

Value Function
 Idea Value function is a prediction of future reward Used to evaluate the goodness/badness of states And thus to select between actions
 Definition The value of a state s under a policy π, denoted v_π(s), is the expected return when starting in s and following π thereafter. v_π(s) = E_π[G_t S_t = s] = E_π[∑^{k=0}_{k=0} γ^kR_{t+k+1} S_t = s]
- The value of taking action <i>a</i> in state <i>s</i> under a policy π , denoted $q_{\pi}(s, a)$, is the expected return starting from <i>s</i> , taking action <i>a</i> , and following π thereafter.
$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t S_t = s, A_t = a] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} S_t = s, A_t = a]$

Model-based vs Model-free

Model-based

- Has a model of the environment dynamics and reward
- Allows agent to plan: predict state and reward before taking action
- Pro: Better sample efficiency
- Con: Agent only as good as the environment Model-bias

Model-free

- No explicit model of the environment dynamics and reward
- Less structured. More popular and further developed and tested.
- Pro: Can be easier to implement and tune
- Cons: Very sample inefficient

Policy Evaluation · If we do not know the model, then we have to approximate it using observations One option: Monte-Carlo methods - Play through a sequence of actions until a reward is reached, then backpropagate it to the states on the path. - Update after whole sequence (episodic) $V(S_t) \leftarrow V(S_t) + \alpha[G_t - V(S_t)]$ Target: the actual return after time t • Or: Temporal Difference Learning (TD Learning) – $TD(\lambda)$ - Directly perform an update using the estimate $V(S_{t+\lambda+1})$. - Bootstraps the current estimate of the value function - Can update every step $V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$ Target: an estimate of the return (here: TD(0)) ٦ **RWTH**AACHEN Prof. Dr. Bastian Leibe

References and Further Reading • More information on Reinforcement Learning can be found in the following book Richard S. Sutton, Andrew G. Barto Reinforcement Learning: An Introduction MT Press, 1998 • The complete text is also freely available online https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html

