Advanced Machine Learning Summer 2019

Part 1 – Introduction 03.04.2019

Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

Organization

- Lecturer
 - Prof. Bastian Leibe (leibe@vision.rwth-aachen.de)
- Teaching Assistants
 - Jonathan Luiten (luiten@vision.rwth-aachen.de)
 - Ömer Sali (sali@vision.rwth-aachen.de)
- Course webpage
 - http://www.vision.rwth-aachen.de/courses/
 - Slides will be made available on the webpage
 - There is also an electronic repository (moodle)
- Please subscribe to the lecture on RWTH Online!
 - Important to get email announcements and moodle access!

Language

- Official course language will be English
 - If at least one English-speaking student is present.
 - If not... you can choose.

- However...
 - Please tell me when I'm talking too fast or when I should repeat something in German for better understanding!
 - You may at any time ask questions in German!
 - You may turn in your exercises in German.
 - You may take the oral exam in German.

Relationship to Previous Courses

- Lecture Machine Learning (past winter semester)
 - Introduction to ML
 - Classification
 - Graphical models
- This course:

- Natural continuation of ML course
- Deeper look at the underlying concepts
- But: will try to make it accessible also to newcomers
- Quick poll: Who hasn't heard the ML lecture?
- This year: changed lecture content (compared to WS'16)
 - Large lecture block on Probabilistic Graphical Models
 - Updated with some exciting new topics (GANs, VAEs, Deep RL)

Organization

- Structure: 3V (lecture) + 1Ü (exercises)
 - 6 EECS credits
 - Part of the area "Applied Computer Science"
- Place & Time
 - Lecture/Exercises: Wed 10:30 12:00 room H06
 - Lecture/Exercises: Thu 10:30 12:00 room H04
- Exam
 - Oral or written exam, depending on number of participants

Course Webpage

Course Schedule

Date	Title	Content	Material	
Wed, 2019-04-03	Introduction	Introduction, Polynomial Fitting, Least- Squares Regression, Overfitting, Regularization, Ridge Regression		0
Thu, 2019-04-04	Linear Regression I	Probabilistic View of Regression, Maximum Likelihood, MAP, Bayesian Curve Fitting		Ø
Wed, 2019-04-10	Linear Regression II	Basis Functions, Sequential Learning, Multiple Outputs, Regularization, Lasso, Bias-Variance Decomposition		0
Thu, 2019-04-11	Linear Regression III	Kernels, Kernel Ridge Regression		Ø
Wed, 2019-04-17	Deep Reinforcement Learning I	Reinforcement Learning, TD Learning, Q- Learning, SARSA, Deep RL		0
Thu, 2019-04-18	Deep Reinforcement Learning II	Deep RL, Deep Q-Learning, Deep Policy Gradients, Case studies		0
Wed, 2019-04-24	Exercise 1	Regression, Least-Squares, Ridge, Kernel		Ø

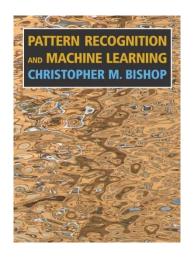
http://www.vision.rwth-aachen.de/courses/

Exercises and Supplementary Material

- Exercises
 - Typically 1 exercise sheet every 2 weeks.
 - Pen & paper and programming exercises
 - Matlab / numpy for early topics
 - Theano for Deep Learning topics
 - Hands-on experience with the algorithms from the lecture.
 - Send your solutions the night before the exercise class.
- Supplementary material
 - Research papers and book chapters
 - Will be provided on the webpage.

Textbooks

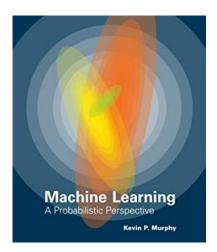
- Many lecture topics will be covered in Bishop's book.
- Some additional topics can be found in Murphy's book



Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

(available in the library's "Handapparat")

Kevin P. Murphy Machine Learning – A Probabilistic Perspective MIT Press. 2012



- Research papers will be given out for some topics.
 - Tutorials and deeper introductions.
 - Application papers

Advanced Machine Learning

Part 1 – Introduction

How to Find Us

• Office:

- UMIC Research Centre
- Mies-van-der-Rohe-Strasse 15, room 124

Office hours

- If you have questions to the lecture, come see us.
- My regular office hours will be announced.
- Send us an email before to confirm a time slot.

Questions are welcome!

Machine Learning

- Statistical Machine Learning
 - Principles, methods, and algorithms for learning and prediction on the basis of past evidence
- Already everywhere
 - Speech recognition (e.g. speed-dialing)
 - Computer vision (e.g. face detection)
 - Hand-written character recognition (e.g. letter delivery)
 - Information retrieval (e.g. image & video indexing)
 - Operation systems (e.g. caching)
 - Fraud detection (e.g. credit cards)
 - Text filtering (e.g. email spam filters)
 - Game playing (e.g. strategy prediction)
 - Robotics

Automatic Speech Recognition

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

Computer Vision

(Object Recognition, Segmentation, Scene Understanding)

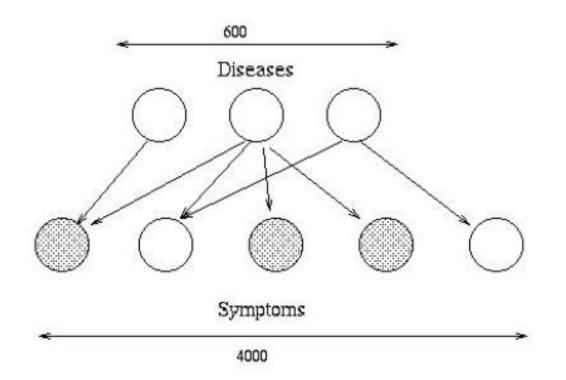
Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

Information Retrieval (Retrieval, Categorization, Clustering, ...)

