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Topics of This Lecture

» Recap: Exact inference
— Sum-Product algorithm
— Max-Sum algorithm
— Junction Tree algorithm

* Applications of Markov Random Fields
— Application examples from computer vision
— Interpretation of clique potentials
— Unary potentials
— Pairwise potentials

* Solving MRFs with Graph Cuts
— Graph cuts for image segmentation
— s-t mincut algorithm
— Extension to non-binary case
— Applications
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Recap: Sum-Product Algorithm

* Objectives
— Efficient, exact inference algorithm for finding marginals.

* Procedure:
— Pick an arbitrary node as root.
— Compute and propagate messages from the leaf nodes to the root,
storing received messages at every node.
— Compute and propagate messages from the root to the leaf nodes,
storing received messages at every node.
— Compute the product of received messages at each node for which the
marginal is required, and normalize if necessary.
() o [ prnale)
i sene(r)
» Computational effort

— Total number of messages = 2 - number of graph edges.
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Course Outline

* Regression Techniques
— Linear Regression
— Regularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabilistic Graphical Models
— Bayesian Networks
— Markov Random Fields
— Inference (exact & approximate)

» Deep Generative Models | =
— Generative Adversarial Networks
— Variational Autoencoders

Visual Computing Institute| Prof, Dr . Bastian Leibe
Advanced Machine Learning () -
Part 10 - Graphical Modeks IV i

!
AY

/
« Joint probability L
— Can be expressed as product of factors: p(x) = Z Hﬁ(XJ

— Factor graphs make this explicit through separate factor nodes.

« Converting a directed polytree
— Conversion to undirected tree creates loops due to moralization!
— Conversion to a factor graph again results in a tree!
RWTH
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Recap: Sum-Product Algorithm

« Two kinds of messages
— Message from factor node to variable nodes:
= Sum of factor contributions

tif,e(@) = Y Fi(w, Xs)

X
= Zfs(xs) H ﬂxm%fs(zm)
X méene(fs)\z
— Message from variable node to factor node:
= Product of incoming messages

. (Tm) = H Bfi—se,n (Tm)
lene(zm)\ fs
= Simple propagation scheme.
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Recap: Sum-Product from Leaves to Root

Message definitions:

prsa(@) = 3 Fo(xs) [ tam s (@m)

X, mene(fo\x
T4 = fs (TM) = H Hfi—am, (Im)
lene(zm)\ fs
fesplp) =1 Brelm) = J(&)
—_—

I @
RWTH
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Max-Sum Algorithm

* Objective: an efficient algorithm for finding
— Value x™* that maximises p(x);
— Value of p(x™).
= Application of dynamic programming in graphical models.

* In general, maximum marginals # joint maximum.
— Example:

argmaxp(z,y) =1 arg max p(x) = 0
* x
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Max-Sum Algorithm

» Maximizing over a chain (max-product)

x o TN -1 TN

» Exchange max and product operators

p(x™*) = max p(x) = max...max p(x)
x 71 Eav
1 ‘ )
= —max---max [Py oz, 22) -y v(En o1, 2n)]
Z = TN

1
= —max [rllax [L-,"ug(:m.:rg) {“l’llﬂ.?( hn—1n(EN |.:£N)] H
Z = zy N

* Generalizes to tree-structured factor graph

m;:;\xp(x) = II;Z:\‘..‘(! H )n}‘a‘.x folwn, Xs)
.Enelz,,
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Recap: Sum-Product from Root to Leaves

Message definitions:

tre(@) = > fa(x) ] pams.(@m)
X,

B mene(f.)\z

Ta Ha s f, (Tm) = H Bz (Tm)
lene(wm)\fs
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Max-Sum Algorithm — Key Ideas

» Key idea 1: Distributive Law (again)
max(ab,ac) = amax(b,c)
max(a+b,a+c¢) = a+ max(b,c)

= Exchange products/summations and max operations exploiting the
tree structure of the factor graph.

