Advanced Machine Learning Summer 2019

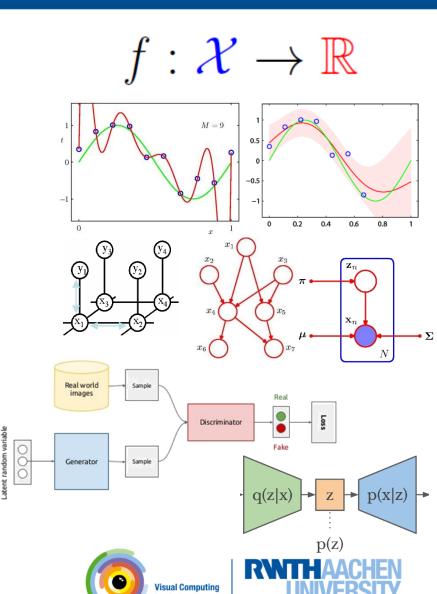
Part 10 – Graphical Models IV 09.05.2019

Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

Course Outline

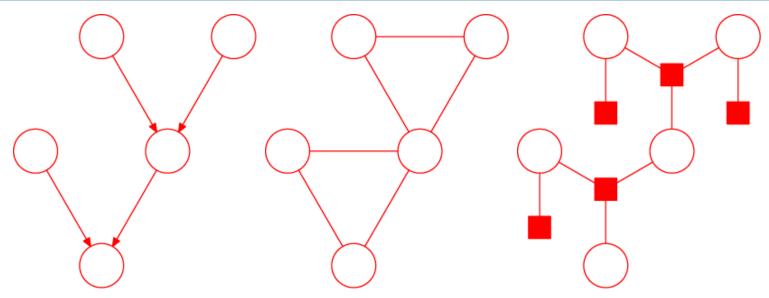
- Regression Techniques
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
- Deep Reinforcement Learning
- Probabilistic Graphical Models
 - Bayesian Networks
 - Markov Random Fields
 - Inference (exact & approximate)
- Deep Generative Models
 - Generative Adversarial Networks
 - Variational Autoencoders



Topics of This Lecture

- Recap: Exact inference
 - Sum-Product algorithm
 - Max-Sum algorithm
 - Junction Tree algorithm
- Applications of Markov Random Fields
 - Application examples from computer vision
 - Interpretation of clique potentials
 - Unary potentials
 - Pairwise potentials
- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Extension to non-binary case
 - Applications

Recap: Factor Graphs



- Joint probability
 - Can be expressed as product of factors: $p(\mathbf{x}) = \frac{1}{Z} \prod f_s(\mathbf{x}_s)$
 - Factor graphs make this explicit through separate factor nodes.
- Converting a directed polytree
 - Conversion to undirected tree creates loops due to moralization!
 - Conversion to a factor graph again results in a tree!

Recap: Sum-Product Algorithm

Objectives

Efficient, exact inference algorithm for finding marginals.

• Procedure:

- Pick an arbitrary node as root.
- Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
- Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
- Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

$$p(x) \propto \prod_{s \in ne(x)} \mu_{f_s \to x}(x)$$

Computational effort

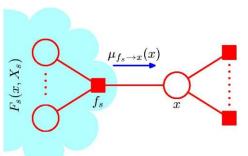
– Total number of messages = $2 \cdot$ number of graph edges.

Recap: Sum-Product Algorithm

- Two kinds of messages
 - Message from factor node to variable nodes:
 - Sum of factor contributions

$$\mu_{f_s \to x}(x) \equiv \sum_{X_s} F_s(x, X_s)$$

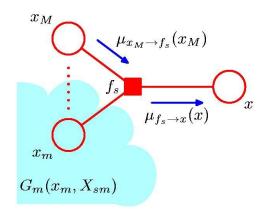
$$= \sum_{X_s} f_s(\mathbf{x}_s) \prod_{m \in \text{ne}(f_s) \setminus x} \mu_{x_m \to f_s}(x_m)$$



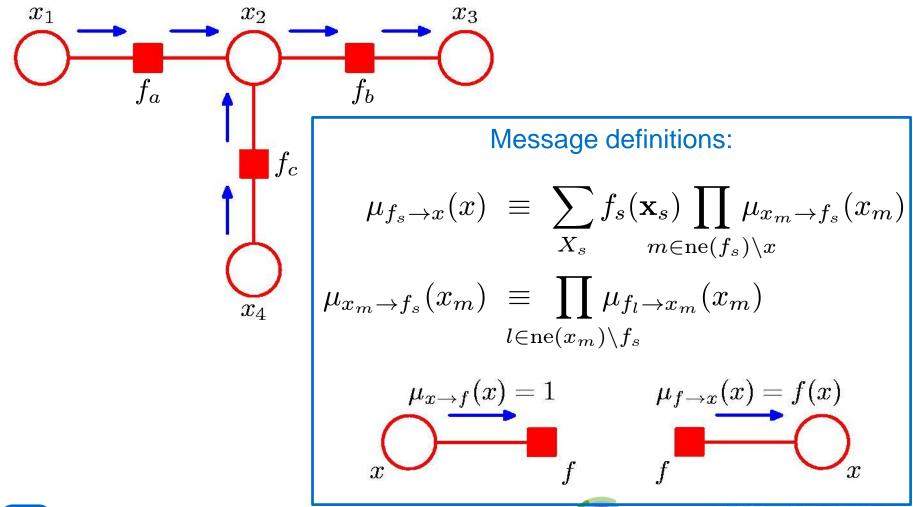
- Message from variable node to factor node:
 - Product of incoming messages

