \mathbf{S} \sum_{n=1}^N \phi(\mathbf{x}_n) t_n$$

$$s(x)^2 = \beta^{-1} + \phi(x)^T \mathbf{S}\phi(x)$$

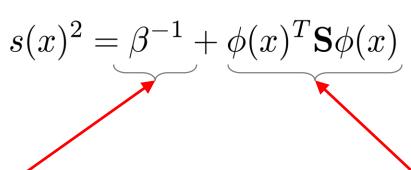
- and S is the regularized covariance matrix



$$\mathbf{S}^{-1} = \alpha \mathbf{I} + \beta \sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T$$

Analyzing the result

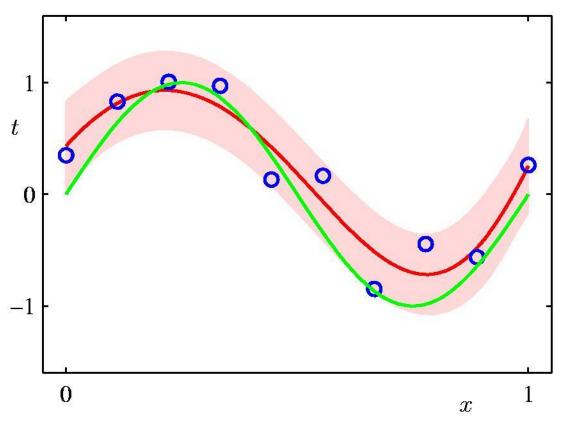
Analyzing the variance of the predictive distribution



Uncertainty in the predicted value due to noise on the target variables (expressed already in ML)

Uncertainty in the parameters w (consequence of Bayesian treatment)

Recap: Bayesian Predictive Distribution



- Important difference to previous example
 - Uncertainty may vary with test point x!

$$s(x)^2 = \beta^{-1} + \phi(x)^T \mathbf{S}\phi(x)$$

Topics of This Lecture

- Recap: Probabilistic View on Regression
- Properties of Linear Regression
 - Loss functions for regression
 - Basis functions
 - Multiple Outputs
- Regularization revisited
 - Regularized Least-squares
 - The Lasso
 - Discussion
- Bias-Variance Decomposition

- Given $p(y, \mathbf{x}, \mathbf{w}, \beta)$, how do we actually estimate a function value y_t for a new point \mathbf{x}_t ?
- We need a loss function, just as in the classification case

$$L: \mathbb{R} \times \mathbb{R} \longrightarrow \mathbb{R}^+$$

$$(t_n, y(\mathbf{x}_n)) \longrightarrow L(t_n, y(\mathbf{x}_n))$$

Optimal prediction: Minimize the expected loss

$$\mathbb{E}[L] = \iint L(t, y(\mathbf{x})) p(\mathbf{x}, t) \, d\mathbf{x} \, dt$$

$$\mathbb{E}[L] = \iint L(t, y(\mathbf{x})) p(\mathbf{x}, t) \, d\mathbf{x} \, dt$$

- Simplest case
 - Squared loss:

$$L(t, y(\mathbf{x})) = \{y(\mathbf{x}) - t\}^2$$

Expected loss

$$\mathbb{E}[L] = \iint \{y(\mathbf{x}) - t\}^2 p(\mathbf{x}, t) \, d\mathbf{x} \, dt$$

$$\frac{\partial \mathbb{E}[L]}{\partial y(\mathbf{x})} = 2 \int \{y(\mathbf{x}) - t\} \, p(\mathbf{x}, t) \, dt \stackrel{!}{=} 0$$

$$\Leftrightarrow \int t p(\mathbf{x}, t) \, dt = y(\mathbf{x}) \int p(\mathbf{x}, t) \, dt$$

$$\int tp(\mathbf{x}, t)dt = y(\mathbf{x}) \int p(\mathbf{x}, t)dt$$

$$\Leftrightarrow y(\mathbf{x}) = \int t \frac{p(\mathbf{x}, t)}{p(\mathbf{x})} dt = \int tp(t|\mathbf{x})dt$$

