Advanced Machine Learning Summer 2019

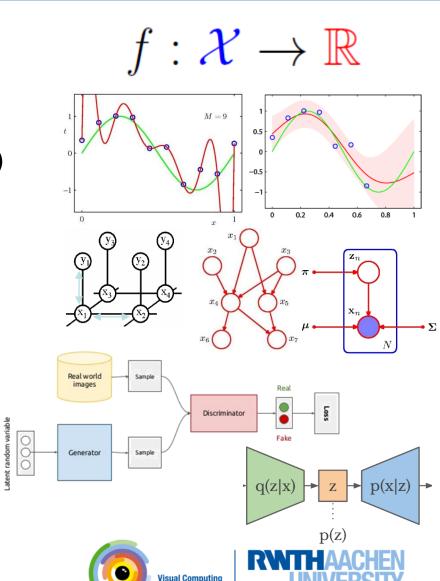
Part 8 – Graphical Models II 02.05.2019

Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

Course Outline

- Regression Techniques
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
- Deep Reinforcement Learning
- Probabilistic Graphical Models
 - Bayesian Networks
 - Markov Random Fields
 - Inference (exact & approximate)
- Deep Generative Models
 - Generative Adversarial Networks
 - Variational Autoencoders

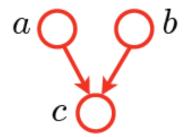


Topics of This Lecture

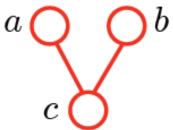
- Recap: Directed Graphical Models
 - Factorization properties
 - Conditional independence
 - Bayes Ball algorithm
- Undirected Graphical Models (Markov Random Fields)
 - Conditional Independence
 - Factorization
 - Converting directed into undirected graphs
- Exact Inference in Graphical Models
 - Marginalization for undirected graphs
 - Inference on a chain
 - Inference on a tree
 - Message passing formalism

Recap: Graphical Models

- Two basic kinds of graphical models
 - Directed graphical models or Bayesian Networks
 - Undirected graphical models or Markov Random Fields
- Key components
 - Nodes
 - Random variables
 - Edges
 - Directed or undirected



Directed graphical model

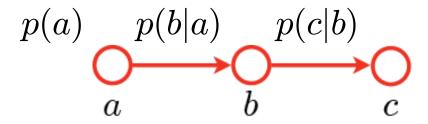


Undirected graphical model

The value of a random variable may be known or unknown.

Recap: Directed Graphical Models

Chains of nodes:



– Knowledge about a is expressed by the prior probability:

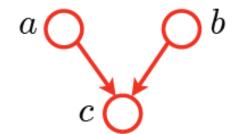
Dependencies are expressed through conditional probabilities:

– Joint distribution of all three variables:

$$p(a,b,c) = p(c|a,b)p(a,b)$$
$$= p(c|b)p(b|a)p(a)$$

Recap: Directed Graphical Models

Convergent connections:



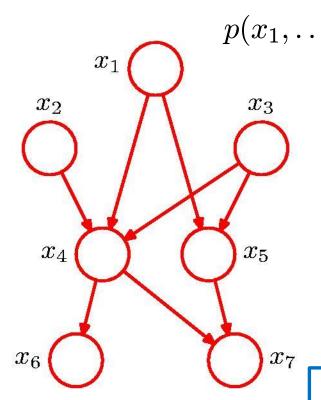
- Here the value of c depends on both variables a and b.
- This is modeled with the conditional probability:

– Therefore, the joint probability of all three variables is given as:

$$p(a,b,c) = p(c|a,b)p(a,b)$$
$$= p(c|a,b)p(a)p(b)$$

Recap: Factorization of the Joint Probability

Exercise: Computing the joint probability



$$p(x_1, \dots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$
$$p(x_5|x_1, x_3)p(x_6|x_4)p(x_7|x_4, x_5)$$

General factorization

$$p(\mathbf{x}) = \prod_{k=1}^{K} p(x_k | \mathbf{pa}_k)$$

We can directly read off the factorization of the joint from the network structure!

Recap: Factorized Representation

- Reduction of complexity
 - Joint probability of n binary variables requires us to represent values by brute force

$$\mathcal{O}(2^n)$$
 terms

The factorized form obtained from the graphical model only requires

$$\mathcal{O}(n \cdot 2^k)$$
 terms

- k: maximum number of parents of a node.
- ⇒ It's the edges that are missing in the graph that are important! They encode the simplifying assumptions we make.

Recap: Conditional Independence

- X is conditionally independent of Y given V
 - Definition: $X \perp \!\!\! \perp Y | V \Leftrightarrow p(X|Y,V) = p(X|V)$
 - Also: $X \perp \!\!\! \perp Y | V \Leftrightarrow p(X,Y|V) = p(X|V) p(Y|V)$
 - Special case: Marginal Independence

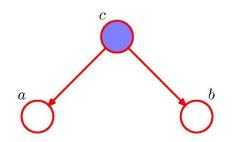
$$X \perp \!\!\! \perp Y \Leftrightarrow X \perp \!\!\! \perp Y | \emptyset \Leftrightarrow p(X,Y) = p(X) p(Y)$$

– Often, we are interested in conditional independence between sets of variables:

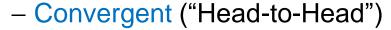
$$\mathcal{X} \perp \!\!\!\perp \mathcal{Y} | \mathcal{V} \Leftrightarrow \{X \perp \!\!\!\perp Y | \mathcal{V}, \forall X \in \mathcal{X} \text{ and } \forall Y \in \mathcal{Y}\}$$

Recap: Conditional Independence

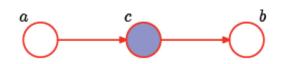
- Three cases
 - Divergent ("Tail-to-Tail")
 - Conditional independence when c is observed.