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

14



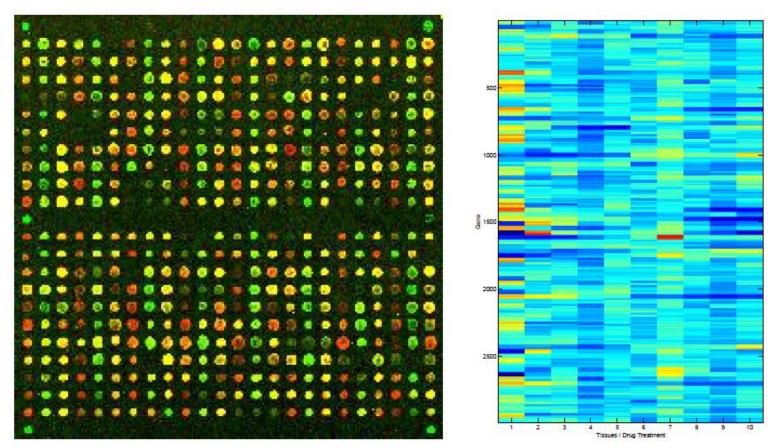
Medical Diagnosis (Inference from partial observations)

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

15

Slide adapted from Zoubin Gharamani

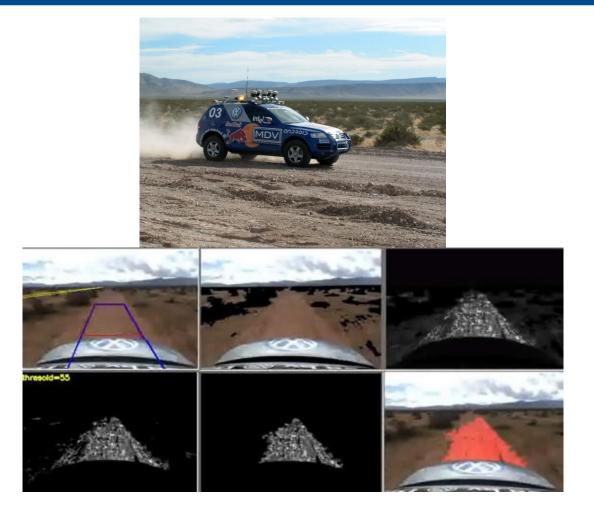
Image from Kevin Murphy



Bioinformatics (Modelling gene microarray data,...)

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

16



Robotics & Autonomous Driving

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

17

Machine Learning: Core Questions

- Learning to perform a task from experience
- Task
 - Can often be expressed through a mathematical function

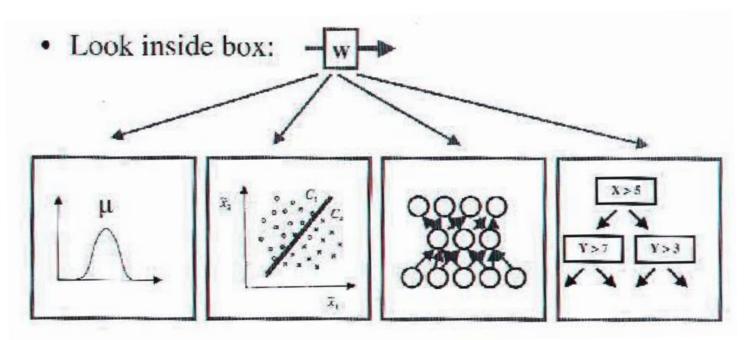
$$y = f(x; w)$$

- x: Input
- y: Output
- -w: Parameters (this is what is "learned")
- Classification vs. Regression
 - Regression: continuous y
 - Classification: discrete y
 - E.g. class membership, sometimes also posterior probability

Machine Learning: Core Questions

•
$$y = f(x; w)$$

- -w: characterizes the family of functions
- -w: indexes the space of hypotheses
- -w: vector, connection matrix, graph, ...



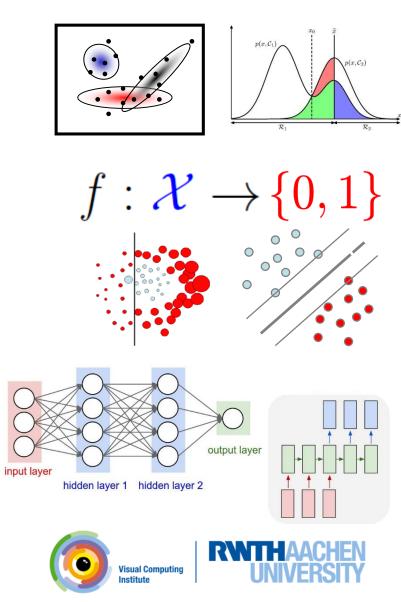
Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

Slide credit: Bernt Schiele

A Look Back: Lecture Machine Learning

- Fundamentals
 - Bayes Decision Theory
 - Probability Density Estimation
 - Mixture Models and EM
- Classification Approaches
 - Linear Discriminant Functions
 - Support Vector Machines
 - Ensemble Methods & Boosting
- Deep Learning
 - Foundations

