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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Recap: Undirected Graphical Models

• Undirected graphical models (“Markov Random Fields”)
 Given by undirected graph

• Conditional independence for undirected graphs

 If every path from any node in set A to set B passes through at least 

one node in set C, then              . 

 Simple Markov blanket:

Image source: C. Bishop, 2006
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Recap: Factorization in MRFs

• Joint distribution
 Written as product of potential functions over maximal cliques in the 

graph:

 The normalization constant Z is called the partition function.

• Remarks
 BNs are automatically normalized. But for MRFs, we have to explicitly 

perform the normalization.

 Presence of normalization constant is major limitation!

 Evaluation of Z involves summing over O(KM) terms for M nodes!

p(x) =
1

Z

Y

C

ÃC(xC)

Z =
X

x

Y

C

ÃC(xC)
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Recap: Factorization in MRFs

• Role of the potential functions
 General interpretation

 No restriction to potential functions that have a specific probabilistic 

interpretation as marginals or conditional distributions.

 Convenient to express them as exponential functions (“Boltzmann 

distribution”)

 with an energy function E.

 Why is this convenient?

 Joint distribution is the product of potentials  sum of energies.

 We can take the log and simply work with the sums…

5

ÃC(xC) = expf¡E(xC)g
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• Problematic case: multiple parents

 Need to introduce additional links (“marry the parents”).

 This process is called moralization. It results in the moral graph.

Image source: C. Bishop, 2006

Need a clique of x1,…,x4 to represent this factor!

Fully connected,

no cond. indep.!

Slide adapted from Chris Bishop

Recap: Converting Directed to Undirected Graphs
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• General procedure to convert directed  undirected
1. Add undirected links to marry the parents of each node.

2. Drop the arrows on the original links  moral graph.

3. Find maximal cliques for each node and initialize all clique

potentials to 1.

4. Take each conditional distribution factor of the original directed 

graph and multiply it into one clique potential.

• Restriction
 Conditional independence properties are often lost!

 Moralization results in additional connections and larger cliques.

Slide adapted from Chris Bishop

Recap: Conversion Algorithm
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Computing Marginals

• How do we apply graphical models?
 Given some observed variables, 

we want to compute distributions

of the unobserved variables.

 In particular, we want to compute 

marginal distributions, for example p(x4).

• How can we compute marginals?
 Classical technique: sum-product algorithm by Judea Pearl.

 In the context of (loopy) undirected models, this is also called (loopy) 

belief propagation [Weiss, 1997].

 Basic idea: message-passing.

Slide credit: Bernt Schiele, Stefan Roth
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Inference on a Chain

• Chain graph

 Joint probability

 Marginalization

Image source: C. Bishop, 2006Slide adapted from Chris Bishop
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Inference on a Chain

 Idea: Split the computation into two parts (“messages”).

Image source: C. Bishop, 2006Slide adapted from Chris Bishop
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Inference on a Chain

 We can define the messages recursively…

Image source: C. Bishop, 2006Slide adapted from Chris Bishop
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Inference on a Chain

 Until we reach the leaf nodes…

 Interpretation

 We pass messages from the two ends towards the query node xn.

 We still need the normalization constant Z.

 This can be easily obtained from the marginals:

Image source: C. Bishop, 2006
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Summary: Inference on a Chain

• To compute local marginals:

 Compute and store all forward messages ¹®(xn).

 Compute and store all backward messages ¹¯(xn).

 Compute Z at any node xm.

 Compute

for all variables required.

• Inference through message passing
 We have thus seen a first message passing algorithm.

 How can we generalize this?

Slide adapted from Chris Bishop
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Inference on Trees

• Let’s next assume a tree graph.
 Example:

 We are given the following joint distribution:

 Assume we want to know the marginal p(E)…

Slide credit: Bernt Schiele, Stefan Roth

p(A;B;C;D;E) = ?p(A;B;C;D;E) =
1

Z
f1(A;B) ¢ f2(B;D) ¢ f3(C;D) ¢ f4(D;E)
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Inference on Trees

• Strategy
 Marginalize out all other variables by 

summing over them.

