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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Topics of This Lecture

• Recap: Linear Regression

• Bias-Variance Trade-Off

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Other Kernel Methods
 Kernel PCA

 Kernel k-Means Clustering
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Recap: Other Loss Functions for Regression

• The squared loss is not the only possible choice

 Poor choice when conditional distribution p(t|x) is multimodal.

• Simple generalization: Minkowski loss

 Expectation

• Minimum of E[Lq] is given by  

 Conditional mean    for q = 2,

 Conditional median for q = 1,

 Conditional mode    for q = 0.

E[Lq] =

Z Z
jy(x)¡ tjqp(x; t)dxdt
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• Generally, we consider models of the following form

 where Áj(x) are known as basis functions.

 In the simplest case, we use linear basis functions: Ád(x) = xd.

• Other popular basis functions

Polynomial Gaussian Sigmoid

Recap: Linear Basis Function Models
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Recap: Regularized Least-Squares

• Consider more general regularization functions

 “Lq norms”:

• Effect: Sparsity for q  1.

 Minimization tends to set many coefficients to zero

Image source: C.M. Bishop, 2006
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Recap: Lasso as Bayes Estimation

• L1 regularization (“The Lasso”)

• Interpretation as Bayes Estimation

 We can think of |wj|
q as the log-prior density for wj.

• Prior for Lasso (q = 1): Laplacian distribution

with

Image source: Wikipedia
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Topics of This Lecture

• Recap: Linear Regression

• Bias-Variance Decomposition

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Other Kernel Methods
 Kernel PCA

 Kernel k-Means Clustering
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Recap: Loss Functions for Regression

• Derivation: Expand the square term as follows

• Substituting into the loss function
 The cross-term vanishes, and we end up with  

fy(x)¡ tg2 = fy(x)¡ E[tjx] + E[tjx]¡ tg2

= fy(x)¡ E[tjx]g2 + fE[tjx]¡ tg2

+2fy(x)¡ E[tjx]gfE[tjx]¡ tg

Optimal least-squares predictor

given by the conditional mean

Intrinsic variability of target data

 Irreducible minimum value

of the loss function

fy(x)¡ tg2 = fy(x)¡ E[tjx] + E[tjx]¡ tg2

= fy(x)¡ E[tjx]g2 + fE[tjx]¡ tg2

+2fy(x)¡ E[tjx]gfE[tjx]¡ tg
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Bias-Variance Decomposition

• Recall the expected squared loss,

 where

• The second term of E[L] corresponds to the noise inherent in 

the random variable t.

• What about the first term?

Slide adapted from C.M. Bishop, 2006
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Bias-Variance Decomposition

• Suppose we were given multiple data sets, each of size N. 

 Any particular data set D will give a particular function y(x;D)

 We then have

• Taking the expectation over D yields

Slide adapted from C.M. Bishop, 2006
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Bias-Variance Decomposition

• Thus we can write

 where 

Slide adapted from C.M. Bishop, 2006
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Bias-Variance Decomposition

• Example

 25 data sets from the sinusoidal, varying the degree of regularization, ¸.

Slide adapted from C.M. Bishop, 2006 Image source: C.M. Bishop, 2006
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Bias-Variance Decomposition

• Example

 25 data sets from the sinusoidal, varying the degree of regularization, ¸.

Slide adapted from C.M. Bishop, 2006 Image source: C.M. Bishop, 2006
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Bias-Variance Decomposition

• Example

 25 data sets from the sinusoidal, varying the degree of regularization, ¸.

Slide adapted from C.M. Bishop, 2006 Image source: C.M. Bishop, 2006
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The Bias-Variance Trade-Off

• Result from these plots
 An over-regularized model

(large ¸) will have a high 

bias.

 An under-regularized model
(small ¸) will have a high 

variance.

• We can compute an estimate for the generalization capability 

this way (magenta curve)!
 Can you see where the problem is with this?

 Computation is based on average w.r.t. ensembles of data sets.

 Unfortunately of little practical value…

Slide adapted from C.M. Bishop, 2006 Image source: C.M. Bishop, 2006
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Topics of This Lecture

• Recap: Linear Regression

• Bias-Variance Decomposition

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Other Kernel Methods
 Kernel PCA

 Kernel k-Means Clustering
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• Recap: Linear Regression

• Bias/Variance Trade-Off

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Other Kernel Methods
 Kernel PCA

 Kernel k-Means Clustering
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Introduction to Kernel Methods

• Dual representations
 Many linear models for regression and classification can be 

reformulated in terms of a dual representation, where predictions are 

based on linear combinations of a kernel function evaluated at training 

data points.

