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Topics of This Lecture

» Recap: Important Concepts from ML Lecture
— Probability Theory
— Bayes Decision Theory
— Maximum Likelihood Estimation
— New: Bayesian Estimation

+ A Probabilistic View on Regression
— Least-Squares Estimation as Maximum Likelihood
— Predictive Distribution
— Maximum-A-Posteriori (MAP) Estimation
— Bayesian Curve Fitting

* Discussion
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Recap: Bayes Decision Theory

» Concept 1: Priors (a priori probabilities) p(Ck)

— What we can tell about the probability before seeing the data.

— Example: 9
aababaaba
baaaabaaba
abaaaabba
babaabaa
C,=a p(C,)=0.75
C,=b p(C,)=0.25

« In general: Z p(C,)=1
X
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Course Outline

* Regression Techniques
— Linear Regression
— Regularization (Ridge, Lasso)
— Bayesian Regression

» Deep Reinforcement Learning

* Probabilistic Graphical Models
— Bayesian Networks
— Markov Random Fields
— Inference (exact & approximate)

» Deep Generative Models | =
— Generative Adversarial Networks
— Variational Autoencoders
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Recap: The Rules of Probability

« Basic rules

Sum Rule p(X) =3 p(X,Y)

Y

Product Rule p(X,Y) = p(Y[X)p(X)

* From those, we can derive

Bayes’' Theorem  p(Y|X)= %
where pX) =Y p(X[V)p(Y)
=
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Recap: Bayes Decision Theory

« Concept 2: Conditional probabilities p(X | Ck)
— Let = be a feature vector.
— = measures/describes certain properties of the input.
= E.g. number of black pixels, aspect ratio, ...
— p(z|C}) describes its likelihood for class C;.

p(x|a)

p(x|b)
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Recap: Bayes Decision Theory

[p(C. 1)

» Concept 3: Posterior probabilities p(

— We are typically interested in the a posteriori probability, i.e. the
probability of class C; given the measurement vector z.

» Bayes’ Theorem:
x|C C x|C C
p(Ck|X): p( | k)p( k) p( | k)p( k)

p(x) :izp<x|ci)p(c.)

* Interpretation

Likelihood x Prior
Normalization Factor
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Posterior =

Recap: Gaussian (or Normal) Distribution

* One-dimensional case
— Mean p
— Variance o2

2
Nelpo®) = e { - L2

* Multi-dimensional case
— Mean p
— Covariance £

N(x|p, 2) = W exp {*%(x -m)TE T (x - H)}
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» Computation of the likelihood
— Single data point: P(x0]0) = N,/ p. %)
— Assumption: all data points X = {1, ...,z,} are independent
N

L(9) = p(X10) = [ | plxal6)
n=1

— Log-likelihood N
E() = ~InL(#) =~ > Inp(z.|0)
n=1
* Learning = Estimation of the parameters 6
— Maximize the likelihood (=minimize the negative log-likelihood)
= Take the derivative and set it to zero.

a o Zpp(@nl®) |
2 E®) =~ a2

JIEAD)
RWTH

Recap: Bayes Decision Theory

WX |b) Likelihood
X
p(x|a)p(a
D(X | b) p(b) Likelihood x Prior
R
X
Decision boundary
p(alx) P(OTX) pystorioy — Likelihood x Prior
J NormalizationFactor
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Recap: Parametric Methods for Prob. Density Estimation

* Given
-Data X ={xy,29,...,2N}
— Parametric form of the distribution
with parameters 6

— E.g. for Gaussian distrib.: 0= (po0)

« Learning
— Estimation of the parameters 6

« Likelihood of 6
— Probability that the data X have indeed been generated from a
probability density with parameters 6

L(0) = p(X10)
RWTH
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Recap: Maximum Likelihood Approach

Recap: Maximum Likelihood Approach

« Maximum Likelihood has several significant limitations
— It systematically underestimates the variance of the distribution!
— E.g. consider the case

N=1,X=A{z _—t
) { 1} T

= Maximum-likelihood estimate: 6=01

— We say ML overfits to the observed data. 13 .Z‘

— We will still often use ML, but it is important to know about this effect.

n=1
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Deeper Reason

» Maximum Likelihood is a Frequentist concept
— In the Frequentist view, probabilities are the frequencies of random,
repeatable events.
— These frequencies are fixed, but can be estimated more precisely
when more data is available.