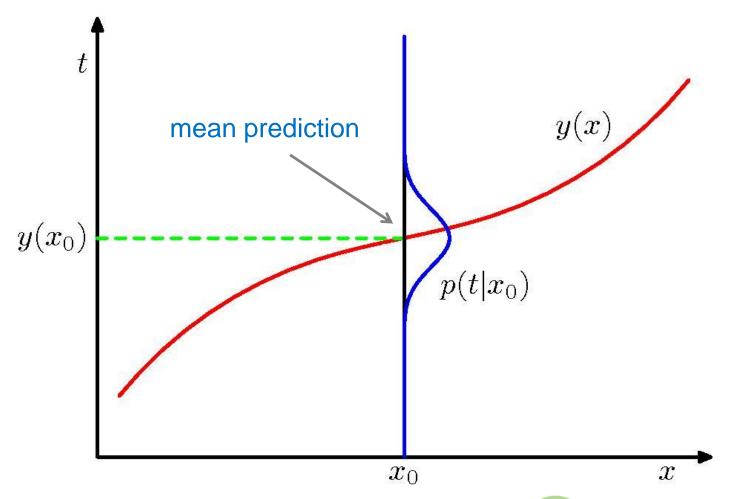
$$\Leftrightarrow y(\mathbf{x}) = \mathbb{E}[t|\mathbf{x}]$$

Important result

- Under Squared loss, the optimal regression function is the mean $\mathbb{E}[t|\mathbf{x}]$ of the posterior $p(t|\mathbf{x})$.
- Also called mean prediction.
- For our generalized linear regression function and square loss, we obtain as result

$$y(\mathbf{x}) = \int t \mathcal{N}(t|\mathbf{w}^T \phi(\mathbf{x}), \beta^{-1}) dt = \mathbf{w}^T \phi(\mathbf{x})$$

Visualization of Mean Prediction



Different derivation: Expand the square term as follows

$$\{y(\mathbf{x}) - t\}^2 = \{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}] + \mathbb{E}[t|\mathbf{x}] - t\}^2$$

$$= \{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}^2 + \{\mathbb{E}[t|\mathbf{x}] - t\}^2$$

$$+2\{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}\{\mathbb{E}[t|\mathbf{x}] - t\}$$

- Substituting into the loss function
 - The cross-term vanishes, and we end up with

$$\mathbb{E}[L] = \int \underbrace{\{y(\mathbf{x}) - \mathbb{E}[t|\mathbf{x}]\}^2}_{\mathbf{z}} p(\mathbf{x}) d\mathbf{x} + \int \underbrace{\text{var}[t|\mathbf{x}]}_{\mathbf{z}} p(\mathbf{x}) d\mathbf{x}$$

Optimal least-squares predictor given by the conditional mean

Intrinsic variability of target data
 ⇒ Irreducible minimum value
 of the loss function

Other Loss Functions

- The squared loss is not the only possible choice
 - Poor choice when conditional distribution $p(t|\mathbf{x})$ is multimodal.
- Simple generalization: Minkowski loss

$$L(t, y(\mathbf{x})) = |y(\mathbf{x}) - t|^q$$

Expectation

$$\mathbb{E}[L_q] = \iint |y(\mathbf{x}) - t|^q p(\mathbf{x}, t) d\mathbf{x} dt$$

- ullet Minimum of $\mathbb{E}[L_q]$ is given by
 - Conditional mean for q = 2,
 - Conditional median for q = 1,
 - Conditional mode for q = 0.

Minkowski Loss Functions

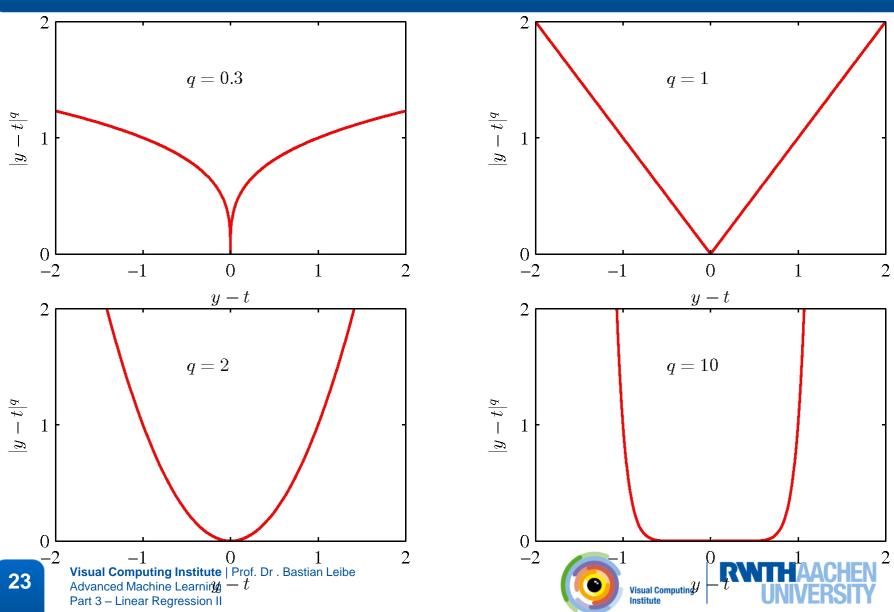


Image source: C.M. Bishop, 2006

Topics of This Lecture

- Recap: Probabilistic View on Regression
- Properties of Linear Regression
 - Loss functions for regression
 - Basis functions
 - Multiple Outputs
- Regularization revisited
 - Regularized Least-squares
 - The Lasso
 - Discussion
- Bias-Variance Decomposition

