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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Recap: Topics of the Last Lecture

• Reinforcement Learning
 Introduction

 Key Concepts

 Optimal policies

 Exploration-exploitation trade-off

• Temporal Difference Learning
 SARSA

 Q-Learning

• Deep Reinforcement Learning
 Value based Deep RL

 Policy based Deep RL
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Note on Variables

• Capital letters define a variable.

• Lower case letters define a value of a variable.

• ‘Fancy’ case letters define the set of possible values for a 

variable.

• Examples

𝑝 𝑠′ 𝑠, 𝑎 = Pr 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 

𝑟∈ℛ

𝑝 𝑠′, 𝑟 𝑠, 𝑎)

𝑆𝑡 ∈ 𝒮𝑅𝑡+1 ∈ ℛ
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Recap: What is Reinforcement Learning?

• Learning how to act from a reinforcement signal.

• Humans do this too.

• And it works: Atari games, Alpha Go, Dota2/Starcraft, Drone 

Control, Robot Arm Manipulation, etc.
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Recap: Reinforcement Learning

• Motivation
 General purpose framework for decision making.

 Basis: Agent with the capability to interact with its environment

 Each action influences the agent’s future state.

 Success is measured by a scalar reward signal.

 Goal: select actions to maximize future rewards.

 Formalized as a partially observable Markov decision process 

(POMDP)

Slide adapted from: David Silver, Sergey Levine



7
Jonathon Luiten

Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 6 – Deep Reinforcement Learning 2

Recap: The Agent–Environment Interface

• Let’s formalize this
 Agent and environment interact at discrete time 

steps 𝑡 = 0, 1, 2, …

 Agent observes state at time 𝑡: 𝑆𝑡 ∈ 𝒮

 Produces an action at time 𝑡: 𝐴𝑡 ∈ 𝒜(𝑆𝑡)

 Gets a resulting reward 𝑅𝑡+1 ∈ ℛ ⊂ ℝ

 And a resulting next state: 𝑆𝑡+1

Slide adapted from: Sutton & Barto
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Recap: Reward vs. Return

• Objective of learning
 We seek to maximize the expected return 𝐺𝑡 as some 

function of the reward sequence 𝑅𝑡+1, 𝑅𝑡+2, 𝑅𝑡+3, …

 Standard choice: expected discounted return

where 0 ≤ 𝛾 ≤ 1 is called the discount rate.

• Difficulty
 We don’t know which past actions caused the reward.

 Temporal credit assignment problem

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + … = 

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1
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Recap: Markov Decision Process (MDP)

• Markov Decision Processes
 We consider decision processes that fulfill the Markov property.

 I.e., where the environments response at time 𝑡 depends only on the 

state and action representation at 𝑡.

• To define an MDP, we need to specify
 State and action sets

 One-step dynamics defined by state transition probabilities

 Expected rewards for next state-action-next-state triplets

𝑝 𝑠′ 𝑠, 𝑎 = Pr 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 

𝑟∈ℛ

𝑝 𝑠′, 𝑟 𝑠, 𝑎)

𝑟 𝑠, 𝑎, 𝑠′ = 𝔼 𝑅𝑡+1| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝑆𝑡+1 = 𝑠′ =
σ𝑟∈ℛ 𝑟 𝑝(𝑠

′, 𝑟|𝑠, 𝑎)

𝑝(𝑠′|𝑠, 𝑎)
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Recap: Policy

• Definition
 A policy determines the agent’s behavior

 Map from state to action 𝜋: 𝒮 → 𝒜

• Two types of policies
 Deterministic policy: 𝑎 = 𝜋(𝑠)

 Stochastic policy: 𝜋 𝑎 𝑠 = Pr 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠

• Note
 𝜋 𝑎 𝑠 denotes the probability of taking action 𝑎 when in state 𝑠.
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Recap: Value Function

• Idea
 Value function is a prediction of future reward

 Used to evaluate the goodness/badness of states

 And thus to select between actions

• Definition
 The value of a state 𝑠 under a policy 𝜋, denoted 𝑣𝜋 𝑠 , is the expected 

return when starting in 𝑠 and following 𝜋 thereafter.

