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Topics of These Lectures

* Reinforcement Learning
— Introduction
— Key Concepts
— Optimal policies
— Exploration-exploitation trade-off

» Temporal Difference Learning
— SARSA
— Q-Learning

» Deep Reinforcement Learning
— Value based Deep RL
— Policy based Deep RL
— Model based Deep RL

* Applications

Jonathon Luiten
Visual Computing Institute|Pro.Dr . Bastian Leibe Oa
Advanced Machine Learning A
Pat 5 - Deep Reinforcement Learning 1 i

Reinforce Learning

* Motivation
— General purpose framework for decision making.
— Basis: Agent with the capability to interact with its environment
— Each action influences the agent’s future state.
— Success is measured by a scalar reward signal.
— Goal: select actions to maximize future rewards.
action

TN

Agent Environment

h

observation, reward

— Formalized as a partially observable Markov decision process
(POMDP)
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Course Outline

* Regression Techniques
— Linear Regression
— Regularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabilistic Graphical Models
— Bayesian Networks
— Markov Random Fields
— Inference (exact & approximate)

+ Deep Generative Models I P s -

! N

- Generative Adversarial Networks -[qmﬁ;]- p Lp(xlz}]
- Variational Autoencoders - .
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at is Reinforcement Learning

« Learning how to act from a reinforcement signal.
* Humans do this too.

« And it works: Atari games, Alpha Go, Dota2/Starcraft, Drone
Control, Robot Arm Manipulation, etc.

Jonathon Luiten
Visual Computing Institute | Prof, Dr . Bastian Leibe ®
Advanced Machine Learring et

9
Part 5~ Deep Reinforcemen Learning 1

i

Reinforcement Learning

« Differences to other ML paradigms
— There is no supervisor, just a reward signal
— Feedback is delayed, not instantaneous
— Time really matters (sequential, non i.i.d. data)
— Agent’s actions affect the subsequent data it receives

= We don't have full access to the function we’re trying to
optimize, but must query it through interaction.

Jonathon Luiten
Visual Computing Institute | Prof. Dr . Bastian Leibe ©
Advanced Machine Learning .

Part 5~ Deep Reinforcement Learning 1 )
eL.Sergevievine



http://www.vision.rwth-aachen.de/

The Agent—-Environment Interface

Note about Rewards

state| |reward action
S R, A,

: R
i< | Environment
i

* Let’s formalize this

— Agent and environment interact at discrete time
stepst=0,1,2, ...

— Agent observes state at time ¢: S;€S

— Produces an action at time t: Ay € A(Sy)

— Gets a resulting reward Ri+1 ER C R
— And a resulting next state: St+1
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* Reward
— At each time step t, the agent receives a reward Ry,
— This is the training signal
— Provides a measure for the consequences of actions
— Reward may be obtained only after a long sequence of actions
— Goal: choose actions to maximize future accumulated reward.

« Important note

— We need to provide those rewards to truly indicate what we want the agent
to accomplish.

— E.g., learning to play chess:
= The agent should only be rewarded for winning the game.
= Not for taking the opponent’s pieces or other subgoals.
. Elsle, theI agent might learn a way to achieve the subgoals without achieving the

real goal.

= This means, non-zero rewards will typically be very rare!

Deep Reinforcement Learring 1

Reward vs. Return

Markov Decision Process (MDP)

» Objective of learning
— We seek to maximize the expected return G, as some
function of the reward sequence R;.1, Ry42, Res3,
— Standard choice: expected discounted return
G = Rep1 + YRz +¥?Reyz + o = Z Y*Resist
k=0

where 0 <y < 1 is called the discount rate.

« Difficulty
— We don’t know which past actions caused the reward.
= Temporal credit assignment problem
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* Markov Decision Processes
— We consider decision processes that fulfill the Markov property.
— l.e., where the environments response at time ¢t depends only on the
state and action representation at t.

« To define an MDP, we need to specify
— State and action sets
— One-step dynamics defined by state transition probabilities
P(s'ls,@) = PriSees = 515, = 5,4 = @} = ) p(s',rls, @)
TER
— Expected rewards for next state-action-next-state triplets

’ 0 _ Zrer? P(s'i7]s,a)
r(s,a,5") = E[Ry41| St = 5,4 = a,Sp41 = 51 = 2G']5, @)
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« Definition
— A policy determines the agent’s behavior
— Map from state to action 7:§ - A

* Two types of policies
— Deterministic policy: a = 7(s)

— Stochastic policy:  m(als) = Pr{4; = a|S; = s}

* Note
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— m(als) denotes the probability of taking action a when in state s.

Value Function

* ldea
— Value function is a prediction of future reward
— Used to evaluate the goodness/badness of states
— And thus to select between actions

« Definition
— The value of a state s under a policy =, denoted v, (s), is the expected
return when starting in s and following = thereafter.