 Then rearrange terms:

p(E) =
X

A

X

B

X

C

X

D

p(A;B;C;D;E)

Slide credit: Bernt Schiele, Stefan Roth

=
X

A

X

B

X

C

X

D

1

Z
f1(A;B) ¢ f2(B;D) ¢ f3(C;D) ¢ f4(D;E)

=
1
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Marginalization with Messages

• Use messages to express the marginalization:

mA!B =
X

A

f1(A;B)

Slide credit: Bernt Schiele, Stefan Roth

p(E) =
1

Z
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X

C
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Marginalization with Messages

• Use messages to express the marginalization:

p(E) =
1

Z
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Slide credit: Bernt Schiele, Stefan Roth
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Marginalization with Messages

• Use messages to express the marginalization:

p(E) =
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Slide credit: Bernt Schiele, Stefan Roth
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Marginalization with Messages

• Use messages to express the marginalization:
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Slide credit: Bernt Schiele, Stefan Roth
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Summary: Message Passing on Trees

• General procedure for all tree graphs.
 Root the tree at the variable that we want 

to compute the marginal of.

 Start computing messages at the leaves.

 Compute the messages for all nodes for which all
incoming messages have already been computed.

 Repeat until we reach the root.

• If we want to compute the marginals for all possible nodes 
(roots), we can reuse some of the messages.
 Computational expense linear in the number of nodes.

• We already motivated message passing for inference.
 How can we formalize this into a general algorithm? 

Slide credit: Bernt Schiele, Stefan Roth
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How Can We Generalize This?

• Message passing algorithm motivated for trees.
 Now: generalize this to directed polytrees.

 We do this by introducing a common representation

 Factor graphs

Undirected 

Tree

Directed Tree Polytree

Image source: C. Bishop, 2006
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Topics of This Lecture

• Factor graphs
 Construction
 Properties

• Sum-Product Algorithm for computing marginals
 Key ideas
 Derivation
 Example

• Max-Sum Algorithm for finding most probable value
 Key ideas
 Derivation
 Example

• Algorithms for loopy graphs
 Junction Tree algorithm
 Loopy Belief Propagation
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Factor Graphs

• Motivation
 Joint probabilities on both directed and undirected graphs can be 

expressed as a product of factors over subsets of variables.

 Factor graphs make this decomposition explicit by introducing separate 

nodes for the factors.

 Joint probability

Regular nodes

Factor nodes

Image source: C. Bishop, 2006Slide adapted from Chris Bishop
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Factor Graphs from Directed Graphs

• Conversion procedure
1. Take variable nodes from directed graph.

2. Create factor nodes corresponding to conditional distributions.

3. Add the appropriate links.

 Different factor graphs possible for same directed graph.

Image source: C. Bishop, 2006Slide adapted from Chris Bishop
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Factor Graphs from Undirected Graphs

• Some factor graphs for the same undirected graph:

 The factor graph keeps the factors explicit and can thus convey more 

detailed information about the underlying factorization!

Image source: C. Bishop, 2006Slide adapted from Chris Bishop
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Factor Graphs – Why Are They Needed?

• Converting a directed or undirected tree to factor graph
 The result will again be a tree.

• Converting a directed polytree
 Conversion to undirected tree creates loops due to moralization!

 Conversion to a factor graph again results in a tree.

Image source: C. Bishop, 2006
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Topics of This Lecture

• Factor graphs
 Construction

 Properties

• Sum-Product Algorithm for computing marginals
 Key ideas

 Derivation

 Example

• Max-Sum Algorithm for finding most probable value
 Key ideas

 Derivation

 Example

• Algorithms for loopy graphs
 Junction Tree algorithm

 Loopy Belief Propagation
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Sum-Product Algorithm

• Objectives
 Efficient, exact inference algorithm for finding marginals.

 In situations where several marginals are required, allow computations 

to be shared efficiently.