- Convolutional Neural Networks
- Recurrent Neural Networks



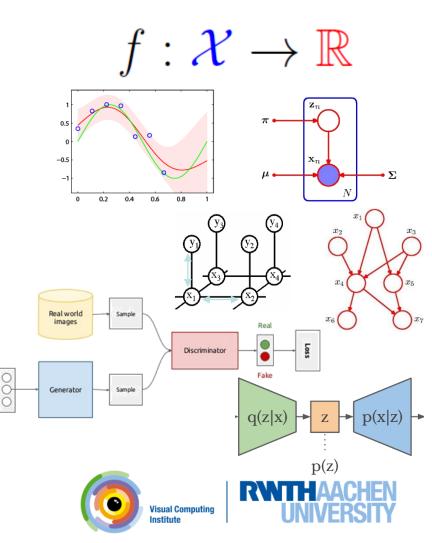
This Lecture: Advanced Machine Learning

Extending lecture *Machine Learning* from last semester...

nt random variat

- Regression Techniques
 - Regularization (Ridge, Lasso)
 - Bayesian Regression
- Probabilistic Graphical Models
 - Bayesian Networks
 - Markov Random Fields
 - Inference (exact & approximate)
- Deep Generative Models
 - Generative Adversarial Networks
 - Variational Autoencoders
- Deep Reinforcement Learning

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction



Let's Get Started...

- Some of you already have basic ML background
 Who hasn't?
- We'll start with a gentle introduction
 - I'll try to make the lecture accessible to everyone.
 - We'll review the main concepts before applying them.
 - I'll point out chapters to review from the ML lecture whenever knowledge from there is needed/helpful.
- But...

- This is an advanced topics class.
- There will be math involved.
- We will take a deeper look into the theory than in the ML lecture.

Topics of This Lecture

- Regression: Motivation
 - Polynomial fitting
 - General Least-Squares Regression
 - Overfitting problem
 - Regularization
 - Ridge Regression
- Recap: Important Concepts from ML Lecture
 - Probability Theory
 - Bayes Decision Theory
 - Maximum Likelihood Estimation
 - Bayesian Estimation

- A Probabilistic View on Regression
 - Least-Squares Estimation as Maximum Likelihood

Regression

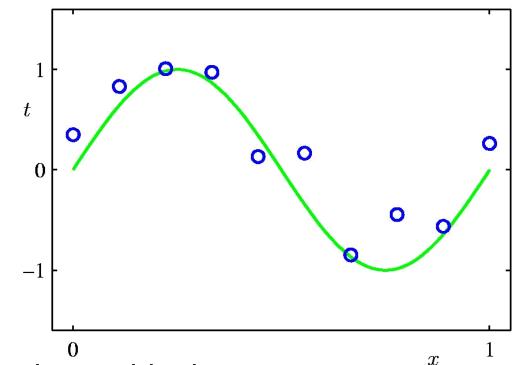
- Learning to predict a continuous function value
 - Given: training set $\mathbf{X} = \{x_1, ..., x_N\}$ with target values $\mathbf{T} = \{t_1, ..., t_N\}$.
 - \Rightarrow Learn a continuous function y(x) to predict the function value for a new input x.
- Steps towards a solution
 - Choose a form of the function $y(x, \mathbf{w})$ with parameters \mathbf{w} .
 - Define an error function $E(\mathbf{w})$ to optimize.
 - Optimize $E(\mathbf{w})$ for \mathbf{w} to find a good solution. (This may involve math).
 - Derive the properties of this solution and think about its limitations.

Example: Polynomial Curve Fitting

- Toy dataset
 - Generated by function

$$f(x) = \sin(2\pi x) + \epsilon$$

Small level of random noise with Gaussian distribution added (blue dots)



M

j=0

Visual Computing

Institute

· Goal: fit a polynomial function to this data

$$y(x, \mathbf{w}) = w_0 + w_1 x + w_2 x^2 + \ldots + w_M x^M = \sum_{j=1}^{M} w_j x^j$$

- Note: Nonlinear function of x, but linear function of the w_i .

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

25

Image source: C.M. Bishop, 2006

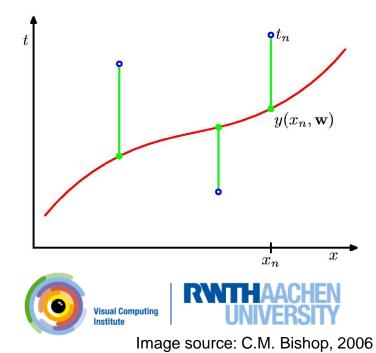
Error Function

- How to determine the values of the coefficients w?
 - We need to define an error function to be minimized.
 - This function specifies how a deviation from the target value should be weighted.
- Popular choice: sum-of-squares error
 - Definition

26

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

 We'll discuss the motivation for this particular function later...



Minimizing the Error

• How do we minimize the error?

$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2$$

Solution (Always!)

Advanced Machine Learning

Part 1 – Introduction

- Compute the derivative and set it to zero.

$$\frac{\partial E(\mathbf{w})}{\partial w_j} = \sum_{n=1}^N \left\{ y(x_n, \mathbf{w}) - t_n \right\} \frac{\partial y(x_n, \mathbf{w})}{\partial w_j} \stackrel{!}{=} 0$$

- Since the error is a quadratic function of \mathbf{w} , its derivative will be linear in w.
 - \Rightarrow Minimization has a unique solution.