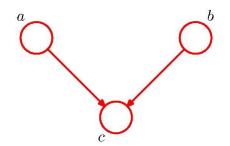


- Chain ("Head-to-Tail")
 - Conditional independence when c is observed.



 Conditional independence when neither c, nor any of its descendants are observed.





Recap: D-Separation

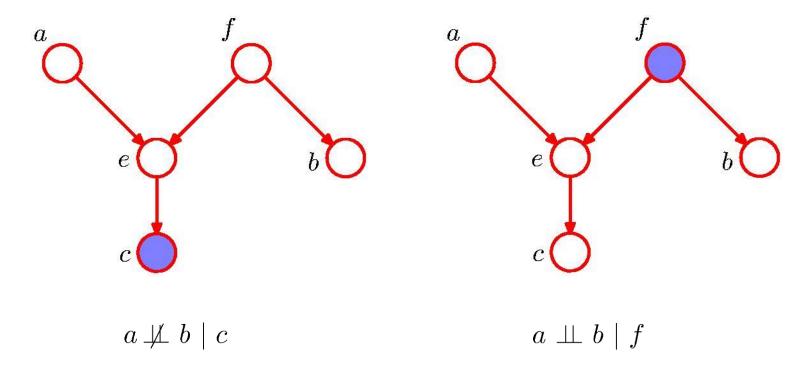
Definition

- Let A, B, and C be non-intersecting subsets of nodes in a directed graph.
- A path from A to B is blocked if it contains a node such that either
 - The arrows on the path meet either head-to-tail or tail-to-tail at the node, and the node is in the set C, or

- The arrows meet head-to-head at the node, and neither the node, nor any of its descendants, are in the set C.
- If all paths from A to B are blocked, A is said to be d-separated from B by C.
- If A is d-separated from B by C, the joint distribution over all variables in the graph satisfies $A \perp\!\!\!\perp B \mid C$.
 - Read: "A is conditionally independent of B given C."

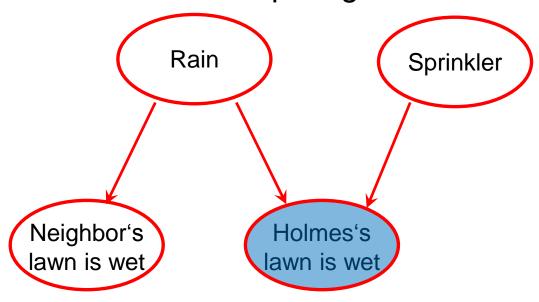
D-Separation: Example

• Exercise: What is the relationship between a and b?



Explaining Away

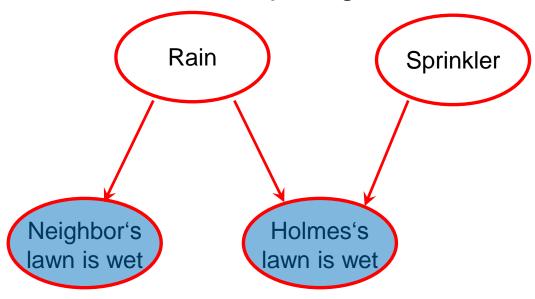
Let's look at Holmes' example again:



 Observation "Holmes' lawn is wet" increases the probability of both "Rain" and "Sprinkler".

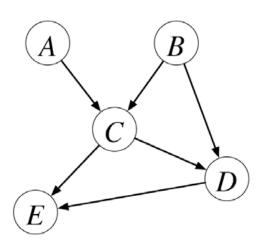
Explaining Away

Let's look at Holmes' example again:



- Observation "Holmes' lawn is wet" increases the probability of both "Rain" and "Sprinkler".
- Also observing "Neighbor's lawn is wet" decreases the probability for "Sprinkler". (They're conditionally dependent!)
- ⇒The "Sprinkler" is explained away.

Intuitive View: The "Bayes Ball" Algorithm



Game

- Can you get a ball from X to Y without being blocked by \mathcal{V} ?
- Depending on its direction and the previous node, the ball can
 - Pass through (from parent to all children, from child to all parents)
 - Bounce back (from any parent/child to all parents/children)
 - Be blocked

R.D. Shachter, <u>Bayes-Ball: The Rational Pastime (for Determining Irrelevance and Requisite Information in Belief Networks and Influence Diagrams)</u>, UAI'98, 1998