Linear Basis Function Models

Generally, we consider models of the following form

$$y(\mathbf{x}, \mathbf{w}) = \sum_{j=0}^{M-1} w_j \phi_j(\mathbf{x}) = \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x})$$

- where $\phi_i(\mathbf{x})$ are known as basis functions.
- Typically, $\phi_0(\mathbf{x}) = 1$, so that w_0 acts as a bias.
- In the simplest case, we use linear basis functions: $\phi_d(\mathbf{x}) = x_d$.

Let's take a look at some other possible basis functions...

Linear Basis Function Models (2)

Polynomial basis functions

$$\phi_j(x) = x^j$$
.

- Properties
 - Global
 - \Rightarrow A small change in x affects all basis functions.

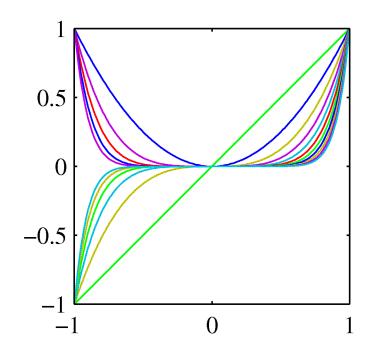


Image source: C.M. Bishop, 2006

Linear Basis Function Models (3)

Gaussian basis functions

$$\phi_j(x) = \exp\left\{-\frac{(x-\mu_j)^2}{2s^2}\right\}$$

- Properties
 - Local
 - \Rightarrow A small change in x affects only nearby basis functions.
 - $-\mu_j$ and s control location and scale (width).

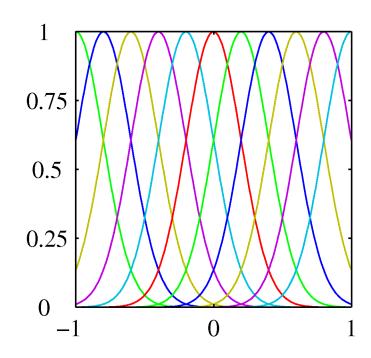


Image source: C.M. Bishop, 2006

Linear Basis Function Models (4)

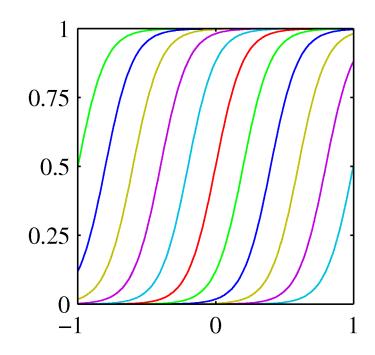
Sigmoid basis functions

$$\phi_j(x) = \sigma\left(\frac{x - \mu_j}{s}\right)$$

where

$$\sigma(a) = \frac{1}{1 + \exp(-a)}.$$

- Properties
 - Local
 - \Rightarrow A small change in x affects only nearby basis functions.
 - $-\mu_i$ and s control location and scale (slope).



Topics of This Lecture

- Recap: Probabilistic View on Regression
- Properties of Linear Regression
 - Loss functions for regression
 - Basis functions
 - Multiple Outputs
- Regularization revisited
 - Regularized Least-squares
 - The Lasso
 - Discussion
- Bias-Variance Decomposition

Multiple Outputs

Multiple Output Formulation

- So far only considered the case of a single target variable t.
- We may wish to predict K > 1 target variables in a vector t.
- We can write this in matrix form

$$\mathbf{y}(\mathbf{x}, \mathbf{W}) = \mathbf{W}^T \phi(\mathbf{x})$$

where

$$\mathbf{y} = [y_1, \dots, y_K]^T$$

$$\phi(\mathbf{x}) = [1, \phi_1(\mathbf{x}), \dots, \phi_{M-1}(\mathbf{x}),]^T$$

$$\mathbf{W} = \left[egin{array}{cccc} w_{0,1} & \cdots & w_{0,K} \ dots & \ddots & dots \ w_{M-1,1} & \cdots & w_{M-1,K} \end{array}
ight]^T$$