$$\mu_{x_m \to f_s}(x_m) \equiv \prod_{l \in \text{ne}(x_m) \setminus f_s} \mu_{f_l \to x_m}(x_m)$$

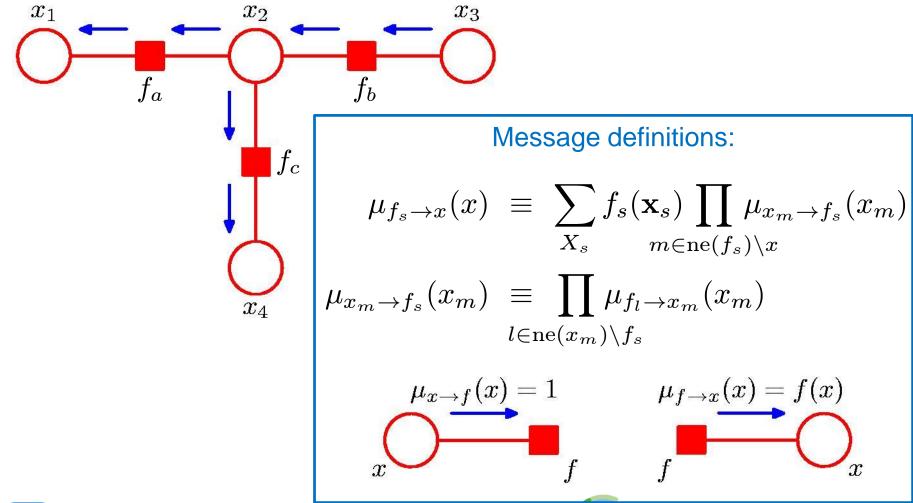
⇒ Simple propagation scheme.



Recap: Sum-Product from Leaves to Root



Recap: Sum-Product from Root to Leaves



- Objective: an efficient algorithm for finding
 - Value \mathbf{x}^{\max} that maximises $p(\mathbf{x})$;
 - Value of $p(\mathbf{x}^{\max})$.
 - ⇒ Application of dynamic programming in graphical models.

- In general, maximum marginals ≠ joint maximum.
 - Example:

$$\underset{x}{\operatorname{arg}} \max_{x} p(x, y) = 1 \qquad \underset{x}{\operatorname{arg}} \max_{x} p(x) = 0$$

Max-Sum Algorithm – Key Ideas

Key idea 1: Distributive Law (again)

$$\max(ab, ac) = a \max(b, c)$$
$$\max(a+b, a+c) = a + \max(b, c)$$

- ⇒ Exchange products/summations and max operations exploiting the tree structure of the factor graph.
- Key idea 2: Max-Product → Max-Sum
 - We are interested in the maximum value of the joint distribution

$$p(\mathbf{x}^{\max}) = \max_{\mathbf{x}} p(\mathbf{x})$$

- \Rightarrow Maximize the product $p(\mathbf{x})$.
- For numerical reasons, use the logarithm.

$$\ln\left(\max_{\mathbf{x}} p(\mathbf{x})\right) = \max_{\mathbf{x}} \ln p(\mathbf{x}).$$

⇒ Maximize the sum (of log-probabilities).

Maximizing over a chain (max-product)

Exchange max and product operators

$$p(\mathbf{x}^{\max}) = \max_{\mathbf{x}} p(\mathbf{x}) = \max_{x_1} \dots \max_{x_M} p(\mathbf{x})$$

$$= \frac{1}{Z} \max_{x_1} \dots \max_{x_N} \left[\psi_{1,2}(x_1, x_2) \dots \psi_{N-1,N}(x_{N-1}, x_N) \right]$$

$$= \frac{1}{Z} \max_{x_1} \left[\max_{x_2} \left[\psi_{1,2}(x_1, x_2) \left[\dots \max_{x_N} \psi_{N-1,N}(x_{N-1}, x_N) \right] \dots \right] \right]$$

Generalizes to tree-structured factor graph

$$\max_{\mathbf{x}} p(\mathbf{x}) = \max_{x_n} \prod_{f_s \in ne(x_n)} \max_{X_s} f_s(x_n, X_s)$$