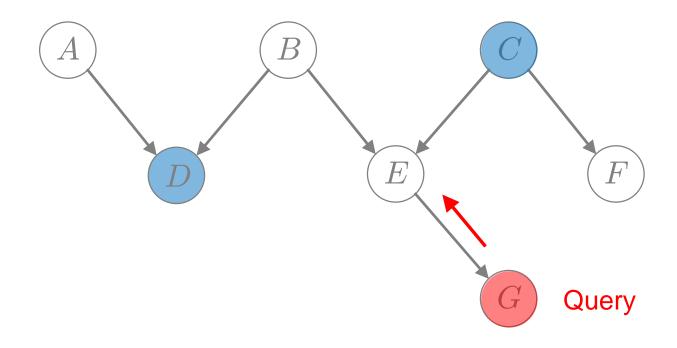
The "Bayes Ball" Algorithm

Game rules

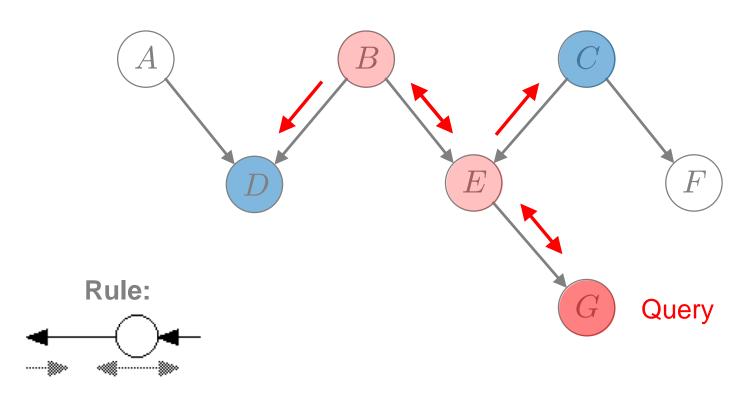
– An unobserved node ($W \notin \mathcal{V}$) passes through balls from parents, but also bounces back balls from children.

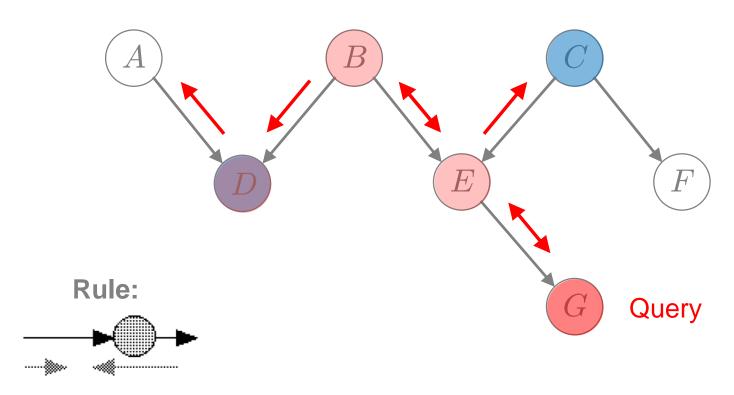
– An observed node ($W \in \mathcal{V}$) bounces back balls from parents, but blocks balls from children.

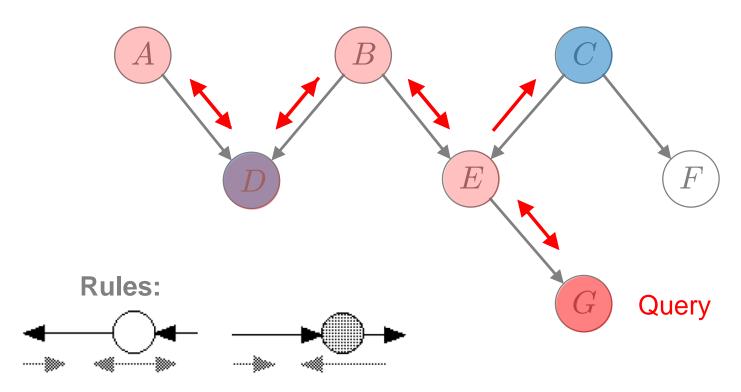
⇒ The Bayes Ball algorithm determines those nodes that are d-separated from the query node.

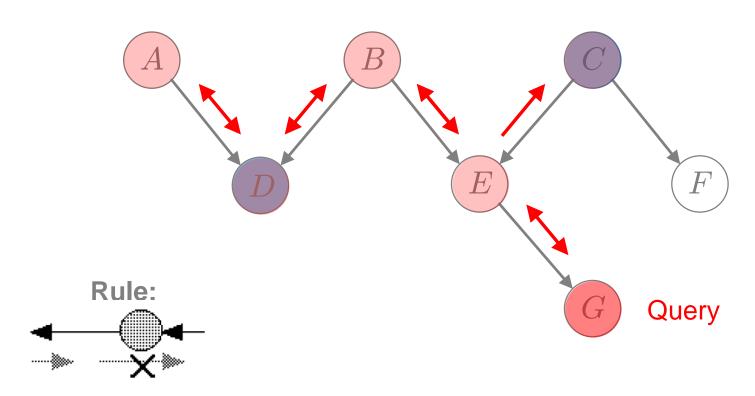






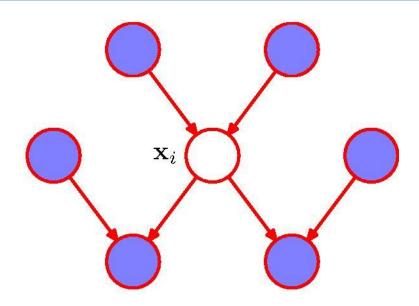






- Which nodes are d-separated from G given C and D?
 - \Rightarrow F is d-separated from G given C and D.

The Markov Blanket



- Markov blanket of a node \mathbf{x}_i
 - Minimal set of nodes that isolates \mathbf{x}_i from the rest of the graph.
 - This comprises the set of
 - Parents,
 - Children, and
 - Co-parents of \mathbf{x}_i .

