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Topics of This Lecture

* Recap: Linear Regression
* Bias-Variance Trade-Off

 Kernels
— Dual representations
— Kernel Ridge Regression
— Properties of kernels

+ Other Kernel Methods
— Kernel PCA
— Kernel k-Means Clustering
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Recap: Linear Basis Function Models

* Generally, we consider models of the following form
M-1
T
y(x,w) = Z wihi(x) = wd(x)
=0
— where ¢;(x) are known as basis functions.
— In the simplest case, we use linear basis functions: ¢,(x) = x.

. Othler popular basis funf:tions

-1 0

0 1 1
Polynomial Gaussian Siﬁmoid
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Course Outline

* Regression Techniques
— Linear Regression
— Regularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabilistic Graphical Models
— Bayesian Networks
— Markov Random Fields
— Inference (exact & approximate)

» Deep Generative Models
— Generative Adversarial Networks
— Variational Autoencoders
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Recap: Other Loss Functions for Regression

» The squared loss is not the only possible choice
— Poor choice when conditional distribution p(t|x) is multimodal.

« Simple generalization: Minkowski loss
L{t,y(x)) = |y(x) —#*
— Expectation

E[L,] = / / ly() — t|7p(x, £)dxdt

+ Minimum of E[L ] is given by
- Conditional mean for g =2,
— Conditional median for ¢ = 1,
— Conditional mode for ¢ =0.
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Recap: Regularized Least-Squares

« Consider more general regularization functions

N M
. . 1 T 2 A
- “Ly norms”: 3 Z{i‘w —w d(x,)} + 3 Z

n=1 J=1

w; |’-1

« Effect: Sparsity for ¢ < 1.
— Minimization tends to set many coefficientsg) zero
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* L, regularization (“The Lasso”)

N M
. L1 T .
w=argmin 53 {t W o0} + 2D |
n=1 j=1
* Interpretation as Bayes Estimation

— We can think of |w,|? as the log-prior density for w;.

* Prior for Lasso (¢ = 1): Laplacian distribution

1 1
plw) = EEXP{_|W|/T} with T=X

Recap: Lasso as Bayes Estimation

Vi g e e v T Lt
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Image source: Wikiped

Recap: Loss Functions for Regression

* Derivation: Expand the square term as follows
{y(x) — )% = {y(x) — E[t|x] + E[t|x] - ¢}*
= {y(x) — Elt|x]}* + {E[t|x] - }?
+2{y(x) — Eltx| {E[t}x] -t}
* Substituting into the loss function E[L] = / {y(x) — t}*p(x, t) dx dt
— The cross-term vanishes, and we end up with ‘_
E[L] = f{y(x) —JE[t\x]}2 plx)dx + j var [t|x] p(x) dx
— —

" \

Optimal least-squares predictor Intrinsic variability of target data
given by the conditional mean = Irreducible minimum value

of the loss function
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Bias-Variance Decomposition

* Suppose we were given multiple data sets, each of size V.
— Any particular data set D will give a particular function y(x;D)
— We then have
{y(x:D) — h(x)}?
= {y(x;D) — Eply(x: D)] + Ep[y(x; P)] — h(x)}*
= {y(x;D) — Eply(: D))}’ + {Enly(x: D)) - h(x)}?
+2{y(x; D) — En[y(x: D) H{Ep[y(x: D)] — h(x)}.
« Taking the expectation over D yields
Ep [{y(x; D) — h(x)}?]
= {Eply(x; D) — h(x)}* + Ep [{y(x; D) — Eplu(x; D)]}*] -

(bias)? variance
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Topics of This Lecture

« Bias-Variance Decomposition

(9 o

i

Bias-Variance Decomposition

» Recall the expected squared loss, _
E[L] = [{y(x) —h(x)}Zp(X)dX+j/{h(x) — }2p(x, 1) dx di
— where ‘ ' A

hix) = E[t|x] = /tp(t\x) dt.