• General form of message-passing idea
 Applicable to tree-structured factor graphs.

 Original graph can be undirected tree or directed tree/polytree.

• Key idea: Distributive Law

 Exchange summations and products exploiting the tree structure 

of the factor graph.

 Let’s assume first that all nodes are hidden (no observations).

ab+ ac= a(b+ c)

Slide adapted from Chris Bishop
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Sum-Product Algorithm

• Goal: 
 Compute marginal for x:

 Tree structure of graph allows us to partition the joint distrib. into groups 

associated with each neighboring factor node:

p(x) =
X

xnx

p(x)

ne(x): neighbors of x.

Image source: C. Bishop, 2006Slide adapted from Chris Bishop
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Sum-Product Algorithm

• Marginal:

 Exchanging products and sums: 

p(x) =
X

Xs

Y

s2ne(x)

Fs(x;Xs)

ne(x): neighbors of x.

Image source: C. Bishop, 2006Slide adapted from Chris Bishop
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Sum-Product Algorithm

• Marginal:

 Exchanging products and sums: 

This defines a first type

of message                :¹fs!x(x)

¹fs!x(x) ´
X

Xs

Fs(x;Xs)

Image source: C. Bishop, 2006

p(x) =
X

Xs

Y

s2ne(x)

Fs(x;Xs)



35
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 9 – Graphical Models III

Sum-Product Algorithm

• Evaluating the messages:

 Each factor Fs(x,Xs) is again described by a factor (sub-)graph.

 Can itself be factorized:

Fs(x;Xs) = fs(x;x1; : : : ; xM)G1 (x1;Xs1) : : :GM (xM;XsM)

Image source: C. Bishop, 2006Slide adapted from Chris Bishop

First message type:

¹fs!x(x) ´
X

Xs

Fs(x;Xs)
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Sum-Product Algorithm

• Evaluating the messages:
 Thus, we can write

Image source: C. Bishop, 2006Slide adapted from Chris Bishop

First message type:

¹fs!x(x) ´
X

Xs

Fs(x;Xs)
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Sum-Product Algorithm

• Evaluating the messages:
 Thus, we can write

Second message type:

¹xm!fs(xm) ´
X

Xsm

Gm(xm;Xsm)

First message type:

¹fs!x(x) ´
X

Xs

Fs(x;Xs)

Image source: C. Bishop, 2006
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Sum-Product Algorithm

• Recursive message evaluation:
 Exchanging sum and product, we again get

¹xm!fs(xm) ´
X

Xsm

Gm(xm;Xsm) =
X

Xsm

Y

l2ne(xm)nfs

Fl(xm;Xml)

Each term Gm(xm, Xsm)
is again given by a product

Gm(xm;Xsm) =
Y

l2ne(xm)nfs

Fl(xm;Xml)

=
Y

l2ne(xm)nfs

¹fl!xm(xm)

¹fl!xm(xm) ´
X

Xsm

Fl(xm;Xsm)

Recursive definition:

Image source: C. Bishop, 2006
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Sum-Product Algorithm – Summary

• Two kinds of messages
 Message from factor node to variable nodes: 

 Sum of factor contributions

 Message from variable node to factor node: 

 Product of incoming messages

 Simple propagation scheme.

¹fs!x(x) ´
X

Xs

Fs(x;Xs)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

=
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)
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Sum-Product Algorithm

• Initialization
 Start the recursion by sending out messages from the leaf nodes

• Propagation procedure
 A node can send out a message once it has received incoming 

messages from all other neighboring nodes.

 Once a variable node has received all messages from its neighboring

factor nodes, we can compute its marginal by multiplying all messages 

and renormalizing:

Image source: C. Bishop, 2006
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Sum-Product Algorithm – Summary

• To compute local marginals:
 Pick an arbitrary node as root.

 Compute and propagate messages from the leaf nodes to the root, 

storing received messages at every node.

 Compute and propagate messages from the root to the leaf nodes, 

storing received messages at every node.

 Compute the product of received messages at each node for which 

the marginal is required, and normalize if necessary.