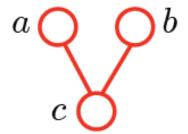
This is what we have to watch out for!

Topics of This Lecture

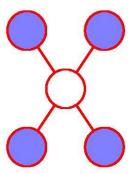
- Recap: Directed Graphical Models (Bayesian Networks)
 - Factorization properties
 - Conditional independence
 - Bayes Ball algorithm
- Undirected Graphical Models (Markov Random Fields)
 - Conditional Independence
 - Factorization
 - Converting directed into undirected graphs
- Exact Inference in Graphical Models
 - Marginalization for undirected graphs
 - Inference on a chain
 - Inference on a tree
 - Message passing formalism

Undirected Graphical Models

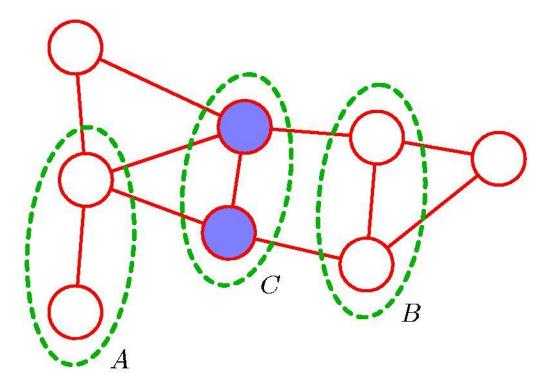
- Undirected graphical models ("Markov Random Fields")
 - Given by undirected graph



- Conditional independence is easier to read off for MRFs.
 - Without arrows, there is only one type of neighbors.
 - Simpler Markov blanket:



Undirected Graphical Models



- Conditional independence for undirected graphs
 - If every path from any node in set A to set B passes through at least one node in set C, then $A \bot\!\!\!\bot B | C$.

Factorization in MRFs

Factorization

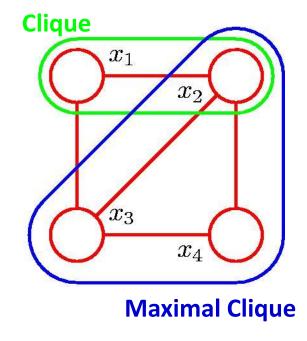
- Factorization is more complicated in MRFs than in BNs.
- Important concept: maximal cliques

Clique

 Subset of the nodes such that there exists a link between all pairs of nodes in the subset.

- Maximal clique

 The biggest possible such clique in a given graph.



Factorization in MRFs

Joint distribution

 Written as product of potential functions over maximal cliques in the graph:

 $p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_C(\mathbf{x}_C)$

– The normalization constant Z is called the partition function.

$$Z = \sum_{\mathbf{x}} \prod_{C} \psi_C(\mathbf{x}_C)$$

Remarks

- BNs are automatically normalized. But for MRFs, we have to explicitly perform the normalization.
- Presence of normalization constant is major limitation!
 - Evaluation of Z involves summing over $\mathcal{O}(K^M)$ terms for M nodes.

Factorization in MRFs

- Role of the potential functions
 - General interpretation
 - No restriction to potential functions that have a specific probabilistic interpretation as marginals or conditional distributions.
 - Convenient to express them as exponential functions ("Boltzmann distribution")

$$\psi_C(\mathbf{x}_C) = \exp\{-E(\mathbf{x}_C)\}\$$

with an energy function E.

- Why is this convenient?
 - Joint distribution is the product of potentials ⇒ sum of energies.
 - We can take the log and simply work with the sums...

Comparison: Directed vs. Undirected Graphs

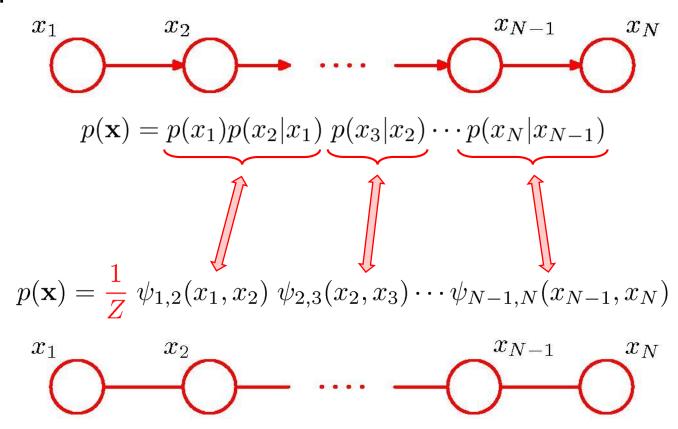
- Directed graphs (Bayesian networks)
 - Better at expressing causal relationships.
 - Interpretation of a link:
 - Conditional probability p(b|a).

- Factorization is simple (and result is automatically normalized).
- Conditional independence is more complicated.
- Undirected graphs (Markov Random Fields)
 - Better at representing soft constraints between variables.
 - Interpretation of a link:
 - "There is some relationship between a and b".

- Factorization is complicated (and result needs normalization).
- Conditional independence is simple.

