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Recap: Undirected Graphical Models

+ Undirected graphical models (“Markov Random Fields”)
— Given by undirected graph

+ Conditional independence for undirected graphs
— If every path from any node in set A to set B passes through at least
one node in set C, then A LB,
— Simple Markov blanket:
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Recap: Factorization in MRFs

* Role of the potential functions

— General interpretation
= No restriction to potential functions that have a specific probabilistic
interpretation as marginals or conditional distributions.

— Convenient to express them as exponential functions (“Boltzmann
distribution”)

Yo(xc) = exp{—E(xc)}
= with an energy function E.
— Why is this convenient?

= Joint distribution is the product of potentials = sum of energies.
= We can take the log and simply work with the sums...
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Course Outline

* Regression Techniques
— Linear Regression
— Regularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabilistic Graphical Models
— Bayesian Networks
— Markov Random Fields
— Inference (exact & approximate)

» Deep Generative Models | = - -
- Generative Adversarial Networks -[:qmﬁ;] Iz} chxﬂ -
— Variational Autoencoders - ol )

Recap: Factorization in MRFs

« Joint distribution
— Written as product of potential functions over maximal cliques in the

raph:
o p(x) = 2 [T victx)
C

— The normalization constant Z is called the partition function.

Z=> [l¢cxo)
* Remarks x ¢

— BNs are automatically normalized. But for MRFs, we have to explicitly
perform the normalization.

— Presence of normalization constant is major limitation!
= Evaluation of Z involves summing over O(K™) terms for M nodes!
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Recap: Converting Directed to Undirected Graphs

« Problematic case: multiple parent

x x3 xr T3
&2
—_—
Fully connected,
no cond. indep.!
T4 T4
p(x) = plz)ple:)plaes)plzy|e;. w2, 23)
_

Need a clique of z,,...,z, to represent this factor!

— Need to introduce additional links (“marry the parents”).
= This process is called moralization. It results in the moral graph.
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Recap: Conversion Algorithm

» General procedure to convert directed — undirected
1. Add undirected links to marry the parents of each node.
2. Drop the arrows on the original links =
3. Find maximal cliques for each node and initialize aII clique
potentials to 1.
4. Take each conditional distribution factor of the original directed
graph and multiply it into one clique potential.

* Restriction
— Conditional independence properties are often lost!
— Moralization results in additional connections and larger cliques.
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Computing Marginals

* How do we apply graphical models?
— Given some observed variables,
we want to compute distributions
of the unobserved variables.
— In particular, we want to compute
marginal distributions, for example p(z,).

« How can we compute marginals?
— Classical technique: sum-product algorithm by Judea Pearl.
— In the context of (loopy) undirected models, this is also called (loopy)
belief propagation [Weiss, 1997].
— Basic idea: message-passing.

Inference on a Chain

* Chain graph

i E) TN -1 TN
— Joint probability
1 ) .
plx) = EL-‘»‘1.2(-‘£1‘-‘F‘z)b'fw(-‘rz.-f&) sy N (@N-1,TN)
— Marginalization

plzn) Z Zz-'gpm

Tyl Tngl
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Inference on a Chain

Hal@n)  p(@n)

a1 Tn—1 Tn Tt TN

— Idea: Split the computation into two parts (“messages”).

plzn) = % Z Yr-1,0(Tn—1,Tn) - Z ‘5’1.2(‘4"1--‘1-‘2)}

Pt
Hal(Tn)
Z b1 (Tny Tnt1) [Z(‘A—l N{TN-1,ZN )]
Tt
fa(en)

Inference on a Chain

tal@n-1)  pal®n)  pplEn)  pg(@nin)

& Tn-1 Tn Tni1 TN

— We can define the messages recursively...

pale) = 3 tralenriwa) | 30

Tnoz

3 tnctn(Enms 20 alEnor).

palam) = 3 Unast(Fastasn) [ 3 o

Tuy1 Tnia

= Z Vi1 (Tns g1 ) s (@)

o
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Inference on a Chain

Ha(@n-1)  palTn)  ppl@n)  pp(@nia)

7 Tn—1 Tn Tni1 TN
— Until we reach the leaf nodes...
,u,,ia ZUIQ U 32) .Uff 1—'\47[ szfl\ (Tn_1. -T'\')

— Interpretation
= We pass messages from the two ends towards the query node ,,.