 The value of taking action 𝑎 in state 𝑠 under a policy 𝜋, 

denoted 𝑞𝜋 𝑠, 𝑎 , is the expected return starting from 𝑠, 
taking action 𝑎, and following 𝜋 thereafter.

𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝔼𝜋 σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠

𝑞𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 𝔼𝜋 σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
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Recap: Bellman Equation

• Recursive Relationship
 For any policy 𝜋 and any state 𝑠, the following consistency holds

 This is the Bellman equation for 𝑣𝜋 𝑠 .

𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

= 𝔼𝜋 อ

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠

= 𝔼𝜋 อ𝑅𝑡+1 + 𝛾

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+2 𝑆𝑡 = 𝑠

=

𝑎

𝜋 𝑎 𝑠 

𝑠′



𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝔼𝜋 อ

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+2 𝑆𝑡+1 = 𝑠′

=

𝑎

𝜋 𝑎 𝑠 

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ , ∀𝑠 ∈ 𝒮
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Recap: Optimal Value Functions

• For finite MDPs, policies can be partially ordered
 There will always be at least one optimal policy 𝜋∗.

 The optimal state-value function is defined as

𝑣∗ 𝑠 = max
𝜋

v𝜋(s)

 The optimal action-value function is defined as

𝑞∗ 𝑠, 𝑎 = max
𝜋

𝑞𝜋(𝑠, 𝑎)
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Recap: Optimal Value Functions

• Bellman optimality equations
 For the optimal state-value function 𝑣∗:

 𝑣∗ is the unique solution to this system of nonlinear equations.

 For the optimal action-value function 𝑞∗:

 𝑞∗ is the unique solution to this system of nonlinear equations.

 If the dynamics of the environment 𝑝 𝑠′, 𝑟 𝑠, 𝑎 are known, then in 

principle one can solve those equation systems.

𝑣∗ 𝑠 = max
𝑎∈𝒜(𝑠)

𝑞𝜋∗ 𝑠, 𝑎

= max
𝑎∈𝒜(𝑠)



𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠
′

𝑞∗ 𝑠, 𝑎 =

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠
′, 𝑎′
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Recap: Optimal Policies

• Why optimal state-value functions are useful
 Any policy that is greedy w.r.t. 𝑣∗ is an optimal policy.

 Given 𝑣∗, one-step-ahead search produces the long-term 

optimal results.

 Given 𝑞∗, we do not even have to do one-step-ahead search

• Challenge
 Many interesting problems have too many states for solving 𝑣∗.

 Many Reinforcement Learning methods can be understood as 

approximately solving the Bellman optimality equations, using actually 

observed transitions instead of the ideal ones.

𝜋∗ 𝑠 = argmax
𝑎∈𝒜 𝑠

𝑞∗ 𝑠, 𝑎
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Recap: Tabular vs. Approximate methods

• For problems with small discrete state and action spaces:
 Value function or Policy function can be expressed as a table of values. 

• If we cannot enumerate our states or actions we use function 

approximation.
 Kernel methods

 Deep Learning / Neural Networks

• Want to solve large problems with huge state spaces, e.g. 

chess: 10120 states.

• Tabular methods don’t scale well - they’re a lookup table
 Too many states to store in memory

 Too slow to learn value function for every state/state-action.
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Recap: Model-based vs Model-free

• Model-based
 Has a model of the environment dynamics and reward

 Allows agent to plan: predict state and reward before taking action

 Pro: Better sample efficiency

 Con: Agent only as good as the environment - Model-bias

• Model-free
 No explicit model of the environment dynamics and reward

 Less structured. More popular and further developed and tested.

 Pro: Can be easier to implement and tune

 Cons: Very sample inefficient
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Recap: Value-based RL vs Policy-based RL

• RL methods can directly estimate a policy: Policy Based
 A direct mapping of what action to take in each state.