Converting Directed to Undirected Graphs

Simple case: chain

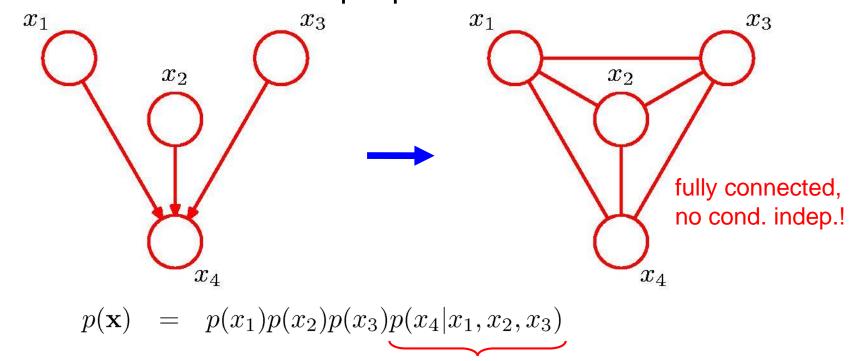


⇒ We can directly replace the directed links by undirected ones.

B. Leibe

Converting Directed to Undirected Graphs

More difficult case: multiple parents



Need a clique of x_1, \dots, x_4 to represent this factor!

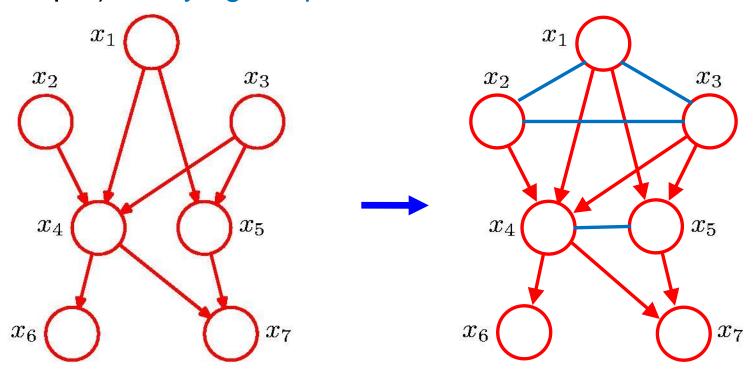
- Need to introduce additional links ("marry the parents").
- ⇒ This process is called moralization. It results in the moral graph.

Converting Directed to Undirected Graphs

- General procedure to convert directed → undirected
 - 1. Add undirected links to marry the parents of each node.
 - 2. Drop the arrows on the original links \Rightarrow moral graph.
 - 3. Find maximal cliques for each node and initialize all clique potentials to 1.
 - 4. Take each conditional distribution factor of the original directed graph and multiply it into one clique potential.
- Restriction
 - Conditional independence properties are often lost!
 - Moralization results in additional connections and larger cliques.

Example: Graph Conversion

Step 1) Marrying the parents.

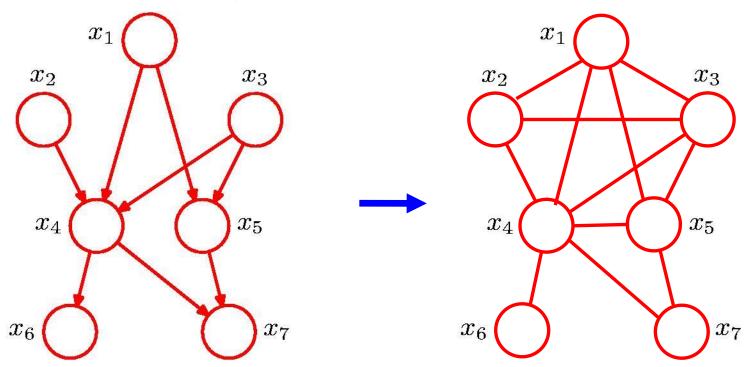


$$p(x_1,\ldots,x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1,x_2,x_3)$$

$$p(x_5|x_1,x_3)p(x_6|x_4)p(x_7|x_4,x_5)$$

Example: Graph Conversion

Step 2) Dropping the arrows.

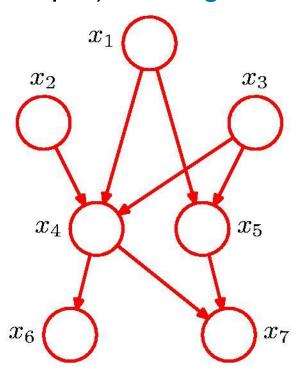


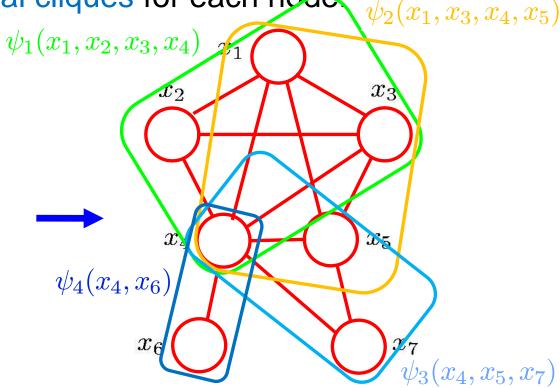
$$p(x_1, \dots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$

$$p(x_5|x_1,x_3)p(x_6|x_4)p(x_7|x_4,x_5)$$

Example: Graph Conversion

Step 3) Finding maximal cliques for each node.