— We still need the normalization constant Z.
= This can be easily obtained from the marginals:

2= pal(ra)ps(n)
RWTH

z,
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Summary: Inference on a Chain

* To compute local marginals:
— Compute and store all forward messages j,(x,,).
— Compute and store all backward messages i4(,,).
— Compute Z at any node ,,.
— Compute

1
p(mnj = Ef—"‘u(xn)ﬁ"‘ﬁ(fn)
for all variables required.
* Inference through message passing

— We have thus seen a first message passing algorithm.
— How can we generalize this?
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Inference on Trees

* Strategy
— Marginalize out all other variables by
summing over them.

- Then rearrange terms:

pE)=3"3"S">"p(4,B,C,D, E)

A B C D

=YY 2AAB) 1(B.D) (G, D) fi(D. E)

A B C D

- %(; H(D,B)- (; h(C, D)) » (; f2(B, D)- (; A4, B))))
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Marginalization with Messages

» Use messages to express the marginalization:
masp =Y fi(AB)  mo.p=) fs(C,D)
A c

Mmp—p = Zf?(B7 D)mAHB(B)

B
mpop =y f1(D, EYmp_p(D)me—n(D)
D

P(E) = %(Z h(D,E). (Z e D>> - <Z £ (B, D). (Z (A, B)))
D C B A

- %(Z (D, B). (Z (G, D)) -mmnw))

(e}
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Inference on Trees

« Let's next assume a tree graph.
— Example:

— We are given the following joint distribution:
1
p(4,B,C,D,E) = 7}”1(147 B) - f2(B, D) - f3(C, D) - fa(D, E)

— Assume we want to know the marginal p(E)...
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Marginalization with Messages

» Use messages to express the marginalization:
masp=3_ f(AB) mc.p=)Y fs(C,D)
A C

Mpp = Z f2(B, D)yma_,p(B)
B

MpoE = Zf4(D7 E)mp_.p(D)mc—p(D)
D

P(E) = %(Z £(D, B). <Z e D)) : (Z £(B,D). (Z h(A, B)>>
D (e} B A

- %(Z 1D B)- (Z 5(e, D)) : (Z 12(B, D)- mA*B(B)»
D c B
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Marginalization with Messages

» Use messages to express the marginalization:
masp =Y fi(d,B) moup=) f3(C,D)
A C

Mpp = Z f2(B, D)yma_,p(B)

B
MpoE = Zf4(D7 E)mp_.p(D)mc—p(D)
D

P(E) = %(Z £(D, B). <Z e D)) : (Z £(B,D). (Z h(A, B)>>
D (e} B A

= %(Z Ji(D. By e (D). mBADw))
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Marginalization with Messages

» Use messages to express the marginalization:
masp =Y fi(AB)  mo.p=) fs(C,D) |
A c

Mmp—p = Zf?(B7 D)mAHB(B)

B
Mmpg = Z fa(D, EYmp_,p(D)mc_p(D)
D

ME%:%@:&UIE)CDﬁKIDO-@:huiD%CSfﬂABg)
D C B A

1
Z
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mp_p(E)

How Can We Generalize This?

Undirected Directed Tree Polytree
Tree

Fo b

* Message passing algorithm motivated for trees.
— Now: generalize this to directed polytrees.
— We do this by introducing a common representation
= Factor graphs
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Factor Graphs

* Motivation
— Joint probabilities on both directed and undirected graphs can be
expressed as a product of factors over subsets of variables.
— Factor graphs make this decomposition explicit by introducing separate
nodes for the factors. =, s 3

Regular nodes

Factor nodes
fa i fe fa

— Joint probability
plx) = EJ"u(-"w vxg) fulxy, o) folwa, w3) falxs)

= ST

ide adaoted from Chris Bishop lmage source. C_Bishop 200«

Summary: Message Passing on Trees

« General procedure for all tree graphs.
— Root the tree at the variable that we want
to compute the marginal of.
— Start computing messages at the leaves.
— Compute the messages for all nodes for which all
incoming messages have already been computed.
— Repeat until we reach the root.

E
« If we want to compute the marginals for all possible node
(roots), we can reuse some of the messages.
— Computational expense linear in the number of nodes.