* This is in contrast to the Bayesian interpretation

— In the Bayesian view, probabilities quantify the uncertainty about
certain states or events.
— This uncertainty can be revised in the light of new evidencfe}.\

 Bayesians and Frequentists do not like /7\
each other too well...
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Topics of This Lecture

» Recap: Important Concepts from ML Lecture
— Probability Theory
— Bayes Decision Theory
— Maximum Likelihood Estimation
— New: Bayesian Estimation

+ A Probabilistic View on Regression
— Least-Squares Estimation as Maximum Likelihood
— Predictive Distribution
— Maximum-A-Posteriori (MAP) Estimation
— Bayesian Curve Fitting

* Discussion
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Bayesian Learning Approach

 Bayesian view:
— Consider the parameter vector § as a random variable.
— When estimating the parameters, what we compute is
Assumption: given 6, this

X)= 0|X)do
p(z\ ) /p(z, ‘ ) doesn’t depend on X anymore

plz,01X) = p(x]6, X)p(6]X)

p(a]X) = / p(z16)p(6]X)do
—

This is entirely determined by the parameter ¢
(i.e., by the parametric form of the pdf).
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Bayesian vs. Frequentist View

« To see the difference...

— Suppose we want to estimate the uncertainty whether the
Arctic ice cap will have disappeared by the end of the century.

— This question makes no sense in a Frequentist view, since
the event cannot be repeated numerous times.

— In the Bayesian view, we generally have a prior, e.g. from
calculations how fast the polar ice is melting.

— If we now get fresh evidence, e.g. from a new satellite, we may
revise our opinion and update the uncertainty from the prior.

Posterior o Likelihood x Prior

— This generally allows to get better uncertainty estimates for

many situations.

* Main Frequentist criticism

— The prior has to come from somewhere and if it is wrong,
the result will be worse.
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Bayesian Approach to Parameter Learning

» Conceptual shift
— Maximum Likelihood views the true parameter vector ¢ to be
unknown, but fixed.
— In Bayesian learning, we consider 6 to be a random variable.

« This allows us to use knowledge about the parameters 6
—i.e., to use a prior for 6 posterior
— Training data then converts this p(8Ix)

prior distribution on @ into prior
a posterior probability density. (&)

— The prior thus encodes knowledge we have about the type of
distribution we expect to see for 6.
RWTH
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Bayesian Learning Approach

pa]X) = / p(l0)p(0]X)d0
—

a4
—p(X|0)p(0) _ p(®
P(G‘X) = W = IWL(G)

o(X) = [ pxi0)p(e)as = [ Lioywio)a0
— Inserting this above, we obtain

(] X) = / p(lO)LO)PO) \ _ [ PO)LOPO)

p(X) [L(6)p(6)dd

lide credit: Bernt Schiele




Bayesian Learning Approach

* Discussion Likelihood of the parametric
form 6 given the data set X.
Estimate for z based on Prior for the

parametric form 6 parameters 6

/
B0,
TL©O)p(0)d0

%—/

I

Normalization: integrate
over all possible values of

p(e|X) =

= The parameter values ¢ are not the goal, just a means to an end.
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Topics of This Lecture

» A Probabilistic View on Regression
— Least-Squares Estimation as Maximum Likelihood
— Predictive Distribution
— Maximum-A-Posteriori (MAP) Estimation
— Bayesian Curve Fitting
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Pr

abilistic Regression

* First assumption:
— Our target function values y are generated by adding noise to the
function estimate:

Target function __—» y= f(X7 W)+E‘\\ Noise
value / \

Regression function Input value Weights or
(previously y(-)) parameters

» Second assumption:
— The noise is Gaussian distributed

p(y\x, w, /8) = N(y|f(x, w)’ﬂil)
/ A\

Mean Variance
(B precision)
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Bayesian Learning Approach

« Discussion
ptel) = [ atsloypioiran - [ 2ERCE Dy

— The probability p(8] X )makes the dependency of the estimate on the
data explicit.

