Advanced Machine Learning
Summer 2019

Part 4 — Linear Regression Il
10.04.2019

Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group
http://www.vision.rwth-aachen.de



http://www.vision.rwth-aachen.de/

* Regression Techniques
— Linear Regression

Course Outline

f: XX —->R

— Regqularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabillistic Graphical Models
— Bayesian Networks
— Markov Random Fields

Te

— Inference (exact & approximate)

riable

Discriminator

* Deep Generative Models
— Generative Adversarial Networks
— Variational Autoencoders

[ele]e)

Latent random va

Visual Computing Institute | Prof. Dr . Bastian Leibe
Advanced Machine Learning
Part 4 — Linear Regression IlI

Visual Computing

= '




Topics of This Lecture

* Recap: Linear Regression
 Bias-Variance Trade-Off

» Kernels
— Dual representations
— Kernel Ridge Regression
— Properties of kernels

e Other Kernel Methods
— Kernel PCA
— Kernel k-Means Clustering
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Recap: Other Loss Functions for Regression

* The squared loss is not the only possible choice
— Poor choice when conditional distribution p([x) is multimodal.

« Simple generalization: Minkowski loss Y
L(t, y(x)) = Jy(x) — 1] ==
— Expectation T
Bl = [ [ 6o —tpeaxde
e Minimum ofE[Lq] is given by . \/
— Conditional mean for q = 2, R
— Conditional median for ¢ = 1, .
— Conditional mode for g = 0. |
RWTHY
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Recap: Linear Basis Function Models

« Generally, we consider models of the following form
M—1

y(x,w) = ) wig(x) = whe(x)

— where ¢,(x) are known as basis functions.
— In the simplest case, we use linear basis functions: ¢,(x) = x,.
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Recap: Regularized Least-Squares

« Consider more general regularization functions

N
13 ”. 1
— “Ly norms”: 5 Z{t —w d(xn)} + Z w;|?
n=1

w2 o W2 4

©) ((©
& |
NPARANZ o

« Effect: Sparsity for g < 1.
— Minimization tends to set many coefficients?o Zero
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Recap: Lasso as Bayes Estimation

* L, reqgularization (“The Lasso”)
1 N M
. : T 2 ,
W = argmin 5 2:1{% — W P(x,) "+ >\Zl Jwj|
n= 1=

* Interpretation as Bayes Estimation
— We can think of |w |? as the log-prior density for w .

« Prior for Lasso (¢ = 1): Laplacian distribution

P: —
1 1 ik —
=y u=s5b=4 —
p(w) = —exp{—[w[/7} with 7=
2T A
0.3 1
0.2 1
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Topics of This Lecture

 Bias-Variance Decomposition
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Recap: Loss Functions for Regression

 Derivation: Expand the square term as follows

{y(x) — t}* = {y(x) — E[t|x] + E[t[x] - ¢}’
= {y(x) — Eft[x]}* + {E[t[x] - ¢}’
+2{y(x) — E[t|x] HE[t|x| -t}
« Substituting into the loss function E[L] = / / {y(x) — t}’p(x, t) dx dt
— The cross-term vanishes, and we end up with

(L) = [ {u(x) ~Blt)peo dx+ [ var 1 plx) dx

H_)
Optimal least-squares predictor Intrinsic variability of target data
given by the conditional mean = Irreducible minimum value

of the loss function
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Bias-Variance Decomposition

* Recall the expected squared loss,

/{y x)} p(x)dx+/ {h(x) — t} p(X t) dthJ

— where é

ho) = Bt = [wplepx)de.

» The second term of E|L] corresponds to the noise inherent in
the random variable ¢.

 What about the first term?
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Bias-Variance Decomposition

« Suppose we were given multiple data sets, each of size V.

