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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Topics of This Lecture

• Recap: Linear Regression

• Bias-Variance Trade-Off

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Other Kernel Methods
 Kernel PCA

 Kernel k-Means Clustering
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Recap: Other Loss Functions for Regression

• The squared loss is not the only possible choice

 Poor choice when conditional distribution p(t|x) is multimodal.

• Simple generalization: Minkowski loss

 Expectation

• Minimum of E[Lq] is given by  

 Conditional mean    for q = 2,

 Conditional median for q = 1,

 Conditional mode    for q = 0.

E[Lq] =

Z Z
jy(x)¡ tjqp(x; t)dxdt
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• Generally, we consider models of the following form

 where Áj(x) are known as basis functions.

 In the simplest case, we use linear basis functions: Ád(x) = xd.

• Other popular basis functions

Polynomial Gaussian Sigmoid

Recap: Linear Basis Function Models
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Recap: Regularized Least-Squares

• Consider more general regularization functions

 “Lq norms”:

• Effect: Sparsity for q  1.

 Minimization tends to set many coefficients to zero

Image source: C.M. Bishop, 2006
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Recap: Lasso as Bayes Estimation

• L1 regularization (“The Lasso”)

• Interpretation as Bayes Estimation

 We can think of |wj|
q as the log-prior density for wj.

• Prior for Lasso (q = 1): Laplacian distribution

with

Image source: Wikipedia
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Topics of This Lecture

• Recap: Linear Regression

• Bias-Variance Decomposition

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Other Kernel Methods
 Kernel PCA

 Kernel k-Means Clustering
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Recap: Loss Functions for Regression

• Derivation: Expand the square term as follows

• Substituting into the loss function
 The cross-term vanishes, and we end up with  

fy(x)¡ tg2 = fy(x)¡ E[tjx] + E[tjx]¡ tg2

= fy(x)¡ E[tjx]g2 + fE[tjx]¡ tg2

+2fy(x)¡ E[tjx]gfE[tjx]¡ tg

Optimal least-squares predictor

given by the conditional mean

Intrinsic variability of target data

 Irreducible minimum value

of the loss function

fy(x)¡ tg2 = fy(x)¡ E[tjx] + E[tjx]¡ tg2

= fy(x)¡ E[tjx]g2 + fE[tjx]¡ tg2

+2fy(x)¡ E[tjx]gfE[tjx]¡ tg
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Bias-Variance Decomposition

• Recall the expected squared loss,

 where

• The second term of E[L] corresponds to the noise inherent in 

the random variable t.

• What about the first term?

Slide adapted from C.M. Bishop, 2006
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Bias-Variance Decomposition

• Suppose we were given multiple data sets, each of size N. 

 Any particular data set D will give a particular function y(x;D)

 We then have

• Taking the expectation over D yields

Slide adapted from C.M. Bishop, 2006
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Bias-Variance Decomposition

• Thus we can write

 where 

Slide adapted from C.M. Bishop, 2006
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Bias-Variance Decomposition

• Example

 25 data sets from the sinusoidal, varying the degree of regularization, ¸.

Slide adapted from C.M. Bishop, 2006 Image source: C.M. Bishop, 2006
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Bias-Variance Decomposition

• Example

 25 data sets from the sinusoidal, varying the degree of regularization, ¸.

Slide adapted from C.M. Bishop, 2006 Image source: C.M. Bishop, 2006
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Bias-Variance Decomposition

• Example

 25 data sets from the sinusoidal, varying the degree of regularization, ¸.

Slide adapted from C.M. Bishop, 2006 Image source: C.M. Bishop, 2006
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The Bias-Variance Trade-Off

• Result from these plots
 An over-regularized model

(large ¸) will have a high 

bias.

 An under-regularized model
(small ¸) will have a high 

variance.

• We can compute an estimate for the generalization capability 

this way (magenta curve)!
 Can you see where the problem is with this?

 Computation is based on average w.r.t. ensembles of data sets.

 Unfortunately of little practical value…

Slide adapted from C.M. Bishop, 2006 Image source: C.M. Bishop, 2006
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Topics of This Lecture

• Recap: Linear Regression

• Bias-Variance Decomposition

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Other Kernel Methods
 Kernel PCA

 Kernel k-Means Clustering
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Topics of This Lecture

• Recap: Linear Regression

• Bias/Variance Trade-Off

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Other Kernel Methods
 Kernel PCA

 Kernel k-Means Clustering
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Introduction to Kernel Methods

• Dual representations
 Many linear models for regression and classification can be 

reformulated in terms of a dual representation, where predictions are 

based on linear combinations of a kernel function evaluated at training 

data points.