* The second term of E[L] corresponds to the noise inherent in

the random variable ¢.

« What about the first term?

®

Bias-Variance Decomposition

« Thus we can write

expected loss = (bias)? + variance + noise

- where
(bias)? = [ {Ep[y(x; D)) — h(x)}*p(x) dx
variance = /EF {y(x: D) — ]Ep:y(x:'D)]}z} p(x)dx

noise = f]{h(x) — )?p(x, t) dx dt
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Bias-Variance Decomposition

* Example
— 25 data sets from the sinusoidal, varying the degree of regularization, .
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Bias-Variance Decomposition

* Example
— 25 data sets from the sinusoidal, varying the degree of regularization, A.
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Topics of This Lecture

* Kernels
— Dual representations
— Kernel Ridge Regression
— Properties of kernels
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Bias-Variance Decomposition

* Example
— 25 data sets from the sinusoidal, varying the degree of regularization, \.
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The Bias-Variance Trade-Off

* Result from these plots 0.15 -
— An over-regularized model 012 sy
(large A) will have a high binsy? + variance
bias. 0.09 U

— An under-regularized model 0.06
6

(small \) will have a high
variance. 0.03 %

=3 =2 =1 0 1 2
In A
We can compute an estimate for the generalization capability
this way (magenta curve)!
— Can you see where the problem is with this?
= Computation is based on average w.r.t. ensembles of data sets.
= Unfortunately of little practical value...
Visusl Computing nsitue | Pror,Dr . Bastan Leive

Advanced Machine Learning e et
Part 4~ Linear Regression Il "

lmage source: G\, Bishop, 200¢

Topics of This Lecture

* Kernels
— Dual representations
— Kernel Ridge Regression
— Properties of kernels
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Introduction to Kernel Methods

* Dual representations
— Many linear models for regression and classification can be
reformulated in terms of a dual representation, where predictions are
based on linear combinations of a kernel function evaluated at training
data points.
— For models that are based on a fixed nonlinear feature space mapping
¢(x), the kernel function is given by

kix,x') = ¢(x)"o(x')

— We will see that by substituting the inner product by the kernel, we can
achieve interesting extensions of many well-known algorithms...
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Dual Representations: Derivation

+ Dual definition
— Instead of working with w, we can formulate the optimization for a by
substituting w = ®7a into J(w):

T(w) = %g{w'f";&(x,,_) a2+ %w"'w
J(a) = %a"‘@@fmfa —aToalt + %t"t + ’%af'@@f‘a
— Define the kernel matrix K = & with elements
Ko = 0(x0) 6(xm) = k%0, %)
— Now, the sum-of-squares error can be written as
J(a) = %aTKKa —alKt+ ét'[t + %aTKa
RWTH

Dual Representations: Derivation

» Consider a regularized linear regression model

1 N . . A i
J(W)ZQZ{WJcD(x,,) t,,}z—}-awfw

n=1
with the solution N
1=, ¢ ,
w = XZI{WHD(XHJ tu}d(x,)
n=

— We can write this as a linear combination of the ¢(x,) with coefficients
that are functions of w:

N
w o= Y a,6(x,) =2"a

n=1
with 1 ..
an = —~{wlo(x,) — t.}
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Kernel Ridge Regression

1 . 1 .. A
J(ﬂ):EHIKKﬂ*ath‘FitItJrgﬂlKﬂ

— Solving for a, we obtain

a = (K+Aly)'t |

« Prediction for a new input x:
— Writing k(x) for the vector with elements Ay, (x) = k(x,,x)

y(x) = wig(x) = a"®o(x) = k(x)" (K + ALy) 't

= The dual formulation allows the solution to be entirely expressed in
terms of the kernel function k(x,x’).