Initialization (leaf nodes)

$$\mu_{x \to f}(x) = 0 \qquad \qquad \mu_{f \to x}(x) = \ln f(x)$$

- Recursion
 - Messages

$$\mu_{f o x}(x) = \max_{x_1, \dots, x_M} \left[\ln f(x, x_1, \dots, x_M) + \sum_{m \in \operatorname{ne}(f_s) \setminus x} \mu_{x_m o f}(x_m) \right]$$

$$\mu_{x \to f}(x) = \sum_{l \in \text{ne}(x) \backslash f} \mu_{f_l \to x}(x)$$

– For each node, keep a record of which values of the variables gave rise to the maximum state:

$$\phi(x) = \underset{x_1, \dots, x_M}{\operatorname{arg\,max}} \left[\ln f(x, x_1, \dots, x_M) + \sum_{m \in \operatorname{ne}(f_s) \setminus x} \mu_{x_m \to f}(x_m) \right]$$

- Termination (root node)
 - Score of maximal configuration

$$p^{\max} = \max_{x} \left[\sum_{s \in ne(x)} \mu_{f_s \to x}(x) \right]$$

Value of root node variable giving rise to that maximum

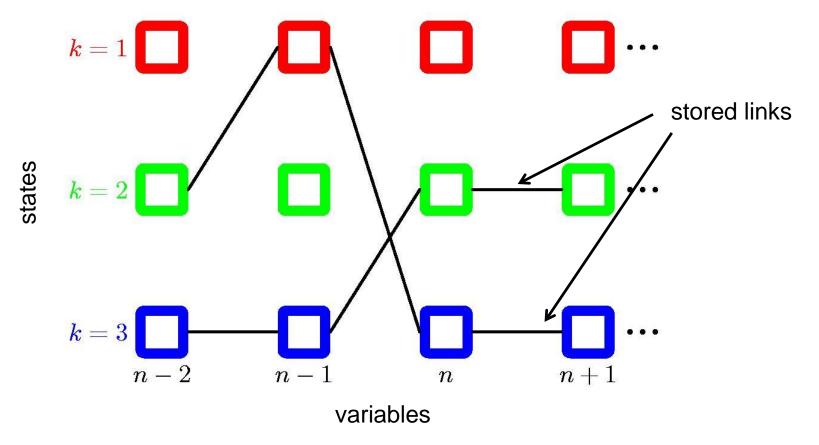
$$x^{\max} = \underset{x}{\operatorname{arg max}} \left[\sum_{s \in \operatorname{ne}(x)} \mu_{f_s \to x}(x) \right]$$

Back-track to get the remaining variable values

$$x_{n-1}^{\max} = \phi(x_n^{\max})$$

Visualization of the Back-Tracking Procedure

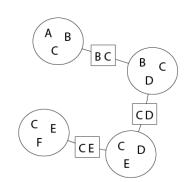
Example: Markov chain



⇒ Same idea as in Viterbi algorithm for HMMs...

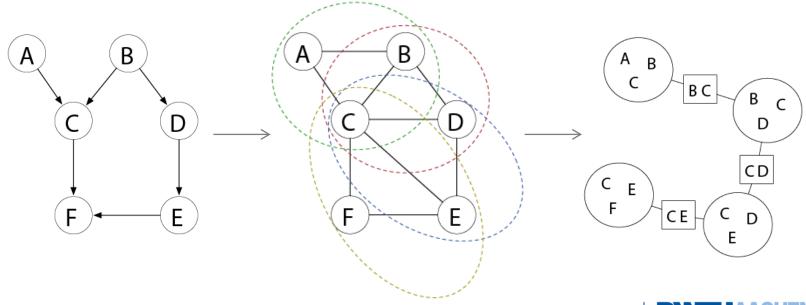
Topics of This Lecture

- Recap: Exact inference
 - Sum-Product algorithm
 - Max-Sum algorithm
 - Junction Tree algorithm
- Applications of Markov Random Fields
 - Motivation
 - Unary potentials
 - Pairwise potentials
- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Extension to non-binary case
 - Applications



Motivation

- Exact inference on general graphs.
- Works by turning the initial graph into a junction tree with one node per clique and then running a sum-product-like algorithm.
- Intractable on graphs with large cliques.



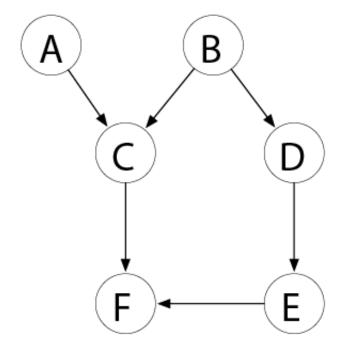
Motivation

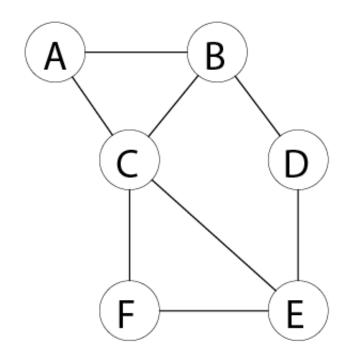
- Exact inference on general graphs.
- Works by turning the initial graph into a junction tree and then running a sum-product-like algorithm.
- Intractable on graphs with large cliques.