« We already motivated message passing for inference.
— How can we formalize this into a general algorithm?
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Topics of This Lectu

« Factor graphs
— Construction
— Properties

« Sum-Product Algorithm for computing marginals
— Key ideas
— Derivation
— Example

* Max-Sum Algorithm for finding most probable value
— Key ideas
— Derivation
— Example

« Algorithms for loopy graphs
— Junction Tree algorithm
— Loopy Belief Propagation
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Factor Graphs from Directed Graphs

z £ a1 T2
I
£ T3
p(x) = ple)plea)  flay e, 2) = falan) = pla)
plas|ey, @) pla)plea)p(sler, v2) Tolxz) = plaz)
« Conversion procedure felwn,w2,ms) = plag|ey, z2)

1. Take variable nodes from directed graph.
2. Create factor nodes corresponding to conditional distributions.
3. Add the appropriate links.

= Different factor graphs possible for same directed graph.
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Factor Graphs ndirected Graphs Factor Graphs — Why Are They Needed?

YN N ™ N SR N
Q —( (O )

\ / \ /

\ / \ /

N/
)
NS vy
» Converting a directed or undirected tree to factor graph
3) — The result will again be a tree.

» Some factor graphs for the same undirected graph:

I .
[
} M N
/ T u
/ ™
) A

@) T2 @ T @ o - A L
N
— — NS )
4 - ‘) } () (Y ' )
Y Py ey — M A
\ / \ / l
\ / \ /
fo / N/
-y P N
% ra % O Q) @,

Wiy, g, ) Fley, . 23) Sal@r, va, 23) fles,
wlxy, w2, 25) = (g, 20, a3) . .

« Converting a directed polytree
— Conversion to undirected tree creates loops due to moralization!

= The factor graph keeps the factors explicit and can thus convey more
— Conversion to a factor graph again results in a tree.

detailed information about the underlying factorization!
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Topics of This Lecture Sum-Product Algorithm

» Objectives
— Efficient, exact inference algorithm for finding marginals.
— In situations where several marginals are required, allow computations

to be shared efficiently.

* Sum-Product Algorithm for computing marginals

— Key ideas L
— Derivation  General form of message-passing idea
— Example — Applicable to tree-structured factor graphs.

= Original graph can be undirected tree or directed tree/polytree.

« Key idea: Distributive Law
ab+ac=a(b+c)
= Exchange summations and products exploiting the tree structure

of the factor graph.
— Let's assume first that all nodes are hidden (no observations).
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ne(z): neighbors of .

Sum-Product Algorithm Sum-Product Algorithm

ne(z): neighbors of .

= <
& <
* Goal: « Marginal:
~ Compute marginal for z: p(z) = ZP(X) p@)=Y [] Fl=X)
x\z Xs sene(x)
— Tree structure of graph allows us to partition the joint distrib. into groups — Exchanging products and sums:
associated with each neighboring factor node:
plx) = H ZJ“,(:::. X,):| = H fy, e (x)

p(x)= H FN(:D!XH) sene(x) L X, sEne(x)

sene(x)
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Sum-Product Algorithm

ILI. ‘fﬁ(a:)
—_

Fy(z, X,)

. Marginal'

ZHFIX

X sene(z)

— Exchanging products and sums:

)= ] [Zi‘;(.l:.)(,)}: I

sene(a) L X, sEne(.
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This defines a first type
of message Mfsau;(z)

Ha(®) = ZF5<I, X,)

X

-

6

Image squrce: C. Bishop, 200

G (Tm, Xam)

« Evaluating the messages:
— Thus, we can write

pele) = 3 X
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Sum-Product Algorithm

LM H

Y mene(f.)\z
Z Stdwanan) I e tom)

x mene( f.)\z
RWTH

First message type:

)= Fue, X,)

H—a(T

[Z G (@, Xom)

lmage souce: C, Bishon, 200

fr

fi
Fi(@m, Xt}
* Recursive message evaluation:

E G (Tm, Xsm)

#zmafe l'm

— Exchanging sum and product, we again get

Sum-Product Algorithm

Recursive definition:
Bfi—xm (Tm) = Z Fi(Tm, Xom)

Is

Each term G, (z,,,, X,,,)
is again given by a product

Cn(@m, Xom) = [] Fi(@m, X

lene(zm)\fs

Z Il Fm Xm)

Xom l€ne(zm)\fs

H Hofi—sa (Tm)

L€ne(zm)\fs
HWTH

Sum-Product Algorithm

First message type:

=Y Fi(x,X,)

K= ()

G (Tm, Xam)
« Evaluating the messages:
- Each factor F,(z,X,) is again described by a factor (sub-)graph.
= Can itself be factorized:

Fs(rva):fs(z’xlyﬂ' ‘GM(ZMyst)