= The resulting form is known as Kernel Ridge Regression and allows
us to perform non-linear regression.
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Why use k(x,x’) instead of

1. Memory usage
- Storing @(x,),... , P(xy) requires O(NM) memory.
— Storing k(x,, X,),... , k(xx, Xy) requires O(N?) memory.

2. Speed
— We might find an expression for k(x;, x;) that is faster to evaluate
than first forming ¢(x) and then computing ¢(x)Té(x’).
— Example: comparing angles (z € [o, 27]):
(@), 0(x;)) = ([eos(;), sin(a;)], [cos(a;), sin(x;)])
= cos(x;) cos(x;) + sin(x;) sin(x;)

k(wi,a;) = cos(z; — xj)
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Why use k(x,x’) instead of ¢(x)T¢(x’)?

3. Flexibility
— There are kernel functions k(x;, x;) for which we know that a feature
transformation ¢ exists, but we don’t know what ¢ is.
— This allows us to work with far more general similarity functions.
— We can define kernels on strings, trees, graphs, ...

4. Dimensionality
- Since we no longer need to explicitly compute ¢(x), we can work with
high-dimensional (even infinite-dim.) feature spaces.

« In the following, we take a closer look at the background
behind kernels and at how to use them...
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Properties of Kernels

+ Definition (Positive Definite Kernel Function)
— Let X be a non-empty set. A function k : X x X — R is called
definite kernel function, iff
— k is symmetric, i.e. k(z, ') = k(z’, ) for all z, =’ € X, and
— for any set of points z, ..., x, € &, the matrix

I{ij = ("’C(Wzs I"J))'ﬂ._f
is positive (semi-)definite, i.e. for all vectors x € R™

N

Z X K% > 0
ij=1
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Properties of Kernels

* Theorem
—Letk: X*x X — R be a positive definite kernel function. Then there
exists a Hilbert Space # and a mapping ¢ : X — # such that
Bz, 2') = {(¢lz), ¢(a"))n

—where (., .) is the inner product in 7.

* Translation
— Take any set X and any function k& : X' x X — R.
- If k is a positive definite kernel, then we can use k to learn a (soft)
maximum-margin classifier for the elements in X1

* Note
— X can be any set, e.g. X = "all videos on YouTube" or X' = "all
permutations of {1, . . ., k}", or X = "the internet".
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The “Kernel Trick”

Any algorithm that uses data only in the form
of inner products can be kernelized.

* How to kernelize an algorithm
— Write the algorithm only in terms of inner products.
— Replace all inner products by kernel function evaluations.

= The resulting algorithm will do the same as the linear
version, but in the (hidden) feature space #.
— Caveat: working in H is not a guarantee for better performance. A good
choice of k and model selection are important!
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Hilbert Spaces

« Definition (Hilbert Space)
— A Hilbert Space # is a vector space H with an inner product
(., )3 €.9. a mapping
(s)u:HxH—R

which is
— symmetric: (v, v')y = (V' v)y forallv, v' € H,
- positive definite: (v, v)y > Oforallve H,
where (v, v)3,=0only forv =0 € H.
— bilinear: (av, v')y = alv, v')y forv e Hya €R

(0 0 0 = o0+ (0 0

— We can treat a Hilbert space like some R~ if we only use concepts
like vectors, angles, distances.
— Note: dimH = oo is possible!
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Example: Bag of Visual Words Representation

» General framework in visual recognition
— Create a codebook (vocabulary) of prototypical image features
— Represent images as histograms over codebook activations
— Compare two images by any histogram kernel, e.g. x2 kernel

1 (hy — h§)?
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« Kernels are a widely used concept in Machine Learning
— They are the basis for Support Vector Machines from ML1.
— We will see several other kernelized algorithms in this lecture...

« Examples
— Gaussian Processes
— Support Vector Regression
— Kernel PCA
— Kernel k-Means

Visual Computing ntiute| rot,Dr . Bastan Lobe
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Topics of This Lecture

 Other Kernel Methods
— Kernel PCA
— Kernel k-Means Clustering
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Kernel-PCA

» Kernel-PCA procedure
— Given samples x,, € &, kernel X x X — R with an implicit feature map
¢: X — H. Perform PCA in the Hilbert space H.