Multiple Outputs (2)

Analogously to the single output case we have:

$$p(\mathbf{t}|\mathbf{x}, \mathbf{W}, \beta) = \mathcal{N}(\mathbf{t}|\mathbf{y}(\mathbf{W}, \mathbf{x}), \beta^{-1}\mathbf{I})$$
$$= \mathcal{N}(\mathbf{t}|\mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}), \beta^{-1}\mathbf{I}).$$

• Given observed inputs, $\mathbf{X} = \{\mathbf{x}_1, \dots, \mathbf{x}_N\}$ we obtain the log likelihood function

$$\ln p(\mathbf{T}|\mathbf{X}, \mathbf{W}, \beta) = \sum_{n=1}^{N} \ln \mathcal{N}(\mathbf{t}_{n}|\mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_{n}), \beta^{-1}\mathbf{I})$$

$$= \frac{NK}{2} \ln \left(\frac{\beta}{2\pi}\right) - \frac{\beta}{2} \sum_{n=1}^{N} \left\|\mathbf{t}_{n} - \mathbf{W}^{\mathrm{T}}\boldsymbol{\phi}(\mathbf{x}_{n})\right\|^{2}.$$

Multiple Outputs (3)

Maximizing with respect to W, we obtain

$$\mathbf{W}_{\mathrm{ML}} = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{T}.$$

• If we consider a single target variable, t_k , we see that

$$\mathbf{w}_k = \left(\mathbf{\Phi}^{\mathrm{T}}\mathbf{\Phi}
ight)^{-1}\mathbf{\Phi}^{\mathrm{T}}\mathbf{t}_k = \mathbf{\Phi}^{\dagger}\mathbf{t}_k$$

- where $\mathbf{t}_k = [t_{1k}, \dots, t_{Nk}]^{\mathrm{T}}$ which is identical with the single output case.

Topics of This Lecture

- Recap: Probabilistic View on Regression
- Properties of Linear Regression
 - Loss functions for regression
 - Basis functions
 - Multiple Outputs
- Regularization revisited
 - Regularized Least-squares
 - The Lasso
 - Discussion
- Bias-Variance Decomposition

Regularization Revisited

Consider the error function

$$E_D(\mathbf{w}) + \lambda E_W(\mathbf{w})$$

Data term + Regularization term

 With the sum-of-squares error function and a quadratic regularizer, we get

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \mathbf{w}^{\mathrm{T}} \mathbf{w}$$

which is minimized by

$$\mathbf{w} = \left(\lambda \mathbf{I} + \mathbf{\Phi}^{\mathrm{T}} \mathbf{\Phi}\right)^{-1} \mathbf{\Phi}^{\mathrm{T}} \mathbf{t}.$$

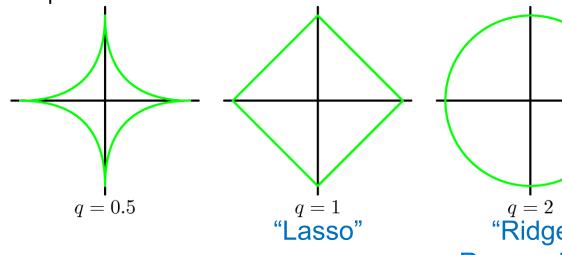
 λ is called the regularization coefficient.

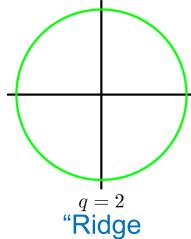
Regularized Least-Squares

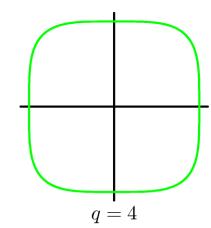
Let's look at more general regularizers

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

• "L_q norms"







Regression"

B. Leibe

Recall: Lagrange Multipliers

Regularized Least-Squares

We want to minimize

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^{\mathrm{T}} \boldsymbol{\phi}(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^{M} |w_j|^q$$

This is equivalent to minimizing

$$\frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2$$

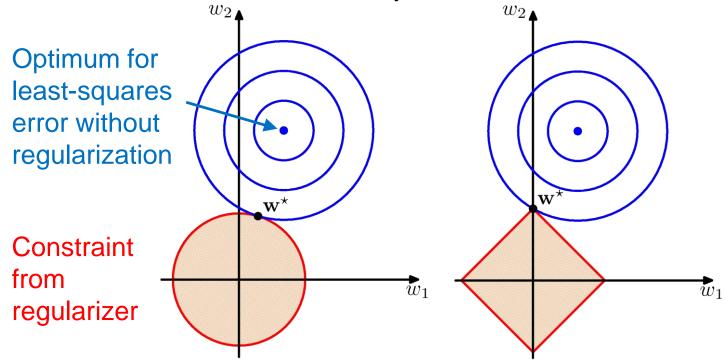
subject to the constraint

$$\sum_{j=1}^{M} |w_j|^q \le \eta$$

– (for some suitably chosen η)

Regularized Least-Squares

- Effect: Sparsity for $q \le 1$.
 - Minimization tends to set many coefficients to zero



- Why is this good?
- Why don't we always do it, then? Any problems?