Least-Squares Regression

- We have given
 - Training data points:
 - Associated function values:

$$X = \{\mathbf{x}_1 \in \mathbb{R}^d, \dots, \mathbf{x}_n\}$$
$$T = \{t_1 \in \mathbb{R}, \dots, t_n\}$$

- Start with linear regressor:
 - Try to enforce $\mathbf{x}_i^T \mathbf{w} + w_0 = t_i, \quad \forall i = 1, \dots, n$
 - One linear equation for each training data point / label pair.
 - This is the same basic setup used for least-squares classification!
 - Only the values are now continuous.

Least-Squares Regression

$$\mathbf{x}_i^T \mathbf{w} + w_0 = t_i, \quad \forall i = 1, \dots, n$$

- Setup – Step 1: Define $\tilde{\mathbf{x}}_i = \begin{pmatrix} \mathbf{x}_i \\ 1 \end{pmatrix}, \quad \tilde{\mathbf{w}} = \begin{pmatrix} \mathbf{w} \\ w_0 \end{pmatrix}$ – Step 2: Rewrite $\tilde{\mathbf{x}}_i^T \tilde{\mathbf{w}} = t_i, \quad \forall i = 1, \dots, n$
 - Step 3: Matrix-vector notation

$$\widetilde{\mathbf{X}}^T \widetilde{\mathbf{w}} = \mathbf{t}$$
 with $\widetilde{\mathbf{X}} = [\widetilde{\mathbf{x}}_1, \dots, \widetilde{\mathbf{x}}_n]$
 $\mathbf{t} = [t_1, \dots, t_n]^T$

- Step 4: Find least-squares solution

$$\|\widetilde{\mathbf{X}}^T \widetilde{\mathbf{w}} - \mathbf{t}\|^2 \to \min$$
$$\widetilde{\mathbf{w}} = (\widetilde{\mathbf{X}} \widetilde{\mathbf{X}}^T)^{-1} \widetilde{\mathbf{X}} \mathbf{t}$$

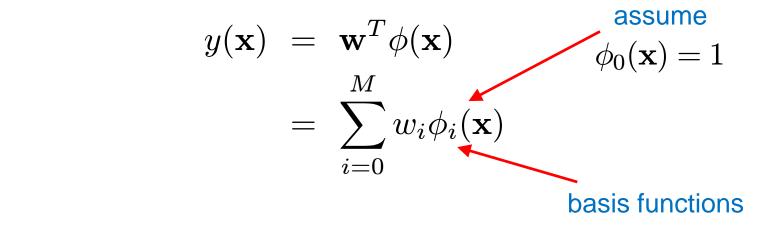
– Solution:

29

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction Slide credit: Bernt Schiele

Regression with Polynomials

- How can we fit arbitrary polynomials using least-squares regression?
 - We introduce a feature transformation (as before in ML).



- E.g.: $\phi(\mathbf{x}) = (1, x, x^2, x^3)^T$
- Fitting a cubic polynomial.

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction Slide credit: Bernt Schiele

Varying the Order of the Polynomial.

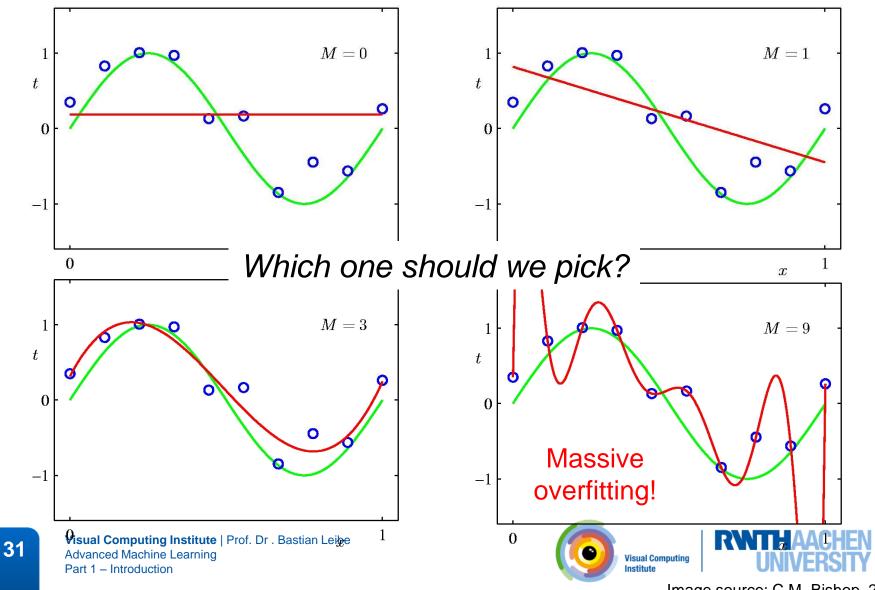


Image source: C.M. Bishop, 2006

Analysis of the Results

- ${\mbox{ \ \ }}$ Results for different values of M
 - Best representation of the original function $sin(2\pi x)$ with M = 3.

- Perfect fit to the training data with M = 9, but poor representation of the original function.

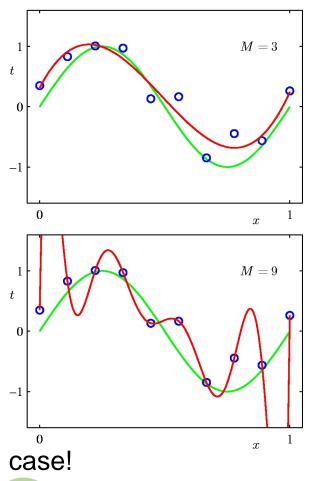


Image source: C.M. Bishop, 2006

Visual Computing

Institute

- Why is that???
 - After all, M = 9 contains M = 3 as a special case!