• Computational effort
 Total number of messages = 2 ¢ number of links in the graph.

 Maximal parallel runtime = 2 ¢ tree height.

Slide adapted from Chris Bishop
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Sum-Product: Example

• We want to compute the values of all marginals…

Unnormalized joint distribution:

Picking x3 as root…

 x1 and x4 are leaves.fa fb

fc

Image source: C. Bishop, 2006Slide adapted from Chris Bishop
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Sum-Product: Example

¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions:

fa fb

fc

Image source: C. Bishop, 2006Slide adapted from Chris Bishop
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Sum-Product: Example

fa fb

fc

Image source: C. Bishop, 2006

¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions:
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Sum-Product: Example

fa fb

fc

Image source: C. Bishop, 2006

¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions:
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Sum-Product: Example

fa fb

fc

Image source: C. Bishop, 2006Slide adapted from Chris Bishop

¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions:
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Sum-Product: Example

Verify that marginal is correct:

fa fb

fc

Image source: C. Bishop, 2006Slide adapted from Chris Bishop

¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions:
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Sum-Product Algorithm – Extensions

• Dealing with observed nodes
 Until now we had assumed that all nodes were hidden…

 Observed nodes can easily be incorporated:

 Partition x into hidden variables h and observed variables            .

 Simply multiply the joint distribution p(x) by

 Any summation over variables in v collapses into a single term.

• Further generalizations
 So far, assumption that we are dealing with discrete variables.

 But the sum-product algorithm can also be generalized to simple 

continuous variable distributions, e.g. linear-Gaussian variables.

v = v̂

Y

i

I(vi; v̂i) I(vi; v̂i) =

(
1; if vi = v̂i

0; else:
where
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Topics of This Lecture

• Factor graphs
 Construction

 Properties

• Sum-Product Algorithm for computing marginals
 Key ideas

 Derivation

 Example

• Max-Sum Algorithm for finding most probable value
 Key ideas

 Derivation

 Example

• Algorithms for loopy graphs
 Junction Tree algorithm

 Loopy Belief Propagation
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Max-Sum Algorithm

• Objective: an efficient algorithm for finding

 Value xmax that maximises p(x);

 Value of p(xmax).

 Application of dynamic programming in graphical models.

• In general, maximum marginals  joint maximum.
 Example:

Slide adapted from Chris Bishop
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Max-Sum Algorithm – Key Ideas

• Key idea 1: Distributive Law (again)

 Exchange products/summations and max operations exploiting the 

tree structure of the factor graph.

• Key idea 2: Max-Product  Max-Sum
 We are interested in the maximum value of the joint distribution

 Maximize the product p(x).

 For numerical reasons, use the logarithm.

 Maximize the sum (of log-probabilities).

p(xmax) = max
x

p(x)

max(ab; ac) = amax(b; c)

max(a+ b; a+ c) = a+max(b; c)
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Max-Sum Algorithm

• Maximizing over a chain (max-product)

• Exchange max and product operators

• Generalizes to tree-structured factor graph

Image source: C. Bishop, 2006Slide adapted from Chris Bishop
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Max-Sum Algorithm

• Initialization (leaf nodes)

• Recursion
 Messages

 For each node, keep a record of which values of the variables gave rise 

to the maximum state:

Slide adapted from Chris Bishop
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Max-Sum Algorithm

• Termination (root node)
 Score of maximal configuration

 Value of root node variable giving rise to that maximum

 Back-track to get the remaining variable values

xmax
n¡1 = Á(xmax

n )

Slide adapted from Chris Bishop
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Visualization of the Back-Tracking Procedure

• Example: Markov chain

 Same idea as in Viterbi algorithm for HMMs…

variables

s
ta

te
s

stored links

Image source: C. Bishop, 2006Slide adapted from Chris Bishop
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References and Further Reading

• A thorough introduction to Graphical Models in general and 

Bayesian Networks in particular can be found in Chapter 8 of 

Bishop’s book. 

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006