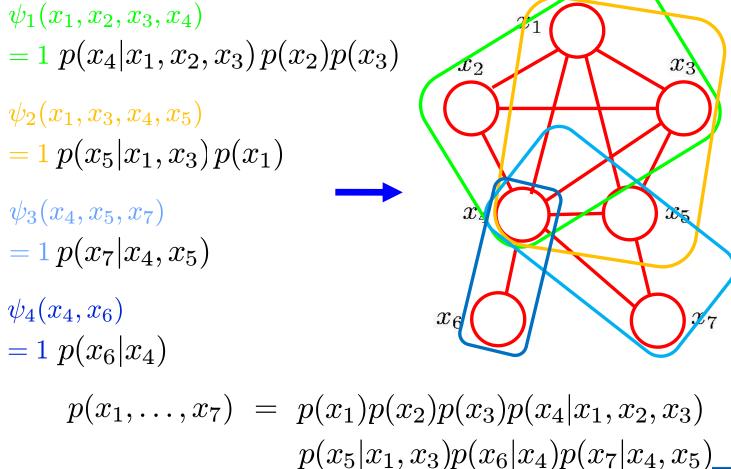


$$p(x_1, \dots, x_7) = p(x_1)p(x_2)p(x_3)p(x_4|x_1, x_2, x_3)$$

$$p(x_5|x_1,x_3)p(x_6|x_4)p(x_7|x_4,x_5)$$

Example: Graph Conversion

Step 4) Assigning the probabilities to clique potentials.



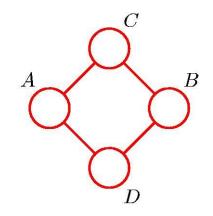
Comparison of Expressive Power

Both types of graphs have unique configurations.

$$A \not\perp\!\!\!\perp B \mid \emptyset$$

$$A \perp\!\!\!\!\perp B \mid C \cup D$$

$$C \perp\!\!\!\!\perp D \mid A \cup B$$



No directed graph can represent these and only these independencies.

$$A \perp \!\!\! \perp B \mid \emptyset$$

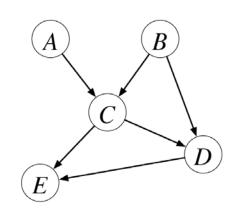
$$A \perp \!\!\! \perp B \mid C$$

No undirected graph can represent these and only these independencies.

Topics of This Lecture

- Recap: Directed Graphical Models (Bayesian Networks)
 - Factorization properties
 - Conditional independence
 - Bayes Ball algorithm
- Undirected Graphical Models (Markov Random Fields)
 - Conditional Independence
 - Factorization
 - Converting directed into undirected graphs
- Exact Inference in Graphical Models
 - Marginalization for undirected graphs
 - Inference on a chain
 - Inference on a tree
 - Message passing formalism

- Inference General definition
 - Evaluate the probability distribution over some set of variables, given the values of another set of variables (=observations).



Example:

$$p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D)$$

- How can we compute p(A|C=c) ?
- Idea:

$$p(A|C=c) = \frac{p(A,C=c)}{p(C=c)}$$

- Computing p(A|C=c)...
 - We know

$$p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D)$$

Assume each variable is binary.

Naïve approach: Two possible values for each ⇒ 2⁴ terms

$$p(A,C=c) = \sum_{B,D,E} p(A,B,C=c,D,E) \qquad \text{16 operations}$$

$$p(C=c) = \sum_{A} p(A, C=c)$$

$$p(A|C=c)=rac{p(A,C=c)}{p(C=c)}$$
 2 operations

Total: 16+2+2 = 20 operations

2 operations

We know

$$p(A, B, C, D, E) = p(A)p(B)p(C|A, B)p(D|B, C)p(E|C, D)$$

• More efficient method for p(A|C=c):

$$\begin{split} p(A,C=c) &= \sum_{B,D,E} p(A)p(B)p(C=c|A,B)p(D|B,C=c)p(E|C=c,D) \\ &= \sum_{B} p(A)p(B)p(C=c|A,B) \sum_{D} p(D|B,C=c) \sum_{E} p(E|C=c,D) \end{split}$$

$$= \sum_{B} p(A)p(B)p(C = c|A, B)$$

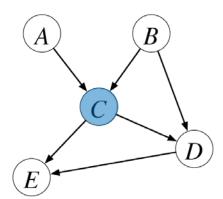
4 operations

- Rest stays the same:

Total: 4+2+2 = 8 operations

Couldn't we have got this result easier?

- Consider the network structure
 - Using what we know about factorization and conditional independence...

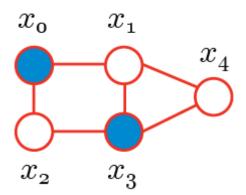


- Factorization properties:
 - There is no directed path from D or E to either A or C.
 - \Rightarrow We do not need to consider D and E.
- Conditional independence properties:
 - -C opens the path from A to B ("head-to-head").
 - \Rightarrow A is conditionally dependent on B given C.
 - \Rightarrow When querying for p(A,C=c), we only need to take into account A, B, and C=c.

$$p(A, C = c) = \sum p(A)p(B)p(C = c|A, B)$$

Computing Marginals

- How do we apply graphical models?
 - Given some observed variables, we want to compute distributions of the unobserved variables.
 - In particular, we want to compute marginal distributions, for example $p(x_4)$.



- How can we compute marginals?
 - Classical technique: sum-product algorithm by Judea Pearl.
 - In the context of (loopy) undirected models, this is also called (loopy) belief propagation [Weiss, 1997].
 - Basic idea: message-passing.