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

Overfitting

Problem

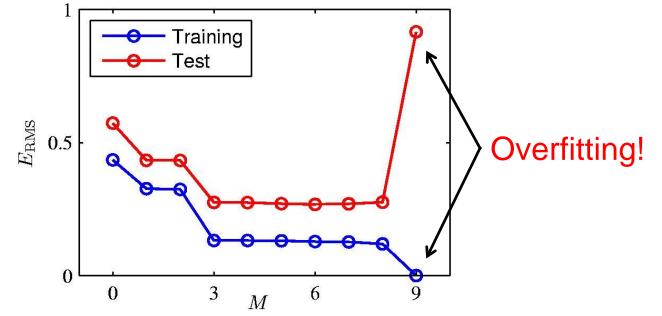
33

- Training data contains some noise

$$f(x) = \sin(2\pi x) + \epsilon$$

- Higher-order polynomial fitted perfectly to the noise.
- We say it was overfitting to the training data.
- Goal is a good prediction of future data
 - Our target function should fit well to the training data, but also generalize.
 - Measure generalization performance on independent test set.

Measuring Generalization



- E.g., Root Mean Square Error (RMS): $E_{\rm RMS} = \sqrt{2E(\mathbf{w}^{\star})/N}$
- Motivation

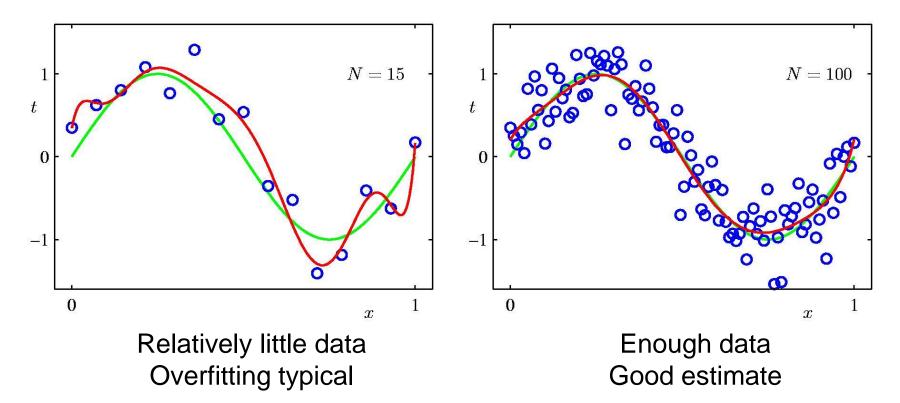
34

- Division by N lets us compare different data set sizes.
- Square root ensures E_{RMS} is measured on the same scale (and in the same units) as the target variable t.

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

Analyzing Overfitting

• Example: Polynomial of degree 9

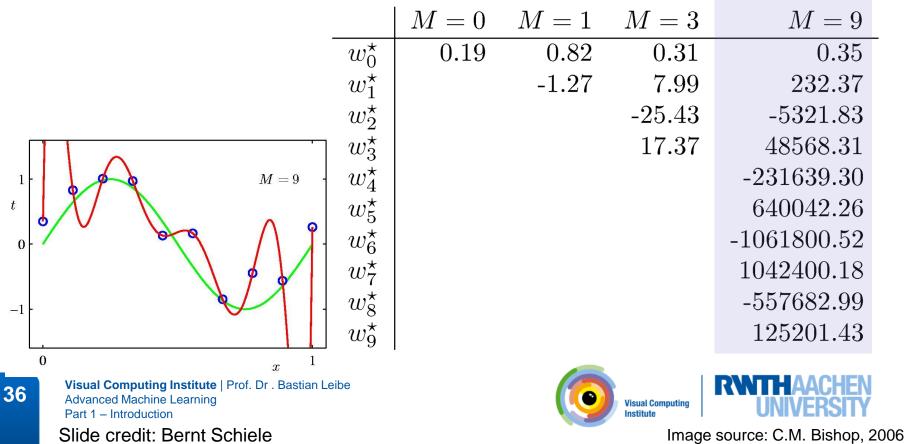


 \Rightarrow Overfitting becomes less of a problem with more data.

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction Slide adapted from Bernt Schiele

What Is Happening Here?

- The coefficients get very large:
 - Fitting the data from before with various polynomials.
 - Coefficients:



- What can we do then?
 - How can we apply the approach to data sets of limited size?
 - We still want to use relatively complex and flexible models.
- Workaround: Regularization
 - Penalize large coefficient values

$$\widetilde{E}(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \{y(x_n, \mathbf{w}) - t_n\}^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

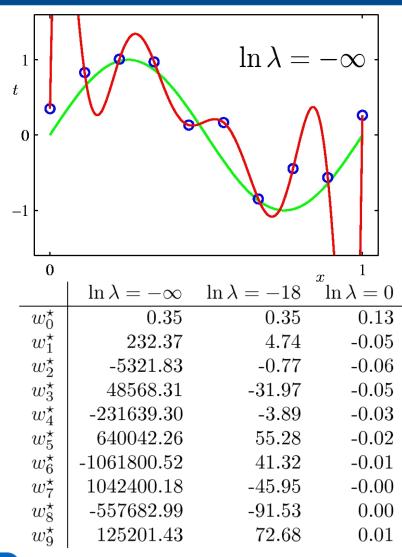
Here we've simply added a quadratic regularizer, which is simple to optimize

$$\|\mathbf{w}\|^2 = \mathbf{w}^T \mathbf{w} = w_0^2 + w_1^2 + \ldots + w_M^2$$

- The resulting form of the problem is called Ridge Regression.
- (Note: w_0 is often omitted from the regularizer.)