 𝜋 𝑎 𝑠 = P(a|s, 𝜃)

• RL methods can estimate a value function and derive a 

policy from that: Value Based
 Either a state-value function

 𝑉 𝑠; 𝜃 ≈ 𝑉𝜋(s)

 Or an action-state value function (q function)

 𝑄 𝑠, 𝑎; 𝜃 ≈ 𝑄𝜋(s, a)

• Or both simultaneously: Actor-Critic
 Actor-Critic methods learn both a policy (actor) and a value function 

(critic)
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Recap: Taxonomy of RL methods

Slide Credit: Zac Kenton
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Recap: Exploration-Exploitation Trade-off

• Example: N-armed bandit problem
 Suppose we have the choice between
𝑁 actions 𝑎1, … , 𝑎𝑁.

 If we knew their value functions 𝑞∗(𝑠, 𝑎𝑖),
it would be trivial to choose the best.

 However, we only have estimates based
on our previous actions and their returns.

• We can now
 Exploit our current knowledge 

 And choose the greedy action that has the highest value based on our 
current estimate.

 Explore to gain additional knowledge
 And choose a non-greedy action to improve our estimate of that action’s 

value.

Image source: research.microsoft.com
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Recap: Simple Action Selection Strategies

• ϵ-greedy
 Select the greedy action with probability 1 − 𝜖 and a random one in 

the remaining cases.

 In the limit, every action will be sampled infinitely often.

 Probability of selecting the optimal action becomes > (1 − 𝜖).

 But: many bad actions are chosen along the way.

• Softmax
 Choose action 𝑎𝑖 at time 𝑡 according to the softmax function

where 𝜏 is a temperature parameter (start high, then lower it).

 Generalization: replace 𝑞𝑡 by a preference function 𝐻𝑡 that is learned by 

stochastic gradient ascent (“gradient bandit”).

𝑒𝑞𝑡(𝑎𝑖)/𝜏

σ𝑗=1
𝑁 𝑒𝑞𝑡(𝑎𝑗)/𝜏
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Recap: On-Policy vs. Off-Policy

• On-policy methods
 Attempt to evaluate or improve the policy used to make decisions.

 “Learn while on the job”

• Off-policy methods
 Policy used to generate behavior (behavior policy) is unrelated to the 

policy that is evaluated and improved (estimation policy)

 Can we learn the value function of a policy given only experience “off” 

the policy?

 “Learn while looking over someone else’s shoulder”
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Recap: Policy Evaluation

• Policy evaluation (the prediction problem)
 How good is a given policy?

 For a given policy 𝜋, compute the state-value function 𝑣𝜋.

 Once we know how good a policy is, we can use this information to 

improve the policy

• If we know the model:
 Then we can use the iterative Bellman Equations

 This can be shown to converge to the actual 𝑉𝜋 as 𝐾 → ∞
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Recap: Policy Evaluation

• If we do not know the model, then we have to approximate it 

using observations

• One option: Monte-Carlo methods
 Play through a sequence of actions until a reward is reached, then 

backpropagate it to the states on the path.

 Update after whole sequence (episodic)

• Or: Temporal Difference Learning (TD Learning) – TD(𝜆)
 Directly perform an update using the estimate 𝑉(𝑆𝑡+𝜆+1).

 Bootstraps the current estimate of the value function

 Can update every step

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝐺𝑡 − 𝑉(𝑆𝑡)

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)

Target: the actual return after time 𝑡

Target: an estimate of the return (here: TD(0))
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Recap: SARSA: On-Policy TD Control

• Idea
 Turn the TD idea into a control method by always updating the policy to 

be greedy w.r.t. the current estimate

• Procedure
 Estimate 𝑞𝜋(𝑠, 𝑎) for the current policy 𝜋 and for all states 𝑠

and actions 𝑎.

 TD(0) update equation

 This rule is applied after every transition from a nonterminal state 𝑆𝑡.

 It uses every element of the quintuple (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1).

 Hence, the name SARSA.

Image source: Sutton & Barto

𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄(𝑆𝑡 , 𝐴𝑡)
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Recap: Q-Learning: Off-Policy TD Control

• Idea
 Directly approximate the optimal action-value function 𝑞∗, independent 

of the policy being followed.