— Any particular data set D will give a particular function y(x;D)
— We then have

{y(x;D) — h(x)}*
= {y(x;D) — Eply(x;D)] + Eply(x; D)] — h(x)}
= {y(x;D) — Eply(x; D)]}* + {Ep[y(x; D)] — h(x)
+2{y(x; D) — Eply(x; D) H{Ep|y(x; D)] — h(x)}.
« Taking the expectation over D yields
Ep [{y(x; D) — h(x)}’]
= {Eply(x;D)] — h(x)}* + Ep [{y(x; D) — Ep[y(x; D)]}"] .

vy

}2

X

"

(bias) 2 variance

IC omputin gI stitute | Prof. Dr . Bastian Leibe
Ad ced M chin nlng ® Visual Camputing
Pa t4 Linear Re g n Il Institute

Slide adapted from C.M. Bishop, 2006




Bias-Variance Decomposition

* Thus we can write

expected loss = (bias)? 4 variance + noise

— where
tins)? = [ {Eply(xiD)] - hx)}p(x) dx
variance = /IED {y(x; D) — Ep[y(x; D)]}?] p(x) dx

noise = / / {h(x) — t}?p(x,t) dx dt
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Bias-Variance Decomposition

« Example
— 25 data sets from the sinusoidal, varying the degree of regularization, .

1 1
InA =26
t t
OF Or
-1 -1
0 T 1 0 x I
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Bias-Variance Decomposition

« Example
— 25 data sets from the sinusoidal, varying the degree of regularization, .

It Ir
t t
OF Or
—1F —1F
0 T 1 0 x I
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Bias-Variance Decomposition

« Example
— 25 data sets from the sinusoidal, varying the degree of regularization, .

It Ir
t t
OF Or
—1F —1F
0 T 1 0 x I
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The Bilas-Variance Trade-Off

 Result from these plots 0.15

— An over-regularized model
(large \) will have a high

bias. 0.09 f
— An under-regularized model 0.06 |

(small X\) will have a high
variance. 0.03 | >4
0

-3 2
In A

« We can compute an estimate for the generalization capability
this way (magenta curve)!
— Can you see where the problem is with this?
— Computation is based on average w.r.t. ensembles of data sets.
= Unfortunately of little practical value...
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Topics of This Lecture

« Kernels
— Dual representations
— Kernel Ridge Regression
— Properties of kernels
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Introduction to Kernel Methods

« Dual representations

— Many linear models for regression and classification can be
reformulated in terms of a dual representation, where predictions are
based on linear combinations of a kernel function evaluated at training
data points.

— For models that are based on a fixed nonlinear feature space mapping
¢(x), the kernel function is given by

k(x,x') = o(x)" p(x')

— We will see that by substituting the inner product by the kernel, we can
achieve interesting extensions of many well-known algorithms...
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Dual Representations: Derivation

« Consider a regularized linear regression model

1 o A
J(w) = 5 Z{qub(Xn) —t,} §WTW
n=1

with the solution
1

w2 I WT6(x) — ta}(x,)

— We can write this as a linear combination of the ¢(x,) with coefficients
that are functions of w:

N
W = Z and(x,) = ®'a
with n?
an = _X{WTgb(Xn) —tn}
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Dual Representations: Derivation

 Dual definition
— Instead of working with w, we can formulate the optimization for a by
substituting w = ®7a into J(w):

R A
J(wW) = 3 Z{WTgb(Xn) — tn}2 + §WTW
n=1

1 1 A
J(a) = 5:Q{FchI)Tc1>c1>Ta —al'ea’t + §tTt + 5afl”chI)‘lla

— Define the kernel matrix K = & &1 with elements
Knm = 6(%n)" ¢(xm) = k(%p, Xim)
— Now, the sum-of-squares error can be written as
J(a) = %aTKKa —alKt + %tTt + %aTKa
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— Solving for a, we obtain

(K + )\IN)_lt

 Prediction for a new input x:
— Writing k(x) for the vector with elements k,(x) = k(x,, X)

y(x) = W g(x) = aT Be(x) = k(x)” (K + ALy) 't
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Kernel Ridge Regression

J(a) = 52

1
TKKa—alKt+ ~tlt+ %aTKa |

3_

2_

1,

= The dual formulation allows the solution to be entirely expressed in
terms of the kernel function k(x,x").