 For models that are based on a fixed nonlinear feature space mapping 

Á(x), the kernel function is given by

 We will see that by substituting the inner product by the kernel, we can 

achieve interesting extensions of many well-known algorithms…
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Dual Representations: Derivation

• Consider a regularized linear regression model

with the solution

 We can write this as a linear combination of the Á(xn) with coefficients 

that are functions of w:

with
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Dual Representations: Derivation

• Dual definition

 Instead of working with w, we can formulate the optimization for a by 

substituting w = ©Ta into J(w):

 Define the kernel matrix K = ©©T with elements

 Now, the sum-of-squares error can be written as
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Kernel Ridge Regression

 Solving for a, we obtain

• Prediction for a new input x:

 Writing k(x) for the vector with elements

 The dual formulation allows the solution to be entirely expressed in 

terms of the kernel function k(x,x’).

 The resulting form is known as Kernel Ridge Regression and allows 

us to perform non-linear regression.

Image source: Christoph Lampert
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1. Memory usage

 Storing Á(x1),… , Á(xN) requires O(NM) memory.

 Storing k(x1, x1),… , k(xN, xN) requires O(N2) memory.

2. Speed

 We might find an expression for k(xi, xj) that is faster to evaluate 

than first forming Á(x) and then computing Á(x)TÁ(x’).

 Example: comparing angles (x 2 [0, 2¼]):

Slide credit: Christoph Lampert

Why use k(x,x’) instead of Á(x)TÁ(x’)?
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3. Flexibility

 There are kernel functions k(xi, xj) for which we know that a feature 

transformation Á exists, but we don’t know what Á is.

 This allows us to work with far more general similarity functions.

 We can define kernels on strings, trees, graphs, …

4. Dimensionality

 Since we no longer need to explicitly compute Á(x), we can work with 

high-dimensional (even infinite-dim.) feature spaces.

• In the following, we take a closer look at the background 

behind kernels and at how to use them…

Why use k(x,x’) instead of Á(x)TÁ(x’)?

Slide credit: Christoph Lampert
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Properties of Kernels

• Definition (Positive Definite Kernel Function)
 Let X be a non-empty set. A function k : X × X ! R is called positive 

definite kernel function, iff

 k is symmetric, i.e. k(x, x’) = k(x’, x) for all x, x’ 2 X, and

 for any set of points x1,… , xn 2 X, the matrix

is positive (semi-)definite, i.e. for all vectors x 2 Rn:

Slide credit: Christoph Lampert
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Hilbert Spaces

• Definition (Hilbert Space)
 A Hilbert Space H is a vector space H with an inner product 

h. , .iH, e.g. a mapping

which is

 symmetric: hv, v‘iH = hv‘, viH for all v, v‘ 2 H,

 positive definite: hv, viH ¸ 0 for all v 2 H,

where hv, viH = 0 only for v = 0 2 H.

 bilinear: hav, v‘iH = ahv, v‘iH for v 2 H, a 2 R
hv + v‘, v‘‘iH = hv, v‘‘iH + hv‘, v‘‘iH

 We can treat a Hilbert space like some Rn, if we only use concepts 
like vectors, angles, distances. 

 Note: dimH = 1 is possible!

h:; :iH : H £H !R

Slide credit: Christoph Lampert
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Properties of Kernels

• Theorem
 Let k: X × X ! R be a positive definite kernel function. Then there 

exists a Hilbert Space H and a mapping ' : X ! H such that

 where h. , .iH is the inner product in H.

• Translation
 Take any set X and any function k : X × X ! R.

 If k is a positive definite kernel, then we can use k to learn a (soft) 

maximum-margin classifier for the elements in X!

• Note

 X can be any set, e.g. X = "all videos on YouTube" or X = "all 

permutations of {1, . . . , k}", or X = "the internet".

Slide credit: Christoph Lampert
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• General framework in visual recognition
 Create a codebook (vocabulary) of prototypical image features

 Represent images as histograms over codebook activations

 Compare two images by any histogram kernel, e.g. Â2 kernel

Example: Bag of Visual Words Representation

Slide credit: Christoph Lampert
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The “Kernel Trick”

Any algorithm that uses data only in the form 

of inner products can be kernelized.

• How to kernelize an algorithm
 Write the algorithm only in terms of inner products.

 Replace all inner products by kernel function evaluations.

 The resulting algorithm will do the same as the linear 
version, but in the (hidden) feature space H.