,2m)G (21, Xo1) - -

(9 e | VI

Image source: C., Bishop, 2001

e ' [pn—
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Sum-Product Algorithm

First message type:

=Y Fi(x,X,)

Hfo—a(T)

Tm Second message type:
G (Zoms Xam) ta s, () = Y Gon(Tmy Xom)
Xam

« Evaluating the messages:
— Thus, we can write

jLaa— Z Zf,. EEY ) H

Zn mene(f,)\x

Z S felwarcaa) T e (o)

Zn mene(f.)\®
RWTH
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Sum-Product Algorithm — Summary

« Two kinds of messages
— Message from factor node to variable nodes:

= Sum of factor contributions
= ZF z, X,)

*Zfs Xs) H Ha,— fo (Tm)

méene(fs)\z
— Message from variable node to factor node:
= Product of incoming messages

1t —a(T)

M»Lmaf& Im = H Hfi =z, zm)
lene(zm)\ fs

= Simple propagation scheme.
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Sum-Product Algorithm

* Initialization
— Start the recursion by sending out messages from the leaf nodes

o () =1 pral@) = J(z)

* Propagation procedure
— A node can send out a message once it has received incoming
messages from all other neighboring nodes.
— Once a variable node has received all messages from its neighboring
factor nodes, we can compute its marginal by multiplying all messages

and renormalizing:
(@) o [ pramsale)

sEne(a)
Vil Compting stiute| rc, . Basn Lebe
Naanc o kg Loarng
o Grapucs Modem
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Sum-Product: Example

T T2 T3

Picking z, as root...
= x, and z, are leaves.

Unnormalized joint distribution:
P(x) = falrr, z2) fow2, 23) fol@2, 24)

* We want to compute the values of all marginals...
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Sum-Product: Example

Message definitions:

A R I . Hra(@) = D7 Fu(xe) [T theosr, (@)
X,

mene(f.)\z

tas@n) = T s, (@)

lene(za)\fu

l'-"ﬂ']ﬂf,.(ﬂ'l) 1
Pfa—wa(@2) = Zfa(«rw.xg)

Hoy—f(Ta) =

1
A pras(m2) = 3 folwa,a)

Py f(T2) = g, —as (T2)f s (12)

Bf—ra(@s) = > fulw, 23y p, (22)

lmage souce: C, Bishon, 200

Sum-Product Algorithm — Summary

» To compute local marginals:

— Pick an arbitrary node as root.

— Compute and propagate messages from the leaf nodes to the root,
storing received messages at every node.

— Compute and propagate messages from the root to the leaf nodes,
storing received messages at every node.

— Compute the product of received messages at each node for which
the marginal is required, and normalize if necessary.

» Computational effort
— Total number of messages =2 - number of links in the graph.
— Maximal parallel runtime =2 - tree height.
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Sum-Product: Example

Message definitions:
prse@) = 3 folx) ] panss. (@)
X,

mene(f.)\e

4 T T3

tanssa(@n) = T e ()

Iene(z)\f.

fo

Mg (@) = 1
Pfamae(T) = D falwr,m)

fay—g () = 1
ffoelT) = Y folwa,za)

T4

l"ﬂ?aafu(‘?) = Hfs—z2 (*“2)“‘!. —z2 (IQ)
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Sum-Product: Example

Message definitions:
prse@) = 3 folx) [T panss. (@)
X,

mene(f.)\e

4 T T3

tanssa(@n) = T e ()

Iene(z)\f.

fo

#r:cﬂh(w:}) =1
Hfy—as(T2) = Z.fﬁ(IQ‘Ia)

Pas—sfn(T2) = pfyms (T2)phf sz (22)

Poem(@) = 3 fuler z2lies o (r2)

Hag—r(@2) = pp,—ao(@2) g —as (02)

=
Visual Computing nstitut | Prof.Or . Basan Loibe RWTH
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Sum-Product: Example

Message definitions:
@) = 0 fox) [T s (@)
X,

mene(f.)\z

oo (@m) = [ tpimen (@m)

lene(za)\fu

.u';r:g—~fr.(-173) =1
Pfy—ze(T2) = Z.fn(l“mm)

Hag—fa(T2) = ffysay (T2) s, o (T2)

,'J.f“ﬁrl(:r:l) = Efﬂ(:r:l,:i:ﬁﬂmﬁf”(:r:z)

Pag—r(@2) = prp, ey (T2 )y (02)

Pz (2a) = Y fel@n, 2a)pay—y, (22)

Image squrce: C. Bishop, 200

i

* Further generalizations

continuous variable distributions, e.g. linear-Gaussian variables.