 For models that are based on a fixed nonlinear feature space mapping 

Á(x), the kernel function is given by

 We will see that by substituting the inner product by the kernel, we can 

achieve interesting extensions of many well-known algorithms…
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Dual Representations: Derivation

• Consider a regularized linear regression model

with the solution

 We can write this as a linear combination of the Á(xn) with coefficients 

that are functions of w:

with
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Dual Representations: Derivation

• Dual definition

 Instead of working with w, we can formulate the optimization for a by 

substituting w = ©Ta into J(w):

 Define the kernel matrix K = ©©T with elements

 Now, the sum-of-squares error can be written as
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Kernel Ridge Regression

 Solving for a, we obtain

• Prediction for a new input x:

 Writing k(x) for the vector with elements

 The dual formulation allows the solution to be entirely expressed in 

terms of the kernel function k(x,x’).

 The resulting form is known as Kernel Ridge Regression and allows 

us to perform non-linear regression.

Image source: Christoph Lampert



23
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 4 – Linear Regression III

1. Memory usage

 Storing Á(x1),… , Á(xN) requires O(NM) memory.

 Storing k(x1, x1),… , k(xN, xN) requires O(N2) memory.

2. Speed

 We might find an expression for k(xi, xj) that is faster to evaluate 

than first forming Á(x) and then computing Á(x)TÁ(x’).

 Example: comparing angles (x 2 [0, 2¼]):

Slide credit: Christoph Lampert

Why use k(x,x’) instead of Á(x)TÁ(x’)?
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3. Flexibility

 There are kernel functions k(xi, xj) for which we know that a feature 

transformation Á exists, but we don’t know what Á is.

 This allows us to work with far more general similarity functions.

 We can define kernels on strings, trees, graphs, …

4. Dimensionality

 Since we no longer need to explicitly compute Á(x), we can work with 

high-dimensional (even infinite-dim.) feature spaces.

• In the following, we take a closer look at the background 

behind kernels and at how to use them…

Why use k(x,x’) instead of Á(x)TÁ(x’)?

Slide credit: Christoph Lampert
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Properties of Kernels

• Definition (Positive Definite Kernel Function)
 Let X be a non-empty set. A function k : X × X ! R is called positive 

definite kernel function, iff

 k is symmetric, i.e. k(x, x’) = k(x’, x) for all x, x’ 2 X, and

 for any set of points x1,… , xn 2 X, the matrix

is positive (semi-)definite, i.e. for all vectors x 2 Rn:

Slide credit: Christoph Lampert
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Hilbert Spaces

• Definition (Hilbert Space)
 A Hilbert Space H is a vector space H with an inner product 

h. , .iH, e.g. a mapping

which is

 symmetric: hv, v‘iH = hv‘, viH for all v, v‘ 2 H,

 positive definite: hv, viH ¸ 0 for all v 2 H,

where hv, viH = 0 only for v = 0 2 H.

 bilinear: hav, v‘iH = ahv, v‘iH for v 2 H, a 2 R
hv + v‘, v‘‘iH = hv, v‘‘iH + hv‘, v‘‘iH

 We can treat a Hilbert space like some Rn, if we only use concepts 
like vectors, angles, distances. 

 Note: dimH = 1 is possible!

h:; :iH : H £H !R

Slide credit: Christoph Lampert



27
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 4 – Linear Regression III

Properties of Kernels

• Theorem
 Let k: X × X ! R be a positive definite kernel function. Then there 

exists a Hilbert Space H and a mapping ' : X ! H such that

 where h. , .iH is the inner product in H.

• Translation
 Take any set X and any function k : X × X ! R.

 If k is a positive definite kernel, then we can use k to learn a (soft) 

maximum-margin classifier for the elements in X!

• Note

 X can be any set, e.g. X = "all videos on YouTube" or X = "all 

permutations of {1, . . . , k}", or X = "the internet".

Slide credit: Christoph Lampert



28
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 4 – Linear Regression III

• General framework in visual recognition
 Create a codebook (vocabulary) of prototypical image features

 Represent images as histograms over codebook activations

 Compare two images by any histogram kernel, e.g. Â2 kernel

Example: Bag of Visual Words Representation

Slide credit: Christoph Lampert
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The “Kernel Trick”

Any algorithm that uses data only in the form 

of inner products can be kernelized.

• How to kernelize an algorithm
 Write the algorithm only in terms of inner products.

 Replace all inner products by kernel function evaluations.

 The resulting algorithm will do the same as the linear 
version, but in the (hidden) feature space H.

 Caveat: working in H is not a guarantee for better performance. A good 

choice of k and model selection are important!