 Key idea 2: Max-Product — Max-Sum
— We are interested in the maximum value of the joint distribution
PO™) = max p(x)
x
= Maximize the product p(x).
— For numerical reasons, use the logarithm.
In (max-p(x)) = max In p(x).
x x
— Maximize the sum (of log-probabilities).
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Max-Sum Algorithm

« Initialization (leaf nodes)
fa—gla) =0 pj—z(a) = ln fla)
« Recursion
— Messages
Bioalz) = J.ll}lqic” |:lnf(x,m1‘..‘.r,u) + Z i-‘-r.‘.gf(r,,,)]

mene( f.)\&
pog(z) = > ppalx)
tene(@)\f

— For each node, keep a record of which values of the variables gave rise
to the maximum state:

¢(xr) = argmax [Inf(z,2y,...,20) + Z 1(‘r>,>,f(.1:,,,]:|
ER \z
mene( f.)\x
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Max-Sum Algorithm

 Termination (root node)
— Score of maximal configuration

P m:‘lx|i 3 ,,.]‘,T(:p;}

sEne(z)
— Value of root node variable giving rise to that maximum
M = arg max el
gy [ > r(')]
sEne(r)
— Back-track to get the remaining variable values

a2 = ¢(an™)
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Topics of This Lecture

» Recap: Exact inference
— Sum-Product algorithm
— Max-Sum algorithm
— Junction Tree algorithm
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Junction Tree Algorithm

* Motivation
— Exact inference on general graphs.
— Works by turning the initial graph into a junction tree and then running
a sum-product-like algorithm.
— Intractable on graphs with large cliques.

* Main steps

1. If starting from directed graph, first convert it to an undirected
graph by moralization.

2. Introduce additional links by triangulation in order to reduce the
size of cycles.

3. Find cliques of the moralized, triangulated graph.

4. Construct a new graph from the maximal cliques.

5. Remove minimal links to break cycles and get a

= Apply regular message passing to perform inference.

Visualization of the Back-Tracking Procedure

* Example: Markov chain

k ID D D... |
0 1/

states

k=3
n-—2 n—1 n n+1
variables

= Same idea as in Viterbi algorithm for HMMs...
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Junction Tree Algorithm

* Motivation
— Exact inference on general graphs.
— Works by turning the initial graph into a junction tree with one node per
clique and then running a sum-product-like algorithm.
— Intractable on graphs with large cliques.

19
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Junction Tree Algorithm

« Starting from an undirected graph...

~

(M +—N )
(M «—Q
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Junction Tree Algorithm Junction Tree Algorithm

AﬁB' AﬁB‘

N/

- ™ - _'\
LC _D,.f ‘ C_ — D/
F —E F ——E
— - 2. Triangulate — -
1. Convert to an undirected graph through moralization. — Such that there is no loop of length > 3 without a chord.
— Marry the parents of each node — This is necessary so that the final junction tree satisfies the “running
— Remove edge directions. ' intersection” property (explained later).
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Junction Tree Algorithm Junction Tree Algorithm

/A é\w
/

/¢ E\‘ T
| ™~
P el e o)

\E )/

s S 4. Construct a new junction graph from maximal cliques.
3. Find cliques of the moraiized, triangulated graph. - Create a node from each clique.
. — Each link carries a list of all variables in the intersection.
= Drawn in a “separator” box.
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Junction Tree Algorithm Junction Tree — Properties

a B\\.

e

4 C\\
/

\ -P, Y

o
EJC ,3\

* Running intersection property

. . . — “If a variable appears in more than one clique, it also appears in all
5. Remove links to break cycles = junction tree. an o ! que, ! PP !

- : He intermediate cliques in the tree”.
— For each cycle, remove the link(s) with the minimal number of shared — This ensures that neighboring cliques have consistent probability
nodes until all cycles are broken.

) : . I distributions.
— Result is a maximal spanning tree, the junction tree. _ Local consistency —> global consistency
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Interpretation of the Junction Tree

 Undirected graphical model

@©®®

« Junction tree

Clique Separator Clique
P(U) = [1 P(Clique) / [T P(Separator)
P(A,B,C)=P(A,B) P(B,C) / P(B)
o1t st ( - . ‘ RWTH
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Junction Tree: Example 1

(b) Moral graph (¢) Junction graph

* Algorithm
1. Moralization
2. Triangulation (not necessary here)
3. Find cliques
4. Construct junction graph

vof. Dr . Bastan Leibe
®

Jmage source: ) Pearl, 198d

Junction Tree: Example 2

» Without triangulation step
— The final graph will contain cycles that we cannot break
without losing the running intersection property!

(9 =

\mage source. ) Pearl, 198d

Junction Tree: Example 1

@ @ @ —®
@  ©

& @ & ®
@ ® @ ®

(A} DAG (6) Moral graph

« Algorithm
1. Moralization
2. Triangulation (not necessary here)

Image source: J. Pearl, 198

Junction Tree: Example 1

(¢) Junction graph {d) Junction tree

« Algorithm

1. Moralization
2. Triangulation (not necessary here)
3. Find cliques
4. Construct junction graph
5. Break links to get junction tree
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Junction Tree: Example 2

* When applying the triangulation
— Only small cycles remain that are easy to break.
— Running intersection property is maintained.
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Junction Tree Algorithm

* Good news

— The junction tree algorithm is efficient in the sense that for a given
graph there does not exist a computationally cheaper approach.