The Lasso

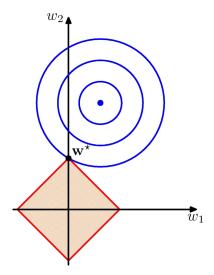
Consider the following regressor

$$\mathbf{w}_{\text{Lasso}} = \arg\min_{\mathbf{w}} \ \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2 + \lambda \sum_{j=1}^{M} |w_j|$$

This formulation is known as the Lasso.

Properties

- − L₁ regularization ⇒ The solution will be sparse (only few coefficients will be non-zero)
- The L₁ penalty makes the problem non-linear.
- ⇒ There is no closed-form solution.
- ⇒ Need to solve a quadratic programming problem.
- However, efficient algorithms are available with the same computational cost as for ridge regression.



Lasso as Bayes Estimation

Interpretation as Bayes Estimation

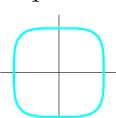
$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2 + \lambda \sum_{j=1}^{M} |w_j|^q$$

- We can think of $|w_j|^q$ as the log-prior density for w_j .
- Prior for Lasso (q = 1): Laplacian distribution

$$p(\mathbf{w}) = rac{1}{2 au} \exp\left\{-|\mathbf{w}|/ au
ight\} \qquad ext{with} \qquad au = rac{1}{\lambda}$$

Analysis

Equicontours of the prior distribution



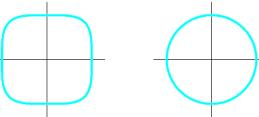
q=4

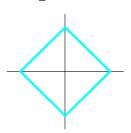
$$q=2$$

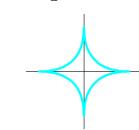
$$q = 1$$

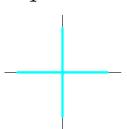
$$q = 0.5$$
 $q = 0.1$

$$q = 0.1$$









Analysis

- For $q \leq 1$, the prior is not uniform in direction, but concentrates more mass on the coordinate directions.
- The case q=1 (lasso) is the smallest q such that the constraint region is convex.
- ⇒ Non-convexity makes the optimization problem more difficult.
- Limit for q=0: regularization term becomes $\sum_{i=1..M} 1=M$.
- ⇒ This is known as Best Subset Selection.

Discussion

Bayesian analysis

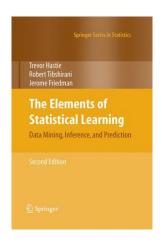
- Lasso, Ridge regression and Best Subset Selection are Bayes estimates with different priors.
- However, derived as maximizers of the posterior.
- Should ideally use the posterior mean as the Bayes estimate!
- ⇒ Ridge regression solution is also the posterior mean, but Lasso and Best Subset Selection are not.
- We might also try using other values of q besides 0,1,2...
 - However, experience shows that this is not worth the effort.
 - Values of $q \in (1,2)$ are a compromise between lasso and ridge
 - However, $|w_j|^q$ with q > 1 is differentiable at 0.
 - ⇒ Loses the ability of lasso for setting coefficients exactly to zero.

Topics of This Lecture

- Recap: Probabilistic View on Regression
- Properties of Linear Regression
 - Loss functions for regression
 - Basis functions
 - Multiple Outputs
- Regularization revisited
 - Regularized Least-squares
 - The Lasso
 - Discussion

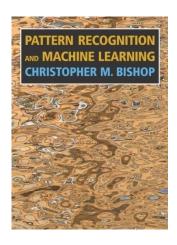
References and Further Reading

 More information on linear regression, including a discussion on regularization can be found in Chapters 1.5.5 and 3.1-3.2 of the Bishop book.



Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

T. Hastie, R. Tibshirani, J. Friedman Elements of Statistical Learning 2nd edition, Springer, 2009



 Additional information on the Lasso, including efficient algorithms to solve it, can be found in Chapter 3.4 of the Hastie book.