Main steps

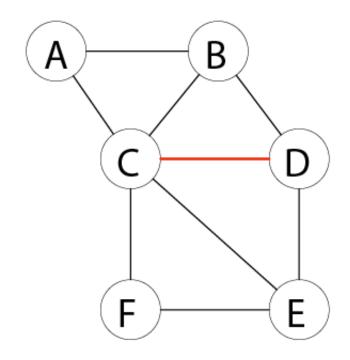
- 1. If starting from directed graph, first convert it to an undirected graph by moralization.
- 2. Introduce additional links by triangulation in order to reduce the size of cycles.
- 3. Find cliques of the moralized, triangulated graph.
- 4. Construct a new graph from the maximal cliques.
- 5. Remove minimal links to break cycles and get a
- ⇒ Apply regular message passing to perform inference.

Starting from an undirected graph...



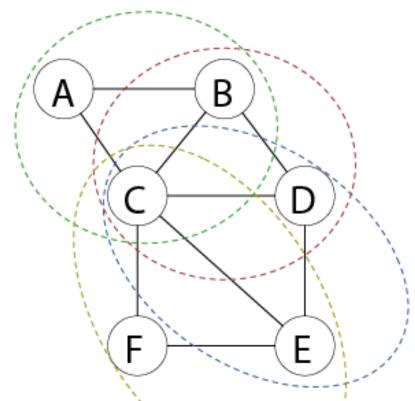


- 1. Convert to an undirected graph through moralization.
 - Marry the parents of each node.
 - Remove edge directions.

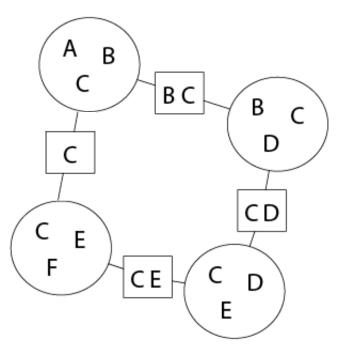


2. Triangulate

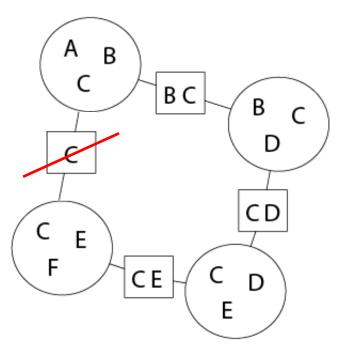
- Such that there is no loop of length > 3 without a chord.
- This is necessary so that the final junction tree satisfies the "running" intersection" property (explained later).



3. Find cliques of the moralized, triangulated graph.

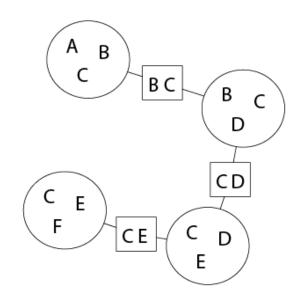


- 4. Construct a new junction graph from maximal cliques.
 - Create a node from each clique.
 - Each link carries a list of all variables in the intersection.
 - Drawn in a "separator" box.



- 5. Remove links to break cycles \Rightarrow junction tree.
 - For each cycle, remove the link(s) with the minimal number of shared nodes until all cycles are broken.
 - Result is a maximal spanning tree, the junction tree.

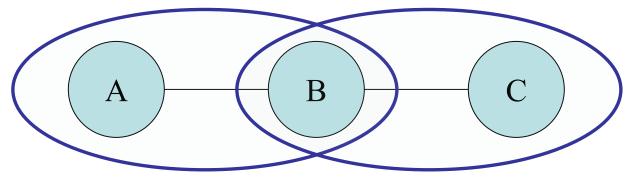
Junction Tree – Properties



- Running intersection property
 - "If a variable appears in more than one clique, it also appears in all intermediate cliques in the tree".
 - This ensures that neighboring cliques have consistent probability distributions.
 - Local consistency → global consistency