V(s) = Er[GelSe = s] = Ex[Zizo V¥ Resier |St =s]

— The value of taking action a in state s under a policy m,
denoted g, (s, a), is the expected return starting from s,
taking action a, and following 7 thereafter.

4r(s,0) = ErlGelS; = 5,A¢ = al = B[S0 ¥ Resrsr |St =54, =dl
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Bellman Equation

Bellman Equation

* Recursive Relationship
— For any policy 7 and any state s, the following consistency holds

U (s) = Eq[GelS, = 5]
=Eg [z Y*Retisr|Se = 5]
k=0
=Ex [RHI + }’z Y*Resisz|Se = 5]
k=

0
= Zﬂ(alS)ZZp(S',ﬂS. a) Zyth+k+2
a s’ T k=0

= z n(als)z p(s',rls, a)[r + yv(s)], Vs€ES

r+yvE, Sep1=5"

— This is the Bellman evquation for v, (s).
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Ve (s) :Zn(als)Zp(s’,rIs,a)[r+yv,,(s’)], VsES

« Interpretation
— Think of looking ahead from a state to each successor state.

s

AN

OO0 0O OO0
— The Bellman equation states that the value of the start state must equal
the (discounted) value of the expected next state, plus the reward
expected along the way.
— We will use this equation in various forms to learn v, (s).

Deep Reinforcement Learring 1

Optimal Value Functions
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Optimal Value Functions

* For finite MDPs, policies can be partially ordered
— There will always be at least one optimal policy ..
— The optimal state-value function is defined as
v.(s) = max Ve (s)

— The optimal action-value function is defined as
q.(s,a) = max q,(s,a)
us

@
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» Bellman optimality equations
— For the optimal state-value function v,:

v.(s) = nax gr. (s,

- ' ,

= agnﬁé)z p(s',rls, @)l + yv.(sh]

S',T

— v, is the unique solution to this system of nonlinear equations.

— For the optimal action-value function gq.,:
q.(s,a) = Z p(s’,rls, a) [r +ymaxq.(s’, a')]
ar
s'r

— g. is the unique solution to this system of nonlinear equations.

= If the dynamics of the environment p(s’,r|s, a) are known, then in
principle one can solve those equation systems.

Optimal Policies

» Why optimal state-value functions are useful
— Any policy that is greedy w.r.t. v, is an optimal policy.
= Given v,, one-step-ahead search produces the long-term
optimal results.

= Given q., we do not even have to do one-step-ahead search
7,(s) = argmax q.(s, a)
a€A(s)
* Challenge
— Many interesting problems have too many states for solving v,.
— Many Reinforcement Learning methods can be understood as

approximately solving the Bellman optimality equations, using actually
observed transitions instead of the ideal ones.
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« Let's assume the following MDP
— 4 actions: up, down, left, right
— Deterministic state transitions on actions, but
= Move from A/ B transitions to A' / B' respectively
= Move into border of the grid moves back to current location
- Reward:
= -1 for moving into border of the grid
= +10/ +5 after transition from A / B respectively

A Actions
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« Value function for a policy that takes each action with equal
probability (y = 0.9)

al [o. 3.3 8.8 4.4[53(15
" 15|3.0[ 23 19/05

I 0.107/0.70.4|-0.4

. -1.0-0.4-0.4-0.6-12

v Actions -1.9]-1.3-1.2-1.4-2.0
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Eigure source: Sutton and Barto, 201

Tabular vs. Approximate methods

* For problems with small discrete state and action spaces:
— Value function or Policy function can be expressed as a table of values.
* If we cannot enumerate our states or actions we use function
approximation.
— Kernel methods
— Deep Learning / Neural Networks
Want to solve large problems with huge state spaces, e.g.
chess: 1020 states.
Tabular methods don’t scale well - they're a lookup table
— Too many states to store in memory
— Too slow to learn value function for every state/state-action.

Jonathon Luiten
Visual Computing Institute | Prof. Dr . Bastian Leibe
Advanced Machine Learning
Part 5 - Deep Relnforcement Learning 1

Value-based RL vs Policy-based RL

* RL methods can directly estimate a policy: Policy Based
— Adirect mapping of what action to take in each state.
—mn(als) = P(als,6)
* RL methods can estimate a value function and derive a
policy from that: Value Based
— Either a state-value function
= V(s;0) = V7(s)
— Or an action-state value function (g function)
= 0(s,a6) ~ Q"(s,a)
* Or both simultaneously: Actor-Critic
— Actor-Critic methods learn both a policy (actor) and a value function
(critic)
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» Optimal value function and policy for the grid world

22.0/24.4{22.0119.4/17.5]
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Model-based vs Model-free

* Model-based
— Has a model of the environment dynamics and reward
— Allows agent to plan: predict state and reward before taking action
— Pro: Better sample efficiency
— Con: Agent only as good as the environment - Model-bias

* Model-free
— No explicit model of the environment dynamics and reward
— Less structured. More popular and further developed and tested.
— Pro: Can be easier to implement and tune
— Cons: Very sample inefficient
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Taxonomy of RL methods

Model-Based
Leam the Given the
Model Model
'World Models ‘AlphaZero

Jicle Crodit: Zac K.
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Exploration-Exploitation Trade-off

» Example: N-armed bandit problem
— Suppose we have the choice between
N actions ay, ..., ay.
— If we knew their value functions q..(s, a;),
it would be trivial to choose the best.
— However, we only have estimates based
on our previous actions and their returns.