Slide credit: Christoph Lampert
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Outlook

• Kernels are a widely used concept in Machine Learning
 They are the basis for Support Vector Machines from ML1.

 We will see several other kernelized algorithms in this lecture…

• Examples
 Gaussian Processes

 Support Vector Regression

 Kernel PCA

 Kernel k-Means

 …
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Topics of This Lecture

• Recap: Linear Regression

• Bias/Variance Trade-Off

• Kernels
 Dual representations

 Kernel Ridge Regression

 Properties of kernels

• Other Kernel Methods
 Kernel PCA

 Kernel k-Means Clustering
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Recap: PCA

• PCA procedure
 Given samples xn 2 Rd, PCA finds the directions of maximal 

covariance. Without loss of generality assume that n xn = 0.

 The PCA directions e1,...,ed are 

the eigenvectors of the covariance matrix

sorted by their eigenvalue.

 We can express xn in PCA space by

 Lower-dim. coordinate mapping: 

u1u2

¹

x2

x1

xn 7!

0
BB@

hxn; e1i
hxn; e2i

: : :

hxn; eKi

1
CCA 2 RK

Slide credit: Christoph Lampert



34
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 4 – Linear Regression III

Kernel-PCA

• Kernel-PCA procedure
 Given samples xn 2 X, kernel X × X ! R with an implicit feature map 

Á: X ! H. Perform PCA in the Hilbert space H.

 The kernel-PCA directions e1,...,ed are 

the eigenvectors of the covariance operator

sorted by their eigenvalue.

 Lower-dim. coordinate mapping: 

u1u2

¹

x2

x1

xn 7!

0
BB@

hÁ(xn); e1i
hÁ(xn); e2i

: : :

hÁ(xn); eKi

1
CCA 2 RK

Slide credit: Christoph Lampert
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Kernel-PCA

• Kernel-PCA procedure
 Given samples xn 2 X, kernel X × X ! R with an implicit feature map 

Á: X ! H. Perform PCA in the Hilbert space H.

 Equivalently, we can use the 

eigenvectors e’k and eigenvalues 

¸k of the kernel matrix

 Coordinate mapping: 

u1u2

¹

x2

x1

xn 7! (
p

¸1e
0

1; :::;
p

¸Ke
0

K)

Slide credit: Christoph Lampert
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Example: Image Superresolution

• Training procedure
 Collect high-res face images

 Use KPCA with RBF-kernel 

to  learn non-linear subspaces

• For new low-res image:
 Scale to target high resolution

 Project to closest point in 

face subspace

Reconstruction in r dimensions

Kim, Franz, Schölkopf, Iterative Kernel 

Principal Component Analysis for Image 

Modelling, IEEE Trans. PAMI, Vol. 27(9), 2005.

Slide credit: Christoph Lampert

http://dx.doi.org/10.1109/TPAMI.2005.181
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Kernel k-Means Clustering

• Kernel PCA is more than just non-linear versions of PCA
 PCA maps Rd to Rd’, e.g. to remove noise dimensions.

 Kernel-PCA maps X ! Rd’, so it provides a vectorial representation 

also of non-vectorial data!

 We can use this to apply algorithms that only work in vector spaces 

to data that is not in a vector representation.

• Example: k-Means clustering

 Given x1,… , xn 2 X.

 Choose a kernel function k : X × X ! R.

 Apply kernel-PCA to obtain vectorial v1,…, vn 2 Rd’.

 Cluster v1,…, vn 2 Rd’ using K-Means.

 x1,… , xn are now clustered based on the similarity defined by k.

Slide adapted from Christoph Lampert
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• Automatically group images that show similar objects
 Represent images by bag-of-word histograms

 Perform Kernel k-Means Clustering

 Observation: Clusters get better if we use a good image kernel

(e.g., Â2) instead of plain k-Means (linear kernel).

T. Tuytelaars, C. Lampert, M. Blaschko, W. Buntine, Unsupervised object discovery: 

a comparison, IJCV, 2009.]

Slide adapted from Christoph Lampert

Example: Unsupervised Object Categorization

http://dx.doi.org/10.1007/s11263-009-0271-8
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References and Further Reading

• Kernels are (shortly) described in Chapters 6.1 and 6.4 of 
Bishop’s book.

• More information on Kernel PCA can be found in Chapter 
12.3 of Bishop’s book. You can also look at Schölkopf & 
Smola (some chapters available online).

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006

B. Schölkopf, A. Smola

Learning with Kernels

MIT Press, 2002

http://www.learning-with-kernels.org/

http://www.learning-with-kernels.org/