• Procedure
 TD(0) update equation

 Dramatically simplifies the analysis of the algorithm.

 All that is required for correct convergence is that all pairs continue to 

be updated.

Image source: Sutton & Barto

𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡, 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝑆𝑡+1, 𝑎 − 𝑄(𝑆𝑡, 𝐴𝑡)



27
Jonathon Luiten

Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 6 – Deep Reinforcement Learning 2

Recap: SARSA vs Q-Learning

• SARSA

Image source: Sutton & Barto

• Q-Learning
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Topics of This Lecture

• Reinforcement Learning
 Introduction

 Key Concepts

 Optimal policies

 Exploration-exploitation trade-off

• Temporal Difference Learning
 SARSA

 Q-Learning

• Deep Reinforcement Learning
 Value based Deep RL

 Policy based Deep RL
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Deep Reinforcement Learning

• RL using deep neural networks to approximate functions
 Value functions 

 Measure goodness of states or state-action pairs

 Policies

 Select next action

 Dynamics Models

 Predict next states and rewards

Slide credit: Sergej Levine
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Deep Reinforcement Learning

• Use deep neural networks to represent
 Value function

 Policy

 Model

• Optimize loss function by stochastic gradient descent

Slide credit: David Silver
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Q-Networks

• Represent value function by Q-Network with weights 𝐰

𝑄 𝑠, 𝑎,𝐰 = 𝑄∗(𝑠, 𝑎)

Slide credit: David Silver
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Deep Q-Learning

• Idea
 Optimal Q-values should obey Bellman equation

 Treat the right-hand side 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝐰 as a target

 Minimize MSE loss by stochastic gradient descent

 This converges to 𝑄∗ using a lookup table representation.

 Unfortunately, it diverges using neural networks due to

 Correlations between samples

 Non-stationary targets

𝑄∗ 𝑠, 𝑎 = 𝔼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ |𝑠, 𝑎

𝐿(𝐰) = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝐰 − 𝑄 𝑠, 𝑎,𝐰
2

Slide adapted from David Silver
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Deep Q-Networks (DQN): Experience Replay

• Adaptations
 To remove correlations, build a dataset from agent’s own experience

 Perform minibatch updates to samples of experience drawn at random 

from the pool of stored samples 

 𝑠, 𝑎, 𝑟, 𝑠′ ~ 𝑈 𝐷 where 𝐷 = (𝑠𝑡 , 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1) is the dataset

 Advantages 

 Each experience sample is used in many updates (more efficient)

 Avoids correlation effects when learning from consecutive samples

 Avoids feedback loops from on-policy learning

Slide adapted from David Silver
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Deep Q-Networks (DQN): Experience Replay

• Adaptations
 Sample from the dataset and apply an update

 To deal with non-stationary parameters 𝐰−, are held fixed.

 Only update the target network parameters every 𝐶 steps.

 I.e., clone the network 𝑄 to generate a target network 𝑄.

 Again, this reduces oscillations to make learning more stable.

Slide adapted from David Silver

𝐿(𝐰) = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝐰− − 𝑄 𝑠, 𝑎,𝐰
2
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Deep Reinforcement Learning

• Application: Learning to play Atari games

V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518, 

pp. 529-533, 2015

Input: 

pixels

+game 

scores

Output: 

control

commands

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
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• L2 Regression Loss

Idea Behind the Model

• Interpretation
 Assume finite number of actions

 Each number here is a real-valued quantity 

that represents the 

Q function in Reinforcement Learning

• Collect experience dataset:
 Set of tuples {(s,a,s’,r), … }

 (State, Action taken, New state, Reward 

received

target value predicted value

Current reward + estimate of future reward, discounted by 

Slide credit: Andrej Karpaty
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Results: Space Invaders
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Results: Breakout
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Comparison with Human Performance

Close-up

view
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Learned Representation

• t-SNE embedding of DQN last hidden layer (Space Inv.)
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Improvements since Nature DQN

• Double DQN
 Remove upward bias caused by max

𝑎
𝑄(𝑠, 𝑎, 𝐰)

 One Q-network w is used to select actions

 Another Q-network w− is used to evaluate actions

• Prioritised replay 
 Weight experience according to surprise

 Store experience in priority queue according to DQN error

 Emphasize state transitions from which one can learn the most.