Interpretation of the Junction Tree

Undirected graphical model

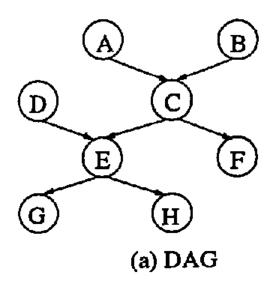


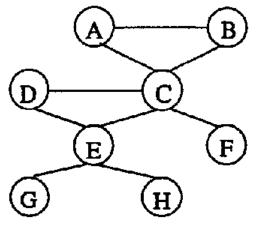
Junction tree



$$P(U) = \prod P(Clique) / \prod P(Separator)$$

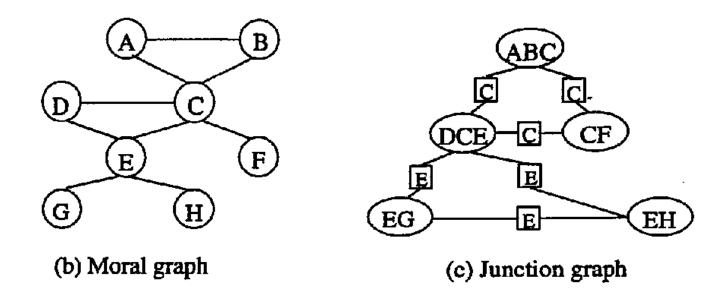
$$P(A,B,C) = P(A,B) P(B,C) / P(B)$$



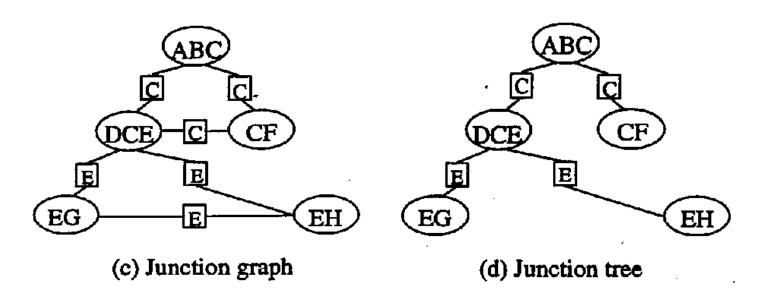


(b) Moral graph

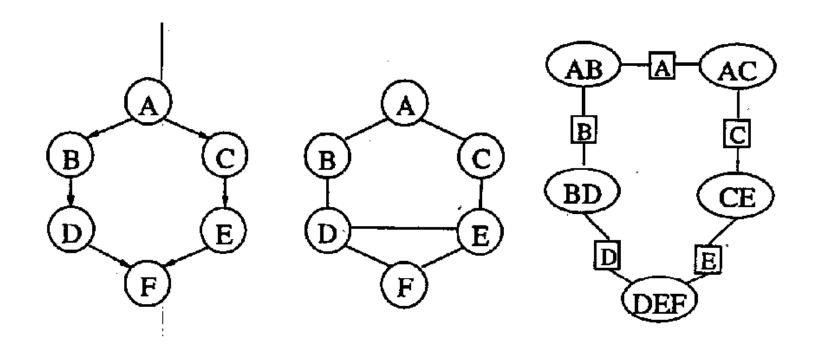
- Algorithm
 - 1. Moralization
 - 2. Triangulation (not necessary here)



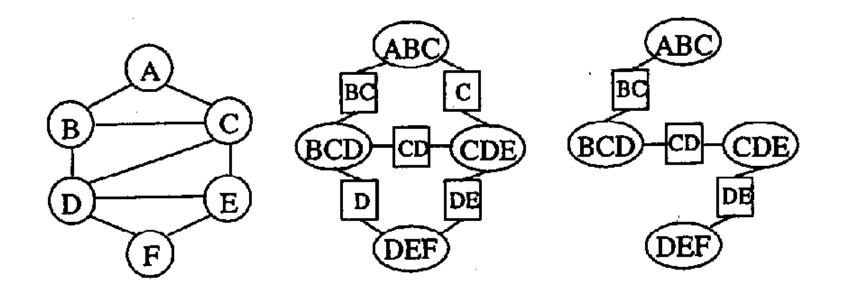
- Algorithm
 - 1. Moralization
 - 2. Triangulation (not necessary here)
 - 3. Find cliques
 - 4. Construct junction graph



- Algorithm
 - 1. Moralization
 - 2. Triangulation (not necessary here)
 - 3. Find cliques
 - 4. Construct junction graph
 - 5. Break links to get junction tree



- Without triangulation step
 - The final graph will contain cycles that we cannot break without losing the running intersection property!



- When applying the triangulation
 - Only small cycles remain that are easy to break.
 - Running intersection property is maintained.

Good news

 The junction tree algorithm is efficient in the sense that for a given graph there does not exist a computationally cheaper approach.

Bad news

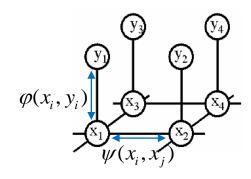
- This may still be too costly.
- Effort determined by number of variables in the largest clique.
- Grows exponentially with this number (for discrete variables).
- ⇒ Algorithm becomes impractical if the graph contains large cliques!

Loopy Belief Propagation

- Alternative algorithm for loopy graphs
 - Sum-Product on general graphs.
 - Strategy: simply ignore the problem.
 - Initial unit messages passed across all links, after which messages are passed around until convergence
 - Convergence is not guaranteed!
 - Typically break off after fixed number of iterations.
 - Approximate but tractable for large graphs.
 - Sometime works well, sometimes not at all.