= The resulting form is known as Kernel Ridge Regression and allows
us to perform non-linear regression.

Visual Computing
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Why use k(x,x’) instead of ¢(x)"o(x’)?

1. Memory usage
— Storing ¢(x,),... , ¢(xy) requires O(NM) memory.
— Storing k(x,, X,),... , k(X, X) requires O(IN?) memory.

2. Speed

— We might find an expression for k(x;, x,) that is faster to evaluate
than first forming ¢(x) and then computing ¢(x)To(x).

— Example: comparing angles (z € [o, 27]):
(0(x:),p(25)) = ([cos(xs),sin(z;)], [cos(z;), sin(z;)])
= cos(x;) cos(x;) + sin(z;) sin(z;)

k(zi,x;) = cos(z; — ;)
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Why use k(x,x’) instead of ¢(x)"o(x’)?

3. Flexibility
— There are kernel functions k(x;, xj) for which we know that a feature

transformation ¢ exists, but we don’t know what ¢ is.
— This allows us to work with far more general similarity functions.

— We can define kernels on strings, trees, graphs, ...

4. Dimensionality
— Since we no longer need to explicitly compute ¢(x), we can work with

high-dimensional (even infinite-dim.) feature spaces.

* In the following, we take a closer look at the background
behind kernels and at how to use them...
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Properties of Kernels

 Definition (Positive Definite Kernel Function)
— Let X' be a non-empty set. Afunction £ : X *x A — R is called

definite kernel function, iff
— k is symmetric, i.e. k(x, ') = k(z’, z) forall z, ' € X, and

— for any set of points z, ... , =, € &, the matrix
Kij = (k(zi,25))i,

IS positive (semi-)definite, i.e. for all vectors x € R™:

N
Z XiKinj 2 0

1,7=1
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Hilbert Spaces

 Definition (Hilbert Space)
— A Hilbert Space H is a vector space H with an inner product
(., )% €.9. a mapping
<->->7—L Hx H—R

which is
— symmetric: (v, V)4, = (v, v)y, forall v, v € H,
— positive definite: (v, v)y, > 0 forallv € H,
where (v, v);, =0onlyforv=0 € H.
— bilinear: (av, v')4, = a(v, V'), forv e H,a € R

(v+ v, v)g = (v, ) g + (v

’ UH>H

— We can treat a Hilbert space like some R”, if we only use concepts
like vectors, angles, distances.
— Note: dimH = oo is possible!
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Properties of Kernels

 Theorem
—Letk: X *x X — R be a positive definite kernel function. Then there
exists a Hilbert Space H and a mapping ¢ : X — H such that

k(z,2') = ((¢(z), ¢(z"))n

— where (., .)4, is the inner product in .

 Translation
— Take any set X' and any function k£ : X x X — R.

— If k is a positive definite kernel, then we can use k to learn a (soft)
maximum-margin classifier for the elements in A

* Note
— X' can be any set, e.g. X = "all videos on YouTube" or X" = "all
permutations of {1, . . ., k}", or A = "the internet".
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Example: Bag of Visual Words Representation

« General framework in visual recognition
— Create a codebook (vocabulary) of prototypical image features
— Represent images as histograms over codebook activations
— Compare two images by any histogram kernel, e.g. x? kernel
1 (b = B
2 (h. b)) =cexp | —— d J
b (h ) = exp | =22 55

g

N
|
1
d
o '
N

ks sl

Visual Computing Institute | Prof. Dr . Bastian Leibe
Advanced Machine Learning 0 Visual Camputing
Part 4 — Linear Regression IlI Institute

Slide credit: Christoph Lampert




The “Kernel Trick”

Any algorithm that uses data only in the form
of inner products can be kernelized.

* How to kernelize an algorithm
— Write the algorithm only in terms of inner products.
— Replace all inner products by kernel function evaluations.