+ Bad news
— This may still be too costly.
— Effort determined by number of variables in the largest clique.
— Grows exponentially with this number (for discrete variables).
= Algorithm becomes impractical if the graph contains large cliques!
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Topics of This Lecture

* Applications of Markov Random Fields
— Motivation
— Unary potentials
— Pairwise potentials
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Markov Random Fields

+ Allow rich probabilistic models.
— But built in a local, modular way.
— Learn local effects, get global effects out.

« Very powerful when applied to regular structures.
— Such as images. ..

Observed evidence

Hidden “true states”

Neighborhood relations

Visual Computing Institute | Prof. Dr . Bastian Leibe
ced Learning
Part 10 - Graphical Models 1V

am Freeman.

Loopy Belief Propagation

« Alternative algorithm for loopy graphs

— Sum-Product on general graphs.

— Strategy: simply ignore the problem.

— Initial unit messages passed across all links, after which messages are
passed around until convergence
= Convergence is not guaranteed!
= Typically break off after fixed number of iterations.

— Approximate but tractable for large graphs.

— Sometime works well, sometimes not at all.

35
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Markov Random Fields (MRFs)

* What we've learned so far... @ b
— We know they are undirected graphical models. )\( SE
[
— Their joint probability factorizes into clique potentials,
1
po9 = 7 [Tvetee)
which are conveniently expressea as
Yo(xc) = exp{—E(xc)}

— We know how to perform inference for them.
= Sum/Max-Product BP for exact inference in tree-shaped MRFs.
= Loopy BP for approximate inference in arbitrary MRFs.
= Junction Tree algorithm for converting arbitrary MRFs into trees.

« But what are they actually good for?
— And how do we apply them in practice?
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Applicati of MRF

* Movie “No Way Out” (1987)
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Applications of MRF

» Many applications for low-level vision tasks
— Image denoising
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Applications of MR

» Many applications for low-level vision tasks
— Image denoising
— Inpainting
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Applications of MRFs

» Many applications for low-level vision tasks
— Image denoising
— Inpainting
— Image restoration
— Image segmentation
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pplication MRF

* Many applications for low-level vision tasks
— Image denoising

Noisy observations

Observation process .
“True” image content
*
[ ———
“Smoothness constraints”
RWTH
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Applications of MRFs

* Many applications for low-level vision tasks
— Image denoising
— Inpainting
— Image restoration

|
t
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Results by [Roth & Black CVPR05]

Applications of MR

« Many applications for low-level vision tasks
— Image denoising — Super-resolution
— Inpainting
— Image restoration
— Image segmentation

Convert a low-res image into a high-res image!

super-resolution
3 -~ 3
. %

\
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Applications of MRFs

Applications of MRFs

* Many applications for low-level vision tasks
— Super-resolution

— Image denoising

— Inpainting

— Image restoration

— Image segmentation

Lo-res. patches
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* Many applications for low-level vision tasks
— Image denoising — Super-resolution
— Inpainting — Optical flow
— Image restoration
- Image segmentation

Image patches

Image pair

Scene patches ﬁ

Scene

Applications of MRFs

Visual Co
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Applications of MRFs

* Many applications for low-level vision tasks
— Image denoising — Super-resolution

— Inpainting — Optical flow
— Stereo depth estimation

— Image restoration
— Image segmentation

Stereo image pair
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* Many applications for low-level vision tasks
— Image denoising — Super-resolution
— Inpainting — Optical flow
— Image restoration — Stereo depth estimation
— Image segmentation

* MRFs have become a standard tool for such tasks.
— Let’s look at how they are applied in detail...

MRF Structure for Images
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MRF Nodes as Pixels

* Basic structure . _
Noisy observations

“True” image content

» Two components
— Observation model
= How likely is it that node x; has label L, given observation y,?
= This relationship is usually learned from training data.

— Neighborhood relations
= Simplest case: 4-neighborhood
= Serve as smoothing terms.
= Discourage neighboring pixels to have different labels.
= This can either be learned or be set to fixed “penalties”.
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Reconstruction
from MRF modeling
® ® pixel neighborhood
© ® statistics

& o These neighborhood
@‘@' statistics can be learned

from training data!
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MRF Nodes as Patches

Image patches

More general relationships expressed
by potential functions & and ¥.
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Energy Formulation

 Energy function

E(x, y)=z¢’(xivyi) +z’//(xivxj)

[ [ —;
Single-node Pairwise
potentials potentials

* Single-node (unary) potentials ¢
— Encode local information about the given pixel/patch.
— How likely is a pixel/patch to belong to a certain class
(e.g. foreground/background)?