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

Results with Regularization (M=9)



Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

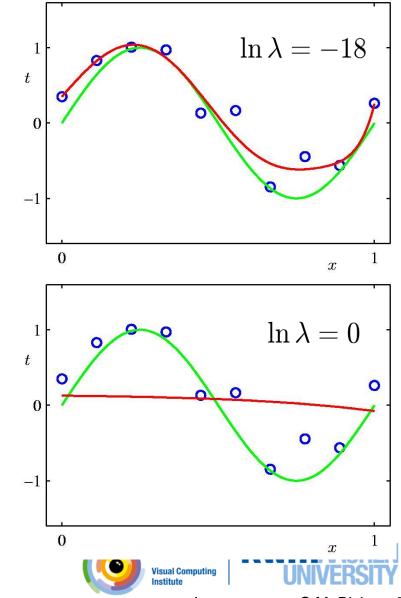
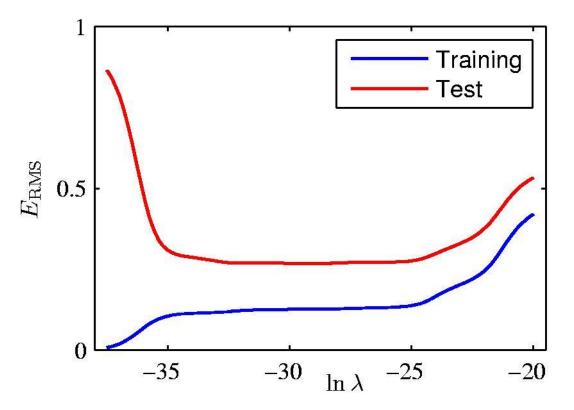


Image source: C.M. Bishop, 2006

RMS Error for Regularized Case



- Effect of regularization
 - The trade-off parameter λ now controls the effective model complexity and thus the degree of overfitting.

Summary

- We've seen several important concepts
 - Linear regression
 - Overfitting

- Role of the amount of data
- Role of model complexity
- Regularization
- How can we approach this more systematically?
 - Would like to work with complex models.
 - How can we prevent overfitting systematically?
 - How can we avoid the need for validation on separate test data?
 - What does it mean to do linear regression?
 - What does it mean to do regularization?

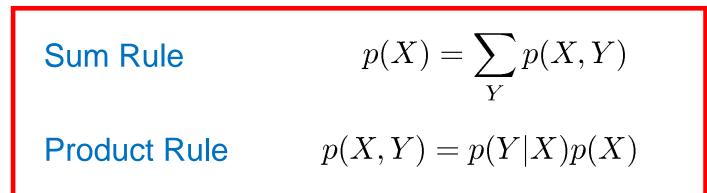
Topics of This Lecture

- Regression: Motivation
 - Polynomial fitting
 - General Least-Squares Regression
 - Overfitting problem
 - Regularization
 - Ridge Regression
- Recap: Important Concepts from ML Lecture
 - Probability Theory
 - Bayes Decision Theory
 - Maximum Likelihood Estimation
 - New: Bayesian Estimation
- A Probabilistic View on Regression
 - Least-Squares Estimation as Maximum Likelihood