—~If p(6] X )is very small everywhere, but is large for one 4, then
p(a]X) ~ p(z]6)

= The more uncertain we are about 6, the more we average over all
parameter values.

 Problem
— In the general case, exact integration over 6 is not possible / feasible.
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Curve Fitting Revisited

* We've looked at curve fitting in terms of error minimization...

* Now view the problem from a probabilistic perspective
— Goal is to make predictions for target variable ¢
given new value for input variable z.
- Basis: training set x = (z,, ..., zy)"
with target values t = (t,, ..., ty)".
— We express our uncertainty over the value of the target variable using a
probability distribution

xw, )

plt
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Assumption: Gaussian Noise

ylxo, W)

To T
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Probabilistic Regression

* Given
— Training data points: X = [x1,...,%n,] € R"

- Associated function values: Y1y un]T

<
Il

Conditional likelihood (assuming i.i.d. data)

plyIX,w, 8) = [[N Wil fxi, ), 87 = [[ N (wilw” o(x:), 57
i=1 i=1 S
= Maximize w.rt. w, 3 /

Generalized linear
regression function

Y Comoutngsue o 1 Bttt

heaness achng Loarin () p—
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Maximum Likelihood Regression

Vo logp(y|X,w,8) = —ﬁZ i = wlp(x;))p(x:)
* Setting the gradient to zero.

= fﬂz = wg(x:))o(x)

& Zyﬂb(xi) = {Z ¢(xi)¢(xi)T:| w

i=1 i=1
& by =2d"w @ = [p(x1), - .-, P(%n)]
& wy = (227) ey

Same as in least-squares
regression!
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Maximum Likelihood Regression

« Simplify the log-likelihood
logp(y[X,w,3) = Y log N(ys|w" ¢(x:), 57"

i=1
= Z [log (\‘//23 ) g(yi - wT¢(X¢))2}
= Zlogf - 2 log(2m) - g;@ W)

* Gradient w.r.t. w:

VWIng(Y‘X7WHH) = 7ﬂz(yi7WT¢(xi))¢(X1)
i=1

Maximum Likelihood Regression

Vo logp(y|X,w,0) = —ﬂZ ; x:))(x;)

« Setting the gradient to zero:

=1
< Zyw¢(xt) = |:Z B(x:)P(xi) ] w
i=1 i=1
& oy =28"w @ = [p(x1), - -, B(xn)]

= Least-squares regression is equivalent to Maximum Likelihood under
the assumption of Gaussian noise.
RWTH
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Role of the Precision Parameter

* Also use ML to determlne the precision parameter G

N
logp(t|X,w,3) = Z{i‘” —wlp(x, } + — 1013 8- 3 log(2m

nl

* Gradient w.r.t. 3:

Vilogp(t|X,w,3) = 3 “X:l{tn wlo( xn)} +
= ty n
GMI ;{ ol )}

= The inverse of the noise precision is given by the residual variance
of the target values around the regression function.

Predictive Distribution

« Having determined the parameters w and (3, we can now
make predictions for new values of x.
1
p(t X, Wi, Oan) = N (Ey(x. W), )
* This means
— Rather than giving a point
estimate, we can now also

give an estimate of the
estimation uncertainty.

» What else can we do in the
Bayesian view of regression?

ar —
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MAP: A Step Towards Bayesian Estimation...

* Introduce a prior distribution over the coefficients w.
— For simplicity, assume a zero-mean Gaussian distribution
R (M+1)/2 .
p(wlo) = N(w|0,a™'T) = (%) exp {—%wiw}

— New hyperparameter a controls the distribution of model parameters.

 Express the posterior distribution over w.
— Using Bayes’ theorem:

p(WIX. t,8,0) o p(t|X, w, B)p(wla)

— We can now determine w by maximizing the posterior.
— This technique is called maximum-a-posteriori (MAP).
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Results of Probabilistic View on Regression

* Better understanding what linear regression means:
— Least-squares regression is equivalent to ML estimation under the
assumption of Gaussian noise.