Topics of This Lecture

- Recap: Exact inference
 - Sum-Product algorithm
 - Max-Sum algorithm
 - Junction Tree algorithm
- Applications of Markov Random Fields
 - Motivation
 - Unary potentials
 - Pairwise potentials
- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Extension to non-binary case
 - Applications



Markov Random Fields (MRFs)

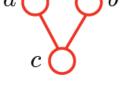
- What we've learned so far...
 - We know they are undirected graphical models.

$$p(\mathbf{x}) = \frac{1}{Z} \prod_{C} \psi_{C}(\mathbf{x}_{C})$$

which are conveniently expressed as

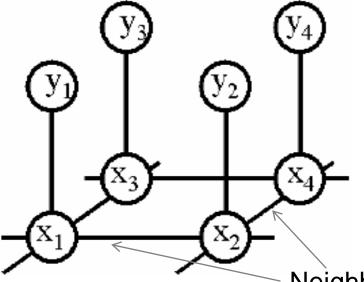
$$\psi_C(\mathbf{x}_C) = \exp\{-E(\mathbf{x}_C)\}\$$

- We know how to perform inference for them.
 - Sum/Max-Product BP for exact inference in tree-shaped MRFs.
 - Loopy BP for approximate inference in arbitrary MRFs.
 - Junction Tree algorithm for converting arbitrary MRFs into trees.
- But what are they actually good for?
 - And how do we apply them in practice?



Markov Random Fields

- Allow rich probabilistic models.
 - But built in a local, modular way.
 - Learn local effects, get global effects out.
- Very powerful when applied to regular structures.
 - Such as images...



Observed evidence

Hidden "true states"

Neighborhood relations

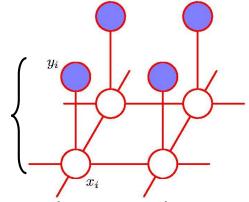
Applications of MRFs

Movie "No Way Out" (1987)

- Many applications for low-level vision tasks
 - Image denoising

- Many applications for low-level vision tasks
 - Image denoising

Observation process



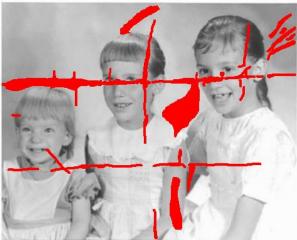
Noisy observations

"True" image content

"Smoothness constraints"

- Many applications for low-level vision tasks
 - Image denoising
 - Inpainting

- Many applications for low-level vision tasks
 - Image denoising
 - Inpainting
 - Image restoration



- Many applications for low-level vision tasks
 - Image denoising
 - Inpainting
 - Image restoration
 - Image segmentation

- Many applications for low-level vision tasks
 - Image denoising

Super-resolution

- Inpainting
- Image restoration
- Image segmentation

Convert a low-res image into a high-res image!

upscaling

super-resolution

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 10 – Graphical Models IV

- Many applications for low-level vision tasks
 - Image denoising

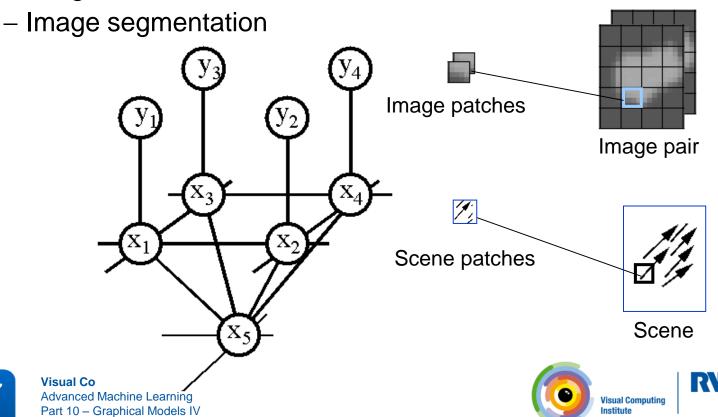
Super-resolution

- Inpainting
- Image restoration

 Image segmentation Lo-res. patches $\Phi(x_i, y_i)$ Hi-res. patches $\Psi(x_i, x_j)$

- Many applications for low-level vision tasks
 - Image denoising
 - Inpainting
 - Image restoration

- Super-resolution
- Optical flow



- Many applications for low-level vision tasks
 - Image denoising
 - Inpainting
 - Image restoration
 - Image segmentation

- Super-resolution
- Optical flow
- Stereo depth estimation

Stereo image pair

Disparity map

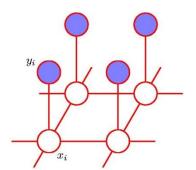
- Many applications for low-level vision tasks
 - Image denoising
 - Inpainting
 - Image restoration
 - Image segmentation

- Super-resolution
- Optical flow
- Stereo depth estimation

- MRFs have become a standard tool for such tasks.
 - Let's look at how they are applied in detail...