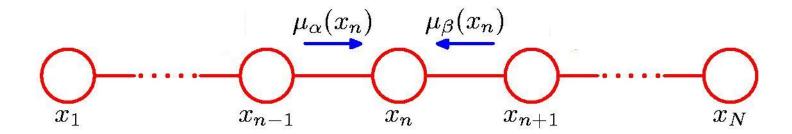
Chain graph

Joint probability

$$p(\mathbf{x}) = \frac{1}{Z} \psi_{1,2}(x_1, x_2) \psi_{2,3}(x_2, x_3) \cdots \psi_{N-1,N}(x_{N-1}, x_N)$$

Marginalization

$$p(x_n) = \sum_{x_1} \cdots \sum_{x_{n-1}} \sum_{x_{n+1}} \cdots \sum_{x_N} p(\mathbf{x})$$



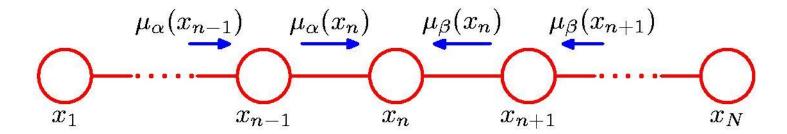
Idea: Split the computation into two parts ("messages").

$$p(x_n) = \frac{1}{Z} \left[\sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \cdots \left[\sum_{x_1} \psi_{1,2}(x_1, x_2) \right] \cdots \right]$$

$$\mu_{\alpha}(x_n)$$

$$\left[\sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \cdots \left[\sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N)\right] \cdots\right]$$

 $\mu_{\beta}(x_n)$



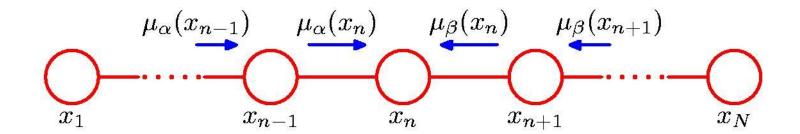
We can define the messages recursively...

$$\mu_{\alpha}(x_{n}) = \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_{n}) \left[\sum_{x_{n-2}} \cdots \right]$$

$$= \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_{n}) \mu_{\alpha}(x_{n-1}).$$

$$\mu_{\beta}(x_{n}) = \sum_{x_{n+1}} \psi_{n,n+1}(x_{n}, x_{n+1}) \left[\sum_{x_{n+2}} \cdots \right]$$

$$= \sum_{x_{n+1}} \psi_{n,n+1}(x_{n}, x_{n+1}) \mu_{\beta}(x_{n+1}).$$



Until we reach the leaf nodes...

$$\mu_{\alpha}(x_2) = \sum_{x_1} \psi_{1,2}(x_1, x_2)$$
 $\mu_{\beta}(x_{N-1}) = \sum_{x_N} \psi_{N-1,N}(x_{N-1}, x_N)$

- Interpretation
 - We pass messages from the two ends towards the query node x_n .
- We still need the normalization constant Z.
 - This can be easily obtained from the marginals:

$$Z = \sum \mu_{\alpha}(x_n)\mu_{\beta}(x_n)$$

Summary: Inference on a Chain

- To compute local marginals:
 - Compute and store all forward messages $\mu_{\alpha}(x_n)$.
 - Compute and store all backward messages $\mu_{\beta}(x_n)$.
 - Compute Z at any node x_m .
 - Compute

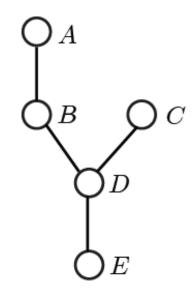
$$p(x_n) = \frac{1}{Z} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$$

for all variables required.

- Inference through message passing
 - We have thus seen a first message passing algorithm.
 - How can we generalize this?

Inference on Trees

- Let's next assume a tree graph.
 - Example:



– We are given the following joint distribution:

$$p(A, B, C, D, E) = \frac{1}{Z} f_1(A, B) \cdot f_2(B, D) \cdot f_3(C, D) \cdot f_4(D, E)$$

– Assume we want to know the marginal p(E)...

Inference on Trees

Strategy

 Marginalize out all other variables by summing over them.

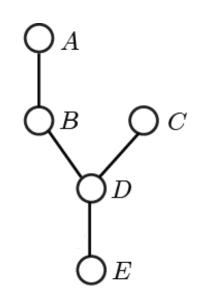
- Then rearrange terms:

$$p(E) = \sum_{A} \sum_{B} \sum_{C} \sum_{D} p(A, B, C, D, E)$$

$$= \sum_{A} \sum_{B} \sum_{C} \sum_{D} \frac{1}{Z} f_1(A, B) \cdot f_2(B, D) \cdot f_3(C, D) \cdot f_4(D, E)$$

$$= \frac{1}{Z} \left(\sum_{D} f_4(D, E) \cdot \left(\sum_{C} f_3(C, D) \right) \cdot \left(\sum_{B} f_2(B, D) \cdot \left(\sum_{A} f_1(A, B) \right) \right) \right)$$