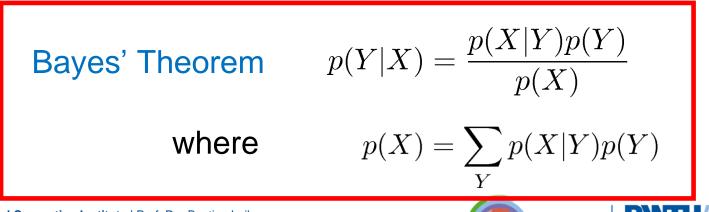
Recap: The Rules of Probability

Basic rules

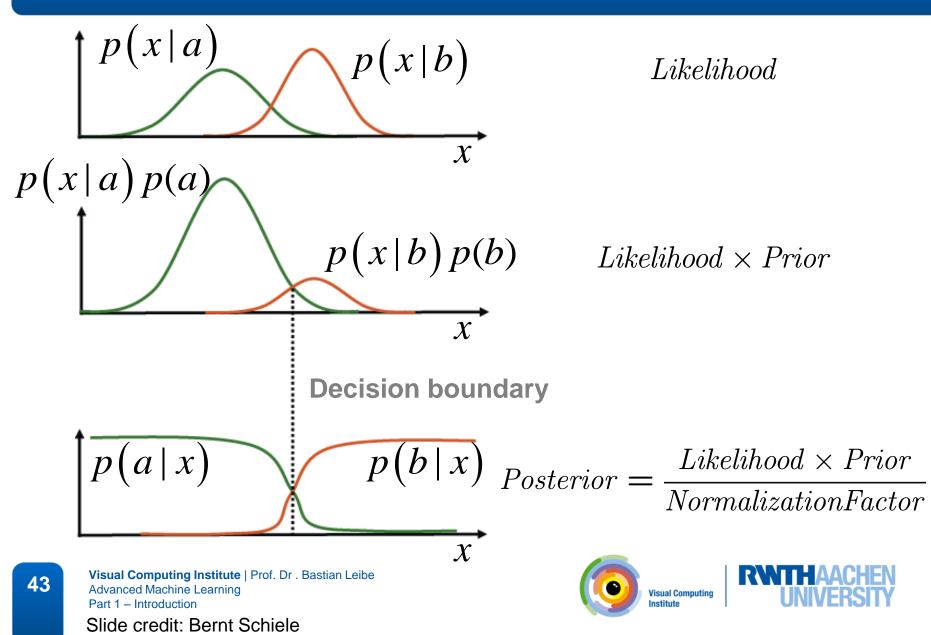
42



• From those, we can derive



Recap: Bayes Decision Theory



Recap: Gaussian (or Normal) Distribution

- One-dimensional case
 - Mean μ
 - Variance $\sigma^{_2}$

$$\mathcal{N}(x|\mu,\sigma^2) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left\{-\frac{(x-\mu)^2}{2\sigma^2}\right\}$$

- Multi-dimensional case
 - Mean μ

44

– Covariance Σ

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu},\boldsymbol{\Sigma}) = \frac{1}{(2\pi)^{D/2}|\boldsymbol{\Sigma}|^{1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}}\boldsymbol{\Sigma}^{-1}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

-1

 $\mathcal{N}(x|\mu,\sigma^2)$

0.16 0.14 0.12

0.1 0.08 0.06

0.04

 2σ

x

Image source: C.M. Bishop, 2006

Side Note

Notation

45

– In many situations, it will be necessary to work with the inverse of the covariance matrix $\boldsymbol{\Sigma}$:

$$\mathbf{\Lambda} = \mathbf{\Sigma}^{-1}$$

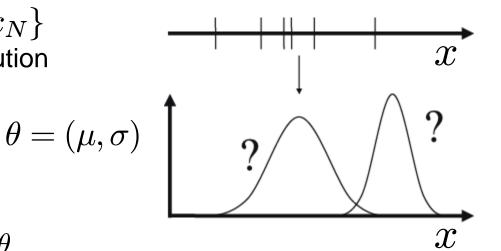
- We call ${f \Lambda}$ the precision matrix.
- We can therefore also write the Gaussian as

$$\mathcal{N}(x|\mu,\lambda^{-1}) = \frac{1}{\sqrt{2\pi}\lambda^{-1/2}} \exp\left\{-\frac{\lambda}{2}(x-\mu)^2\right\}$$

$$\mathcal{N}(\mathbf{x}|\boldsymbol{\mu}, \boldsymbol{\Lambda}^{-1}) = \frac{1}{(2\pi)^{D/2} |\boldsymbol{\Lambda}|^{-1/2}} \exp\left\{-\frac{1}{2}(\mathbf{x}-\boldsymbol{\mu})^{\mathrm{T}} \boldsymbol{\Lambda}(\mathbf{x}-\boldsymbol{\mu})\right\}$$

Recap: Parametric Methods

- Given
 - Data $X = \{x_1, x_2, \dots, x_N\}$
 - Parametric form of the distribution with parameters θ
 - E.g. for Gaussian distrib.:



Learning

46

- Estimation of the parameters θ
- Likelihood of θ
 - Probability that the data X have indeed been generated from a probability density with parameters θ

$$L(\theta) = p(X|\theta)$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction Slide adapted from Bernt Schiele

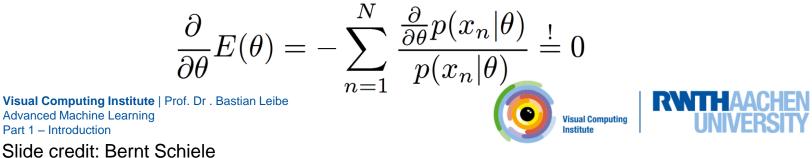
Recap: Maximum Likelihood Approach

- Computation of the likelihood
 - Single data point: $p(x_n|\theta)$
 - Assumption: all data points $X = \{x_1, \ldots, x_n\}$ are independent

$$L(\theta) = p(X|\theta) = \prod_{n=1}^{N} p(x_n|\theta)$$

- Log-likelihoor'
$$E(\theta) = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(x_n|\theta)$$

- Estimation of the parameters θ (Learning)
 - Maximize the likelihood (=minimize the negative log-likelihood)
 - \Rightarrow Take the derivative and set it to zero.

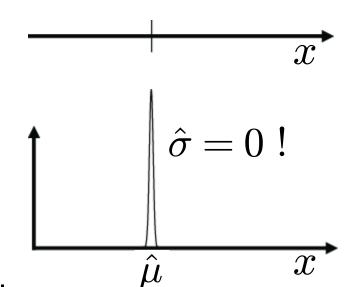


Recap: Maximum Likelihood Approach

- Maximum Likelihood has several significant limitations
 - It systematically underestimates the variance of the distribution!
 - E.g. consider the case

$$N = 1, X = \{x_1\}$$

 \Rightarrow Maximum-likelihood estimate:



- We say ML overfits to the observed data.
- We will still often use ML, but it is important to know about this effect.

Recap: Deeper Reason

49

Advanced Machine Learning

Part 1 – Introduction

- Maximum Likelihood is a Frequentist concept
 - In the Frequentist view, probabilities are the frequencies of random, repeatable events.
 - These frequencies are fixed, but can be estimated more precisely when more data is available.
- This is in contrast to the Bayesian interpretation
 - In the Bayesian view, probabilities quantify the uncertainty about certain states or events.
 - This uncertainty can be revised in the light of new evidence.
- Bayesians and Frequentists do not like each other too well...