= The resulting algorithm will do the same as the linear
version, but in the (hidden) feature space .
— Caveat: working in H is not a guarantee for better performance. A good

choice of k£ and model selection are important!
RWTH
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« Kernels are a widely used concept in Machine Learning
— They are the basis for Support Vector Machines from ML1.
— We will see several other kernelized algorithms in this lecture...

« Examples
— Gaussian Processes
— Support Vector Regression
— Kernel PCA
— Kernel k-Means
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Topics of This Lecture

 Other Kernel Methods
— Kernel PCA
— Kernel k-Means Clustering
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Recap: PCA

 PCA procedure

— Given samples x, € R¢, PCA finds the directions of maximal
covariance. Without loss of generality assume that 2., x,,

= 0.

2
u;

— The PCA directions e4,...,e; are .
2 '

the eigenvectors of th?vcovarlance matrix

LDy e

Z1

sorted by their elgenvalue K
We can express x,, in PCA space by F'(x,,) = Z<X"”“ er)ex
k=1
Xn s el> \
Lower-dim. coordinate mapping: X, — (Xn, €2) c RE
\ (Xn,ex) /
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Kernel-PCA

« Kernel-PCA procedure

— Given samples x, € &, kernel X X X — R with an implicit feature map
¢: X — H. Perform PCA in the Hilbert space H.

— The kernel-PCA directions ey,...,e, are

the eigenvectors of the covariance operator -
5 e
C = N nzz:l ¢(Xn)¢(xn)T

sorted by their eigenvalue.

— Lower-dim. coordinate mapping:
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Kernel-PCA

« Kernel-PCA procedure
— Given samples x, € &, kernel X X X — R with an implicit feature map

¢: X — H. Perform PCA in the Hilbert space H.

Equivalently, we can use the 2 u
eigenvectors €, and eigenvalues = '
A, of the kernel matrix ”

K = ((¢(xm), ¢(Xn)))mmn=1,..N o

— (k(xma Xn))m,nzl,...,N

— Coordinate mapping: Xp (\/ )\16,1, ey V )\Ke/K)
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Example: Image Superresolution

 Training procedure
— Collect high-res face images

— Use KPCA with RBF-kernel
to learn non-linear subspaces

* For new low-res image:
— Scale to target high resolution

— Project to closest point in
face subspace

Kim, Franz, Schdlkopf, Iterative Kernel
Principal Component Analysis for Image
Modelling, IEEE Trans. PAMI, Vol. 27(9), 2005.
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Kernel k-Means Clustering

« Kernel PCA is more than just non-linear versions of PCA

— Kernel-PCA maps X — R%, so it provides a vectorial representation

= We can use this to apply algorithms that only work in vector spaces

PCA maps R? to R, e.g. to remove noise dimensions.

also of non-vectorial data!

to data that is not in a vector representation.

« Example: k-Means clustering
-Givenz,,... ,x, € X.
— Choose a kernel function £ : X x X — R.
— Apply kernel-PCA to obtain vectorial v ,..., v, € RY.
— Cluster v,,..., v, € R? using K-Means.
= z,...,x, are now clustered based on the similarity defined by k.
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Example: Unsupervised Object Categorization

« Automatically group images that show similar objects
— Represent images by bag-of-word histograms
— Perform Kernel k-Means Clustering
= Observation: Clusters get better if we use a good image kernel
(e.g., x?) instead of plain k-Means (linear kernel).

T. Tuytelaars, C. Lampert, M. Blaschko, W. Buntine, Unsupervised object discovery:
a comparison, 1JCV, 2009.]
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References and Further Reading

« Kernels are (shortly) described in Chapters 6.1 and 6.4 of
Bishop’s book.

Christopher M. Bishop
Pattern Recognition and Machine Learning
Learning with Kernels Springer, 2006

B. Schdlkopf, A. Smola

Learning with Kernels

MIT Press, 2002
http://www.learning-with-kernels.org/

* More information on Kernel PCA can be found in Chapter
12.3 of Bishop’s book. You can also look at Scholkopf &
Smola (some chapters available online).
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