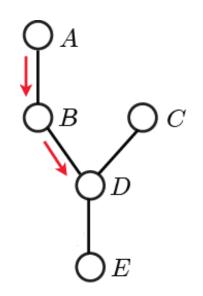
$$m_{A \to B} = \sum_{A}^{B} f_1(A, B)$$
 $m_{C \to D} = \sum_{C}^{B} f_3(C, D)$ $m_{B \to D} = \sum_{A}^{B} f_2(B, D) m_{A \to B}(B)$ $m_{D \to E} = \sum_{D}^{B} f_4(D, E) m_{B \to D}(D) m_{C \to D}(D)$



$$p(E) = \frac{1}{Z} \left(\sum_{D} f_4(D, E) \cdot \left(\sum_{C} f_3(C, D) \right) \cdot \left(\sum_{B} f_2(B, D) \cdot \left(\sum_{A} f_1(A, B) \right) \right) \right)$$

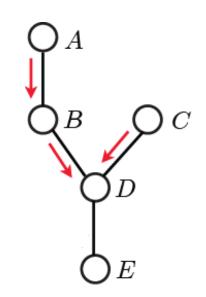
$$= \frac{1}{Z} \left(\sum_{D} f_4(D, E) \cdot \left(\sum_{C} f_3(C, D) \right) \cdot \left(\sum_{B} f_2(B, D) \cdot m_{A \to B}(B) \right) \right)$$

$$m_{A \to B} = \sum_{A} f_1(A, B)$$
 $m_{C \to D} = \sum_{C} f_3(C, D)$ $m_{B \to D} = \sum_{A} f_2(B, D) m_{A \to B}(B)$ $m_{D \to E} = \sum_{D} f_4(D, E) m_{B \to D}(D) m_{C \to D}(D)$



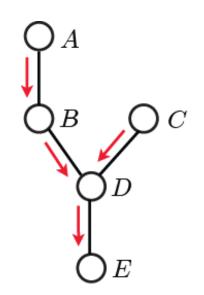
$$p(E) = \frac{1}{Z} \left(\sum_{D} f_4(D, E) \cdot \left(\sum_{C} f_3(C, D) \right) \cdot \left(\sum_{B} f_2(B, D) \cdot \left(\sum_{A} f_1(A, B) \right) \right) \right)$$
$$= \frac{1}{Z} \left(\sum_{D} f_4(D, E) \cdot \left(\sum_{B} f_3(C, D) \right) \cdot m_{B \to D}(D) \right)$$

$$m_{A\to B} = \sum_{A} f_1(A, B)$$
 $m_{C\to D} = \sum_{C} f_3(C, D)$
 $m_{B\to D} = \sum_{A} f_2(B, D) m_{A\to B}(B)$
 $m_{D\to E} = \sum_{D} f_4(D, E) m_{B\to D}(D) m_{C\to D}(D)$



$$p(E) = \frac{1}{Z} \left(\sum_{D} f_4(D, E) \cdot \left(\sum_{C} f_3(C, D) \right) \cdot \left(\sum_{B} f_2(B, D) \cdot \left(\sum_{A} f_1(A, B) \right) \right) \right)$$
$$= \frac{1}{Z} \left(\sum_{D} f_4(D, E) \cdot m_{C \to D}(D) \cdot m_{B \to D}(D) \right)$$

$$m_{A \to B} = \sum_{A} f_1(A, B)$$
 $m_{C \to D} = \sum_{C} f_3(C, D)$
 $m_{B \to D} = \sum_{B} f_2(B, D) m_{A \to B}(B)$
 $m_{D \to E} = \sum_{D} f_4(D, E) m_{B \to D}(D) m_{C \to D}(D)$

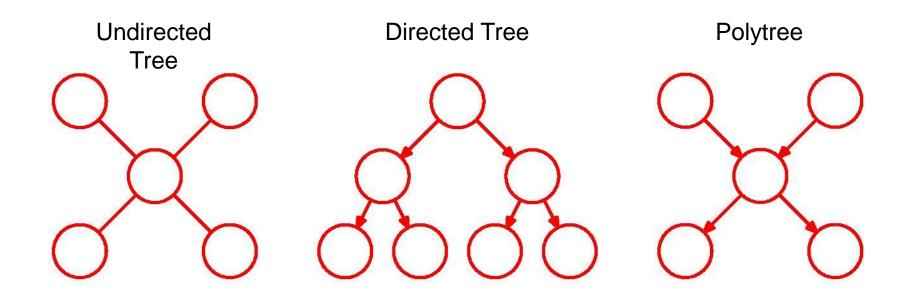


$$p(E) = \frac{1}{Z} \left(\sum_{D} f_4(D, E) \cdot \left(\sum_{C} f_3(C, D) \right) \cdot \left(\sum_{B} f_2(B, D) \cdot \left(\sum_{A} f_1(A, B) \right) \right) \right)$$
$$= \frac{1}{Z} m_{D \to E}(E)$$

Inference on Trees

- We can generalize this for all tree graphs.
 - Root the tree at the variable that we want to compute the marginal of.
 - Start computing messages at the leaves.
 - Compute the messages for all nodes for which all incoming messages have already been computed.
 - Repeat until we reach the root.
- If we want to compute the marginals for all possible nodes (roots), we can reuse some of the messages.
 - Computational expense linear in the number of nodes.

Trees - How Can We Generalize?



- Next lecture
 - Formalize the message-passing idea
 - Common representation of the above
 - Deal with loopy graphs structures
- ⇒ Sum-product algorithm
- ⇒ Factor graphs
- ⇒ Junction tree algorithm

References and Further Reading

 A thorough introduction to Graphical Models in general and Bayesian Networks in particular can be found in Chapter 8 of Bishop's book.

Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006