= We can use the predictive distribution to give an uncertainty estimate
on the prediction.

= But: known problem with ML that it tends towards overfitting.

— L2-regularized regression (Ridge regression) is equivalent to MAP
estimation with a Gaussian prior on the parameters w.

= The prior controls the parameter values to reduce overfitting.

= This gives us a tool to explore more general priors.

But still no full Bayesian Estimation yet
— Should integrate over all values of w instead of just making a
point estimate.
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Bayesian Curve Fitting

* Given
— Training data points: X = [x1,...,X,] € REX"
— Associated function values: t = [t1,.. _7t"]T

— Our goal is to predict the value of ¢ for a new point x.
+ Evaluate the predictive distribution

pltn X,6) = [ pltfo,wip(wIX, tiaw

[ N —

—
What we just computed for MAP

— Noise distribution — again assume a Gaussian here

pltle, w) = N(tly(x,w),57")

— Assume that parameters a and 3 are fixed and known for now.
oo et ro o st Love RWTH
Part 2. Lincar Reggession

MAP Solution

* Minimize the negative logarithm
- IDEP(W‘X* t"ﬁ.ﬁ: Q) X = lng(th.W ﬁ) - lng(W‘Da)
¥
logp(t|X,w,3) = = Z{y X,y W) r,,}2+const
- n=1

o
—~logp(wla) = ;wiw + const

* The MAP solutlon is therefore the solution of

—Z{y(x" w) — tn} + w W

n=1
= Maximizing the posterior distribution is equwalent to minimizing the
regularized sum-of-squares error (with \ = —).
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Topics of This Lectu

« A Probabilistic View on Regression
— Least-Squares Estimation as Maximum Likelihood
— Predictive Distribution
— Maximum-A-Posteriori (MAP) Estimation
— Bayesian Curve Fitting
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Bayesian Curve Fitting

« Under those assumptions, the posterior distribution is a
Gaussian and can be evaluated analytically:

pltle, X, t) = N(t|m(z), s*(z))

— where the mean and variance are given by

m(z) = (s sch(x,. n

n=1
s(x)? = 371 + o(x) " Se(x)
—and S is the regularized covariance matrix
N

S = aI+BZ@(xn (%)

n=1
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Analyzing the result Bayesian Predictive Distribution

 Analyzing the variance of the predictive distribution
2 —1 onT@ s 1
s(@)? = 67" + 6(z)" So(x) ,
0 R
o
Uncertainty in the predicted Uncertainty in the parameters w 1
value due to noise on the (consequence of Bayesian
target variables treatment)
(expressed already in ML) 0 1

T
« Important difference to previous example
— Uncertainty may vary with test point z!

.s'(:r;)2 =/t (;')(:E)I'S@(m)
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* We now have a better understanding of regression.
— Least-squares regression: Assumption of Gaussian noise

= We can now also plug in different noise models and explore how
they affect the error function.

— L2 regularization as a Gaussian prior on parameters w.

= We can now also use different regularizers and explore what
they mean.

= Next lecture...

« Discussion - General formulation with basis functions ¢(x).

= We can now also use different basis functions.
j Visual Computing nsitute | Pro,Dr . Bastan Lebe
havanced Machine Loaring
Par 2 Linoa Rectession

RWTH Visual Computing nstitue | Prof.Or . BatianLeie
Raaneed echng Loating
Par2Lnea Regrosson

* General regression formulation » More information on linear regression can be found in

— In principle, we can perform regression in arbitrary spaces Chapters 1.2.5-1.2.6 and 3.1-3.1.4 of
and with many different types of basis functions

— However, there is a caveat... Can you see what it is?

. ) . L — Christopher M. Bishop
Example. POIyngmlal curvg flt;mg| M 3 b b D Pattern Recognition and Machine Learning
)

Springer, 2006
y(x, W) = wg + E wiT; + E Z’!U{Jd'j{fij + E Z E WijkiTi L § Tl

i=1 i=1 j=1 i=1 j=1 k=1

= Number of coefficients grows with DM

= The approach becomes quickly unpractical for high dimensions.
— This is known as the curse of dimensionality.

— We will encounter some ways to deal with this later.
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