* Pairwise potentials y
— Encode neighborhood information.
— How different is a pixel/patch’s label from that of its neighbor?
(e.g. based on intensity/color/texture difference, edges)

Vsual Computing ntute] Prf. O Basan Lo
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How to Set the Potentials? Some Examples

* Pairwise potentials
— Potts Model
(@i, 55 0p) = Oy0(; # )

= Simplest discontinuity preserving model.

= Discontinuities between any pair of labels are penalized equally.
= Useful when labels are unordered or number of labels is small.

— Extension: “contrast sensitive Potts model”
Y(wi, x5, 95 (y); Op) = 0pgi; (y)d(zi # ;)
where
2
~Ayi-y 2
gy (y)=e Pl ﬂ:Z»avg(Hyi -y )
= Discourages label changes except in places where there is also a large
change in the observations.
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Network Joint Probability TG

« Interpretation of the factorized
joint probability
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How to Set the Potentials? Some Examples

» Unary potentials
— E.g., color model, modeled with a Mixture of Gaussians

B, i3 05) = log O (i, k)p(klas)N (9is T, Ti)
k

= Learn color distributions for each label

d(ap =1,yp) /%%A

Bz = 0,yp) Yt

Yp y
RWTH
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Extension: Conditional Random Fields (CRF)

« Idea: Model conditional instead of joint probability

Pairwise potential
9Dl x)

Unary potential ———
HD|x;) «—— Prior Potts model

Pixels

«—— Labels

« Energy formulation

Eix) = Z (e;‘){D\x;)Jr Z (O(D]xi.x;) + c-:x.,x;}-jn)Jrcuxlsl
T JEN;

Unary likelihood Contrast Term Uniform Prior
(Potts Model)
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Example: MRF for Image Segmentation

* MRF structure
Pairwise potential

o(Dxi. x;} \

Unary potential ——
H(Dx;) «~———Prior Potts model

+~—— Pixels

+~—— Labels

Data (D) Unary likelihood Pair-er Terms MAP Solution
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Topics of This Lecture

* Solving MRFs with Graph Cuts
— Graph cuts for image segmentation
— s-t mincut algorithm
— Extension to non-binary case
— Applications
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Simple Example of Energy

unary potentials

E(L) = Z Dp(Lp) + prq'é‘(LP;tLq)

pgeN
t-links n-links

pairwise potentials

L, e{s/t}

(binary object segmentation)
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Energy Minimization

* Goal:
— Infer the optimal labeling of the MRF.

« Many inference algorithms are available, e.g.
— Simulated annealing What you saw in the movie.

— Iterated conditional modes (ICM) Too simple.

— Belief propagation Last lecture

— Graph cuts Use this one!

— Variational methods

_ Monte Carlo sampling } For more complex problems

» Recently, Graph Cuts have become a popular tool
— Only suitable for a certain class of energy functions.

— But the solution can be obtained very fast for typical vision problems
(~1MPixel/sec).
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Graph Cuts for Binary Problems
« Idea: convert MRF into source-sink graph
hard t sacut
conslraint[ B

=)
<:| hard

constraint

Al
= {77;1}

Minimum cost cut can be
computed in polynomial time

(max-flow/min-cut algorithms)
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Adding Regional Properties

Regional bias example
Suppose I° and 1" are given
“expected” intensities
of object and background

D,(s)xexp ([ 1,-1°? /25?)
D, e (-1, -1'|? 1262)

NOTE: hard constrains are not required, in general.
RWTH
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Adding Regional Properties

1 1

“expected” intensities of o,
object and bacl§ground = D, (s) cexp (*II',,*I I /20)

S
I"and | D, «coxp (-1, ~1' | 1267
can be re-estimated

EM-style optimization
RWTH

lide credit: Yuri Boykoy [Bovkov & Jolly, ICCV'01

References and Further Reading

» A gentle introduction to Graph Cuts can be found in the
following paper:
— Y. Boykov, O. Veksler, Graph Cuts in Vision and Graphics: Theories and
Applications. In Handbook of Mathematical Models in Computer Vision, edited
by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006.

« Try the GraphCut implementation at
https://pub.ist.ac.at/~vnk/software.html
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