MRF Structure for Images

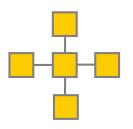
Basic structure



Noisy observations

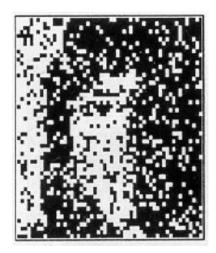
"True" image content

- Two components
 - Observation model
 - How likely is it that node x_i has label L_i given observation y_i ?
 - This relationship is usually learned from training data.
 - Neighborhood relations
 - Simplest case: 4-neighborhood
 - Serve as smoothing terms.
 - ⇒ Discourage neighboring pixels to have different labels.
 - This can either be learned or be set to fixed "penalties".

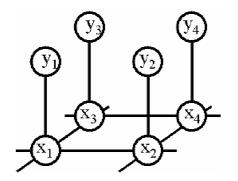


MRF Nodes as Pixels

Original image



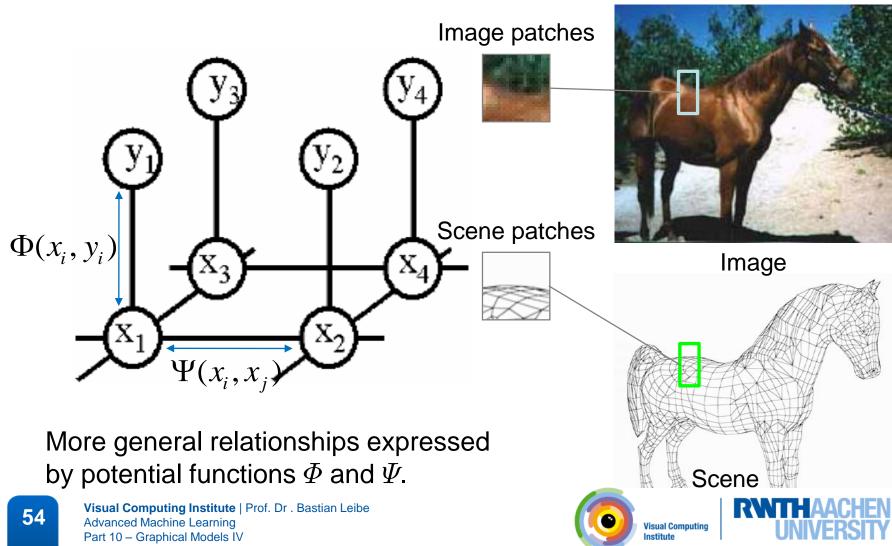
Degraded image



Reconstruction from MRF modeling pixel neighborhood statistics

These neighborhood statistics can be learned from training data!

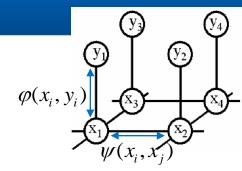
MRF Nodes as Patches



Slide credit: William Freeman

Network Joint Probability

Interpretation of the factorized joint probability



$$P(x, y) = \prod_{i} \Phi(x_i, y_i) \prod_{i,j} \Psi(x_i, x_j)$$

Energy Formulation

Energy function

$$E(x,y) = \sum_{i} \varphi(x_{i}, y_{i}) + \sum_{i,j} \psi(x_{i}, x_{j})$$
Single-node potentials potentials

- Single-node (unary) potentials φ
 - Encode local information about the given pixel/patch.
 - How likely is a pixel/patch to belong to a certain class (e.g. foreground/background)?
- Pairwise potentials ψ
 - Encode neighborhood information.
 - How different is a pixel/patch's label from that of its neighbor?
 (e.g. based on intensity/color/texture difference, edges)

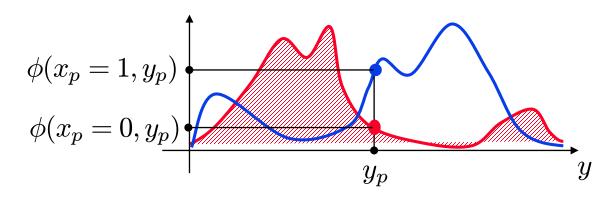
 $\varphi(x_i, y_i)$

How to Set the Potentials? Some Examples

- Unary potentials
 - E.g., color model, modeled with a Mixture of Gaussians

$$\phi(x_i, y_i; \theta_{\phi}) = \log \sum_{k} \theta_{\phi}(x_i, k) p(k|x_i) \mathcal{N}(y_i; \bar{y}_k, \Sigma_k)$$

⇒ Learn color distributions for each label



How to Set the Potentials? Some Examples

Pairwise potentials

Potts Model

$$\psi(x_i, x_j; \theta_{\psi}) = \theta_{\psi} \delta(x_i \neq x_j)$$

- Simplest discontinuity preserving model.
- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small.
- Extension: "contrast sensitive Potts model"

$$\psi(x_i, x_j, g_{ij}(y); \theta_{\psi}) = \theta_{\psi} g_{ij}(y) \delta(x_i \neq x_j)$$