𝐿(𝐰) = 𝑟 + 𝛾𝑄 𝑠′, argmax
𝑎

𝑄(𝑠′, 𝑎′, 𝐰) ,𝐰− − 𝑄 𝑠, 𝑎,𝐰
2

𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝐰− − 𝑄 𝑠, 𝑎,𝐰

Slide adapted from David Silver
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Improvements since Nature DQN (2)

• Duelling network
 Split Q-network into two channels

 Action-independent value function 𝑉(𝑠, 𝑣)

 Action-dependent advantage function 𝐴(𝑠, 𝑎,𝐰)

 Intuition: network can learn which states are valuable without having to 

learn the effect of each action for each state.

• Combined Algorithm
 3 mean Atari score vs. Nature DQN

𝑄 𝑠, 𝑎 = 𝑉 𝑠, 𝑣 + 𝐴(𝑠, 𝑎,𝐰)

Slide adapted from David Silver
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Topics of This Lecture

• Reinforcement Learning
 Introduction

 Key Concepts

 Optimal policies

 Exploration-exploitation trade-off

• Temporal Difference Learning
 SARSA

 Q-Learning

• Deep Reinforcement Learning
 Value based Deep RL

 Policy based Deep RL
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Policy Gradients: Learning to Play Pong from Pixels

MDP for Pong

State space: 

All possible combinations of pixel values for a 210x60x3 image 

with each being an integer between 0 and 255

Action space:

Move paddle UP or DOWN (binary)

Transition Model:

The ball bounces around, folowing the 'laws of the game‘

Reward Model:

+1 if ball goes behind other players paddle, -1 behind ours

Slide credit: Andrej Karpaty
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Policy Network Example

Input: Pixel values (100,800 in total: 210x160x3)

Output: Probability of going UP (single number)

Stochastic: Only outputs probability which we use to sample

Example Network: Two fully-connected layers with weights W1,W2 

with Sigmoid function on the output.

Preprocessing: Ideally we want to feed in multiple frames pixel 

values into the network so that it can learn to detect motion. Here we 

will feed difference frames to the network (current-previous).

Slide credit: Andrej Karpaty
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This is hard

• We get 100,800 numbers as input.
 Feed through our network with millions of parameters

 Our network will decide UP or DOWN.

 We repeat for hundreds of timesteps before anything happens.

 Then let’s say eventually we get a +1 reward.

 How can we know which actions caused this to happen?

• Credit Assignment Problem
 The cause of the +ve reward: ball bounced from our paddle on a good 

trajectory.

 But this was maybe 20 frames ago, and since then every action we took 

has zero effect.

 How can we learn to do that more often: Ooooooof Hard

Slide credit: Andrej Karpaty
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Simple Policy Gradient Solution

• Supervised Learning: 
 Predict output -> Make correct output more likely

• Reinforcement Learning:
 Predict action -> Make action taken more likely if resulted in good 

reward.

• We can take our predicted action, UP or DOWN, and make 
this more or less likely by assigning a positive or negative 
score to this action.

• E.g. we can use the Reward.
 After finishing one round of pong, we can see if we got +1 or -1 reward 

at the end of the game. And use these scores to score every decision 
we made in that round.

 +1 will encourage the network to make that action in the future when 
presented with that state. -1 will discourage it.

Slide credit: Andrej Karpaty
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Simple Policy Gradient Solution

• Very simple. And works.

• After playing MANY games. Network will learn good moves.

Slide credit: Andrej Karpaty
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Training protocol

• Initialize network with random W1 and W2.

• Play 100 games of Pong (policy rollouts).
 At the end of each game (approx. 200 frames) we get reward +1 

or -1 if we won or lost.

• Let’s say we won 12 games, and lost 88.
 Now we take all decisions in the games we won (~200*12) and 

use +1 to weight the gradients.