— The kernel-PCA directions e,...,e; are

the eigenvectors of the covariance operator b=
3 T
€= 2 B(x,)D(x,)! |
sorted by their eigenvalue.

uy

— Lower-dim. coordinate mapping: (d(xn), €1)
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Example: Image Superresolution

« Training procedure Seliead .ﬂﬂﬂﬂ
— Collect high-res face images e N
— Use KPCA with RBF-kernel '

to learn non-linear subspaces o4 u

« For new low-res image: g u !u

— Scale to target high resolution

— Project to closest point in KPCA -] m N
face subspace ﬂ u
AR

Kim, Franz, Scholkopf, Iterative Kernel

Principal Component Analysis for Image
Modelling, IEEE Trans. PAMI, Vol. 27(9), 2005. Re truction in  dimensions
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Recap: PCA

* PCA procedure
- Given samples x,, € R? PCA finds the directions of maximal
covariance. Without loss of generality assume that 2., x,, = 0.
— The PCA directions ey,...,e; are o2

uy,
the eigenvectors of thg covariance matrix '
1 % T
C= ¥ Z XnX,,

] £

u

el
sorted by their eig’énvalue.

K
- We can express x,, in PCA space by F(x,) = Z(xn, ey ey
k=1
<Xm er)
— Lower-dim. coordinate mapping: Xy — {xn, €2) e RK
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Kernel-PCA

» Kernel-PCA procedure
— Given samples x,, € &, kernel X x X — R with an implicit feature map
¢: X — H. Perform PCA in the Hilbert space .

— Equivalently, we can use the T2 "
eigenvectors €'}, and eigenvalues o '
)\, of the kernel matrix M
K = ((¢(xm), d(Xa))mn=1..N —| .

(B (Xm . Xn))mn=1,.....

Xp (\//\—1e,17 ey \//\Ke;()

— Coordinate mapping:
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Kernel k-Means Clustering

« Kernel PCA is more than just non-linear versions of PCA
— PCAmaps R? to R?, e.g. to remove noise dimensions.
- Kernel-PCA maps X — R?, so it provides a vectorial representation
also of non-vectorial data!
= We can use this to apply algorithms that only work in vector spaces
to data that is not in a vector representation.

« Example: k-Means clustering
-Givenz,,...,z, € X.
— Choose a kernel function k : X' X X — R.
— Apply kernel-PCA to obtain vectorial v,,..., v, € R%.
— Cluster v,,..., v, € R? using K-Means.
= z,,..., z, are now clustered based on the similarity defined by k.

Visual Computing Institute | Prof, Dr . Bastian Leibe
Advanced Machine Learning
Part 4 - Linear Regression I

ide adapted from Christoph | ampert



http://dx.doi.org/10.1109/TPAMI.2005.181

Example: Unsupervised Object Categorization

E

L B R
Pm‘“ 'm pA

» Automatically group images that show similar objects
— Represent images by bag-of-word histograms
— Perform Kernel k-Means Clustering
= Observation: Clusters get better if we use a good image kernel
(e.g., x?) instead of plain k-Means (linear kernel).

T. Tuytelaars, C. Lampert, M. Blaschko, W. Buntine, Unsupervised object discovery:
a comparison, 1JCV, 2009.]
RWTH
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References and Further Readin

« Kernels are (shortly) described in Chapters 6.1 and 6.4 of
Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

=
F

B. Schélkopf, A. Smola

Learning with Kernels

MIT Press, 2002
http://www.learning-with-kernels.ora/

« More information on Kernel PCA can be found in Chapter
12.3 of Bishop’s book. You can also look at Schélkopf &
Smola (some chapters available online).
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