* We can now
— Exploit our current knowledge
= And choose the greedy action that has the highest value based on our
current estimate.
— Explore to gain additional knowledge
= And choose a non-greedy action to improve our estimate of that action’s
value.
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On-Policy vs. Off-Policy

* On-policy methods
— Attempt to evaluate or improve the policy used to make decisions.
— “Learn while on the job”

« Off-policy methods
— Policy used to generate behavior (behavior policy) is unrelated to the
policy that is evaluated and improved (estimation policy)
— Can we learn the value function of a policy given only experience “off”
the policy?
— “Learn while looking over someone else’s shoulder”
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Policy Evaluation

* Policy evaluation (the prediction problem)
— How good is a given policy?
— For a given policy , compute the state-value function vy.
— Once we know how good a policy is, we can use this information to
improve the policy

* If we know the model:
_Vials =
P wlae | 3) X, plserr | seae) (Plse e, se) + 7V (s141)

— This can be shown to converge to the actual V™ as K — o
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Simple Action Selection Strategies

* e-greedy
— Select the greedy action with probability (1 — €) and a random one in
the remaining cases.
= In the limit, every action will be sampled infinitely often.
= Probability of selecting the optimal action becomes > (1 — ¢).
— But: many bad actions are chosen along the way.

 Softmax
— Choose action a; at time t according to the softmax function
edt(ad/t

T e @

where 7 is a temperature parameter (start high, then lower it).
— Generalization: replace g, by a preference function H, that is learned by
stochastic gradient ascent (“gradient bandit”).
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Topics of These Lectures

« Temporal Difference Learning
— SARSA
— Q-Learning
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Policy Evaluation

« If we do not know the model, then we have to approximate it
using observations
« One option: Monte-Carlo methods
— Play through a sequence of actions until a reward is reached, then
backpropagate it to the states on the path.
— Update after whole sequence (episodic)
V(Sy) « V(S + alG, — V(Sy)] Target: the actual return after time ¢
« Or: Temporal Difference Learning (TD Learning) — TD(1)
— Directly perform an update using the estimate V (S¢43+1)-
— Bootstraps the current estimate of the value function
— Can update every step
V(S « V(Se) + alRey1 + ¥V (Ser1) = V(Sp]
-

Target: an estimate of the return (here: TD(0))
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SARSA: On-Policy TD Control

* |dea

— Turn the TD idea into a control method by always updating the policy to
be greedy w.r.t. the current estimate

* Procedure
— Estimate q, (s, a) for the current policy = and for all states s
and actions a.
— TD(0) update equation

Q(St, Ap) < QS A) + a[Req +¥Q(Se41, Ars1) — Q(Se, Ap)]
— This rule is applied after every transition from a nonterminal state S,.
— It uses every element of the quintuple (S;, A¢, Re+1, St41, Ar41)-
= Hence, the name SARSA.
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Image source: Sutton & Rari

Q-Learning: Off-Policy

* |dea

— Directly approximate the optimal action-value function gq., independent
of the policy being followed.

* Procedure
— TD(0) update equation

QS0 A) = Qe A) + & [Ress + ¥ max QSeen, @) — QS A0

— Dramatically simplifies the analysis of the algorithm.

— All that is required for correct convergence is that all pairs continue to
be updated.
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References and Further Reading

* More information on Reinforcement Learning can be found in
the following book

Richard S. Sutton, Andrew G. Barto
Reinforcement Learning: An Introduction
MIT Press, 1998

» The complete text is also freely available online

https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
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SARS

n-Policy

« Algorithm

Initialize Q(s, a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from Q (e.g., e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s'
Choose o' from s" using policy derived from @ (e.g., e-greedy)
Q(s,a) « Q(s,a) +alr +7Q(s,a') — Q(s,a)]
s+~ sa—a;
until s is terminal
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Image source: Sutton & Bar

Q-Learning: Off-Policy TD Control

« Algorithm

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @Q (e.g., e-greedy)
Take action a, observe r, s’
Q(3,0) — Q(5,a) + afr + ymaxy Q(s', ') — Q(s,a)]
ER

until s is terminal
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« DQN paper

— www.nature.com/articles/nature14236

« AlphaGo paper

— www.nature.com/articles/nature16961
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