Bayesian vs. Frequentist View

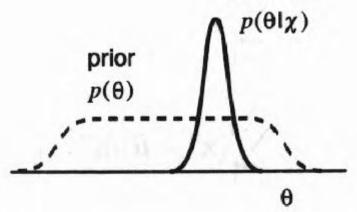
- To see the difference...
 - Suppose we want to estimate the uncertainty whether the Arctic ice cap will have disappeared by the end of the century.
 - This question makes no sense in a Frequentist view, since the event cannot be repeated numerous times.
 - In the Bayesian view, we generally have a prior, e.g. from calculations how fast the polar ice is melting.
 - If we now get fresh evidence, e.g. from a new satellite, we may revise our opinion and update the uncertainty from the prior.

 $\textit{Posterior} \propto \textit{Likelihood} \times \textit{Prior}$

- This generally allows to get better uncertainty estimates for many situations.
- Main Frequentist criticism
 - The prior has to come from somewhere and if it is wrong, the result will be worse.

Bayesian Approach to Parameter Learning

- Conceptual shift
 - Maximum Likelihood views the true parameter vector θ to be unknown, but fixed.
 - In Bayesian learning, we consider θ to be a random variable.
- This allows us to use knowledge about the parameters θ
 - i.e. to use a prior for heta
 - Training data then converts this prior distribution on θ into a posterior probability density.



- The prior thus encodes knowledge we have about the type of distribution we expect to see for θ .

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction Slide adapted from Bernt Schiele

51

posterior

Bayesian Learning Approach

- Bayesian view:
 - Consider the parameter vector θ as a random variable.
 - When estimating the parameters, what we compute is

$$p(x|X) = \int p(x,\theta|X)d\theta$$
Assumption: given θ , this
doesn't depend on X anymore
$$p(x,\theta|X) = p(x|\theta, X)p(\theta|X)$$

$$p(x|X) = \int p(x|\theta)p(\theta|X)d\theta$$

This is entirely determined by the parameter θ (i.e. by the parametric form of the pdf).

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

Bayesian Learning Approach

$$p(x|X) = \int p(x|\theta)p(\theta|X)d\theta$$

$$p(\theta|X) = \frac{p(X|\theta)p(\theta)}{p(X)} = \frac{p(\theta)}{p(X)}L(\theta)$$

$$p(X) = \int p(X|\theta)p(\theta)d\theta = \int L(\theta)p(\theta)d\theta$$

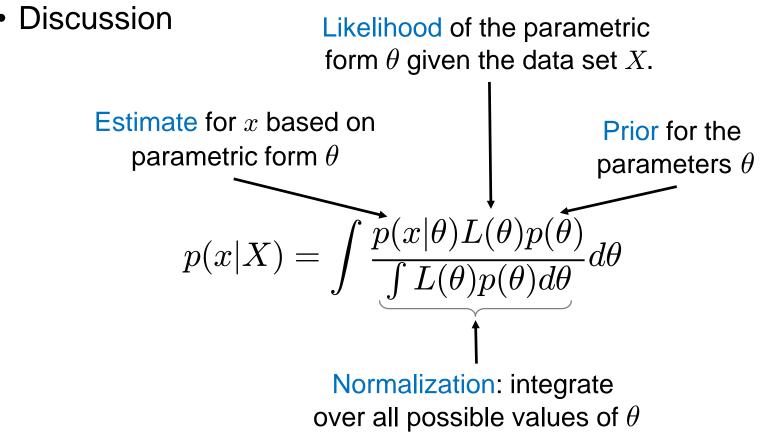
Inserting this above, we obtain

$$p(x|X) = \int \frac{p(x|\theta)L(\theta)p(\theta)}{p(X)}d\theta = \int \frac{p(x|\theta)L(\theta)p(\theta)}{\int L(\theta)p(\theta)d\theta}d\theta$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

Slide credit: Bernt Schiele

Bayesian Learning Approach



– The more uncertain we are about θ , the more we average over all possible parameter values.

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction

Bayesian Density Estimation

Discussion

$$p(x|X) = \int p(x|\theta)p(\theta|X)d\theta = \int \frac{p(x|\theta)L(\theta)p(\theta)}{\int L(\theta)p(\theta)d\theta}d\theta$$

- The probability $p(\boldsymbol{\theta}|\boldsymbol{X})$ makes the dependency of the estimate on the data explicit.
- If $p(\theta|X)$ is very small everywhere, but is large for one $\hat{\theta}$, then $p(x|X) \approx p(x|\hat{\theta})$
- \Rightarrow The more uncertain we are about θ , the more we average over all parameter values.
- Problem

55

– In the general case, the integration over θ is not possible (or only possible stochastically).

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 1 – Introduction Slide credit: Bernt Schiele

Topics of This Lecture

- Regression: Motivation
 - Polynomial fitting
 - General Least-Squares Regression
 - Overfitting problem
 - Regularization
 - Ridge Regression
- Recap: Important Concepts from ML Lecture
 - Probability Theory
 - Bayes Decision Theory
 - Maximum Likelihood Estimation
 - Bayesian Estimation

- A Probabilistic View on Regression
 - Least-Squares Estimation as Maximum Likelihood

Next lecture...

References and Further Reading

 More information, including a short review of Probability theory and a good introduction in Bayes Decision Theory can be found in Chapters 1.1, 1.2 and 1.5 of

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