 Caveat: working in H is not a guarantee for better performance. A good 

choice of k and model selection are important!

Slide credit: Christoph Lampert



30
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 4 – Linear Regression III

Outlook

• Kernels are a widely used concept in Machine Learning
 They are the basis for Support Vector Machines from ML1.

 We will see several other kernelized algorithms in this lecture…

• Examples
 Gaussian Processes

 Support Vector Regression

 Kernel PCA

 Kernel k-Means

 …
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Topics of This Lecture

• Recap: Linear Regression

• Bias/Variance Trade-Off

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Other Kernel Methods
 Kernel PCA

 Kernel k-Means Clustering
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Recap: PCA

• PCA procedure
 Given samples xn 2 Rd, PCA finds the directions of maximal 

covariance. Without loss of generality assume that n xn = 0.

 The PCA directions e1,...,ed are 

the eigenvectors of the covariance matrix

sorted by their eigenvalue.

 We can express xn in PCA space by

 Lower-dim. coordinate mapping: 

u1u2

¹

x2

x1

xn 7!

0
BB@

hxn; e1i
hxn; e2i

: : :

hxn; eKi

1
CCA 2 RK

Slide credit: Christoph Lampert
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Kernel-PCA

• Kernel-PCA procedure
 Given samples xn 2 X, kernel X × X ! R with an implicit feature map 

Á: X ! H. Perform PCA in the Hilbert space H.

 The kernel-PCA directions e1,...,ed are 

the eigenvectors of the covariance operator

sorted by their eigenvalue.

 Lower-dim. coordinate mapping: 

u1u2

¹

x2

x1

xn 7!

0
BB@

hÁ(xn); e1i
hÁ(xn); e2i

: : :

hÁ(xn); eKi

1
CCA 2 RK

Slide credit: Christoph Lampert
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Kernel-PCA

• Kernel-PCA procedure
 Given samples xn 2 X, kernel X × X ! R with an implicit feature map 

Á: X ! H. Perform PCA in the Hilbert space H.

 Equivalently, we can use the 

eigenvectors e’k and eigenvalues 

¸k of the kernel matrix

 Coordinate mapping: 

u1u2

¹

x2

x1

xn 7! (
p

¸1e
0

1; :::;
p

¸Ke
0

K)

Slide credit: Christoph Lampert
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Example: Image Superresolution

• Training procedure
 Collect high-res face images

 Use KPCA with RBF-kernel 

to  learn non-linear subspaces

• For new low-res image:
 Scale to target high resolution

 Project to closest point in 

face subspace

Reconstruction in r dimensions

Kim, Franz, Schölkopf, Iterative Kernel 

Principal Component Analysis for Image 

Modelling, IEEE Trans. PAMI, Vol. 27(9), 2005.

Slide credit: Christoph Lampert

http://dx.doi.org/10.1109/TPAMI.2005.181
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Kernel k-Means Clustering

• Kernel PCA is more than just non-linear versions of PCA
 PCA maps Rd to Rd’, e.g. to remove noise dimensions.

 Kernel-PCA maps X ! Rd’, so it provides a vectorial representation 

also of non-vectorial data!

 We can use this to apply algorithms that only work in vector spaces 

to data that is not in a vector representation.

• Example: k-Means clustering

 Given x1,… , xn 2 X.

 Choose a kernel function k : X × X ! R.

 Apply kernel-PCA to obtain vectorial v1,…, vn 2 Rd’.

 Cluster v1,…, vn 2 Rd’ using K-Means.

 x1,… , xn are now clustered based on the similarity defined by k.

Slide adapted from Christoph Lampert
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• Automatically group images that show similar objects
 Represent images by bag-of-word histograms

 Perform Kernel k-Means Clustering

 Observation: Clusters get better if we use a good image kernel

(e.g., Â2) instead of plain k-Means (linear kernel).

T. Tuytelaars, C. Lampert, M. Blaschko, W. Buntine, Unsupervised object discovery: 

a comparison, IJCV, 2009.]

Slide adapted from Christoph Lampert

Example: Unsupervised Object Categorization

http://dx.doi.org/10.1007/s11263-009-0271-8
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References and Further Reading

• Kernels are (shortly) described in Chapters 6.1 and 6.4 of 
Bishop’s book.

• More information on Kernel PCA can be found in Chapter 
12.3 of Bishop’s book. You can also look at Schölkopf & 
Smola (some chapters available online).

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006

B. Schölkopf, A. Smola

Learning with Kernels

MIT Press, 2002

http://www.learning-with-kernels.org/

http://www.learning-with-kernels.org/