Sum-Product Algorithm — Extensions

* Dealing with observed nodes

Until now we had assumed that all nodes were hidden...
Observed nodes can easily be incorporated:

= Partition x into hidden variables h and observed variables v = ¥.
= Simply multiply the joint distribution p(x) by
N 1, ifv;, =10
HI(U@,?},‘) where I(’()i”f)i) = ’ i i

; 0, else.
= Any summation over variables in v collapses into a single term.

So far, assumption that we are dealing with discrete variables.
But the sum-product algorithm can also be generalized to simple
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— Value x™* that maximises p(x);
- Value of p(x™),

— Example:
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Max-Sum Algorithm

bjective: an efficient algorithm for finding

Application of dynamic programming in graphical models.

general, maximum marginals # joint maximum.

argmaxp(z,y) =1 arg max p(x) = 0
* x

Sum-Product: Example

Message definitions:

4 T T3

mene(f)\e

tanssa(@n) = 1] s ()

Iene(z)\f.

() = 30 £u0) TL stenoos, ()
X,

Verify that marginal is correct:
Ples) = pp,—ea(w2)pty—zo (22 g, — 20 (202)

= [Zﬁx(ﬁl.xz)} [quJ(J'z.T:s)}
rten]

T4

= 233
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= z Z Z falz1, 22) fol@a, a3) fe(w2, 1)

Topics of This Lectu

* Max-Sum Algorithm for finding most probable value
— Key ideas
— Derivation
— Example

(9 o
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Max-Sum Algorithm — Key Ideas

« Key idea 1: Distributive Law (again)
max(ab,ac) = amax(b,c)
max(a+b,a+c¢) = a+ max(b,c)

= Exchange products/summations and max operations exploiting the
tree structure of the factor graph.

Key idea 2: Max-Product — Max-Sum
— We are interested in the maximum value of the joint distribution

PO™) = max p(x)

x
= Maximize the product p(x).
— For numerical reasons, use the logarithm.
In (max-p(x)) = max In p(x).

x x

— Maximize the sum (of log-probabilities).




Max-Sum Algorithm

+ Maximizing over a chain (max-product)

+ Exchange max and product operators

P(x™) = max p(x) = max. .. max p(x)
x r1 T
1 .
= —max---max [Py oz, 22) -y v(En o1, 2n)]
Z = an
1 , ,
= — max |max |t 2(zy, ) |- maxty_y N(Tn_1,Zx)| -
Z = zy N

+ Generalizes to tree-structured factor graph
max p(x) = max H max fo(z,, Xs)
x T Xe

f.€nelz,)
RWTH

Visual Computing Institute | Prof. Dr . Bastian Leibe
Advanced Machine Learning [
Part 8 - Graphical Modeis Il =
ide adapted from Chris Bishop lmage source: C_Bishop, 2001

Max-Sum Algorithm

« Termination (root node)
— Score of maximal configuration

pra = m;er|i Z ,u.fvﬁw(:r}j|

sEne(z)
— Value of root node variable giving rise to that maximum
M = arg max el
gy [ > r(')]
sEne(r)
— Back-track to get the remaining variable values

a2 = ¢an™)

Max-Sum Algorithm

« Initialization (leaf nodes)
fo—ypla) =0 ptj—r (i) = ln flir)

* Recursion
— Messages
Bioalz) = J.llqufC,, |:ln.f(.r,;x1‘..‘.3‘.w) + Z uT”Hf(r,,,)]

mene( f.)\&

pomr(z) = N ppa(e)
1ene(z)\ f
— For each node, keep a record of which values of the variables gave rise

to the maximum state:
¢(xr) = argmax [Inf(z,2y,...,20) + Z fhrp—f ()
T mene(f.)\x
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« Athorough introduction to Graphical Models in general and
Bayesian Networks in particular can be found in Chapter 8 of
Bishop’s book.

Christopher M. Bishop

Pattern Recognition and Machine Learning &}
Springer, 2006
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Visualization of the Back-Tracking Procedure

« Example: Markov chain

k ID D D...

/ stored links

states

k=3
n-—2 n—1 n n+1

variables

= Same idea as in Viterbi algorithm for HMMs...

ide adanted from Chris Bishon, lmage source. C_Bishop 2008