 Use -1 to weight the gradients in the other (~200*88) games.

 Use Gradient Ascent (or another optimizer) to optimizer to optimize the 

weights of our NN to make the decisions from the won games more 

likely, and those from the lost games less likely. 

Slide credit: Andrej Karpaty
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Training protocol

Slide credit: Andrej Karpaty
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Making this work better

• In general using the reward directly doesn’t work so well.

• Instead we use Return. The average discounted future 

reward as we have seen earlier.

 This is equivalent to using the Q-value to weight our gradients.

 Q-value is the return (future discounted reward) for being in a particular 

state and performing a particular action.

• Thus policy gradients can be seen as directly learning a 

policy that maximizes the Q-value.

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + … = 

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1

Slide credit: Andrej Karpaty
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Making this work even better

• We can actually do something better than optimizing the Q-

value. We can optimize the advantage function.

• The advantage function indicates the ‘Advantage’ of 

performing action a in state s, compared to the expected 

outcome from being in state s.
 In practice, this results in more stable gradients and faster learning.

 This can be computed here by standardizing the returns (subtract 

mean, divide by standard deviation), over a running average.

𝐴𝑑𝑣 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 − 𝑉(𝑠)

Slide credit: Andrej Karpaty
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Deriving Policy Gradients

• Policy gradients are a special case of the more general 

function gradient estimator.

• We have a function in the form 

• We are interested in how we can shift the distribution 

(defined through parameters 𝜃) to increase it’s score as 

judged by 𝑓

Slide credit: Andrej Karpaty
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What does this mean?

• This part is a vector which gives us the direction in the 

parameter space which would result in an increased 

probability of 𝑥

• By multiplying this by a scaler valued 𝑓 we can define how 

we need to change the parameters to result in actions which 

have a high 𝑓.

Slide credit: Andrej Karpaty
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Visual Example

Slide credit: Andrej Karpaty
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The math for Policy Gradients
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What is learnt

• Learnt weights of 40 (from 200) neurons in W1.

Slide credit: Andrej Karpaty
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Algorithm – Monte-Carlo Policy Gradient
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Actor-Critic Algorithms
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Advantage Actor-Critic Algorithm (A2C)

• Learning both the Value-function and the Policy together with 

2 separate neural networks.

• Training to maximize the advantage 𝐴𝑑𝑣 𝑠, 𝑎 = 𝑄 𝑠, 𝑎 − 𝑉(𝑠)

 Effect: 4 mean Atari score vs. Nature DQN
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Deep Policy Gradients (DPG)

• DPG is the continuous analogue of DQN
 Experience replay: build data-set from agent's experience

 Critic estimates value of current policy by DQN

 To deal with non-stationarity, targets 𝐮−, 𝐰−are held fixed

 Actor updates policy in direction that improves Q

 In other words critic provides loss function for actor.

𝐿𝐰(𝐰) = 𝑟 + 𝛾𝑄 𝑠′, 𝜋(𝑠′, 𝐮−),𝐰− − 𝑄 𝑠, 𝑎,𝐰
2

𝜕𝐿𝐮(𝐮)

𝜕𝐮
=
𝜕𝑄(𝑠, 𝑎,𝐰)

𝜕𝑎

𝜕𝑎

𝜕𝐮

Slide credit: David Silver
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Summary

• The future looks bright!
 Soon, you won’t have to play video games anymore…

 Your computer can do it for you (and beat you at it)

• Reinforcement Learning is a very promising field
 Currently limited by the need for data

 At the moment, mainly restricted to simulation settings
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References and Further Reading

• More information on Reinforcement Learning can be found in 

the following book

• The complete text is also freely available online

Richard S. Sutton, Andrew G. Barto

Reinforcement Learning: An Introduction

MIT Press, 1998

https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html

https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
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References and Further Reading

• DQN paper
 www.nature.com/articles/nature14236

• AlphaGo paper
 www.nature.com/articles/nature16961

http://www.nature.com/articles/nature14236
http://www.nature.com/articles/nature16961