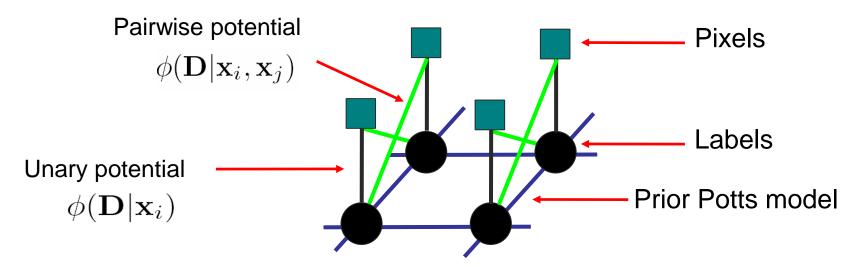
where

$$g_{ij}(y) = e^{-\beta \|y_i - y_j\|^2}$$
 $\beta = 2 \cdot avg(\|y_i - y_j\|^2)$

 Discourages label changes except in places where there is also a large change in the observations.

Extension: Conditional Random Fields (CRF)

Idea: Model conditional instead of joint probability



Energy formulation

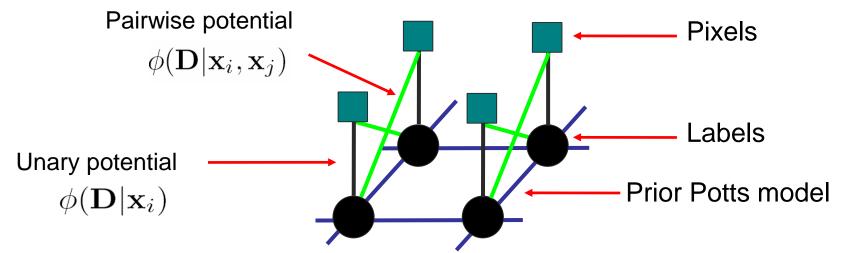
$$E(\mathbf{x}) = \sum_{i \in S} \left(\phi(\mathbf{D}|\mathbf{x}_i) + \sum_{j \in N_i} \left(\phi(\mathbf{D}|\mathbf{x}_i, \mathbf{x}_j) + \psi(\mathbf{x}_i, \mathbf{x}_j) \right) \right) + \text{const}$$

Unary likelihood Contrast Term

Uniform Prior (Potts Model)

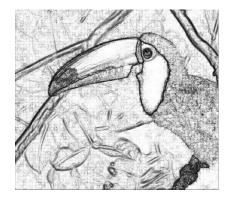
Example: MRF for Image Segmentation

MRF structure



Data (D)

Unary likelihood



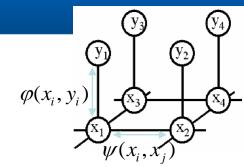
Pair-wise Terms

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 10 – Graphical Models IV

Slide credit: Phil Torr

Energy Minimization

- Goal:
 - Infer the optimal labeling of the MRF.



- Many inference algorithms are available, e.g.
 - Simulated annealing
 - Iterated conditional modes (ICM)
 - Belief propagation
 - Graph cuts
 - Variational methods
 - Monte Carlo sampling

What you saw in the movie.

Too simple.

Last lecture

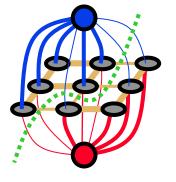
Use this one!

For more complex problems

- Recently, Graph Cuts have become a popular tool
 - Only suitable for a certain class of energy functions.
 - But the solution can be obtained very fast for typical vision problems (~1MPixel/sec).

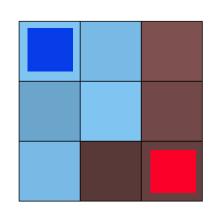
Topics of This Lecture

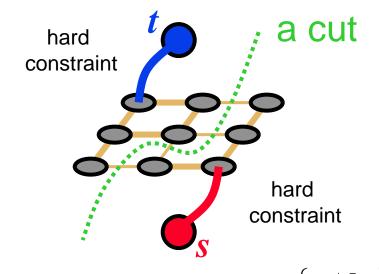
- Recap: Exact inference
 - Factor Graphs
 - Sum-Product/Max-Sum Belief Propagation
 - Junction Tree algorithm
- Applications of Markov Random Fields
 - Motivation
 - Unary potentials
 - Pairwise potentials
- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Extension to non-binary case
 - Applications



Graph Cuts for Binary Problems

Idea: convert MRF into source-sink graph





Minimum cost cut can be computed in polynomial time

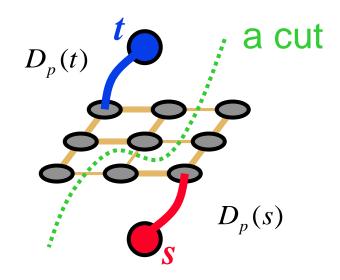
(max-flow/min-cut algorithms)

Simple Example of Energy

unary potentials

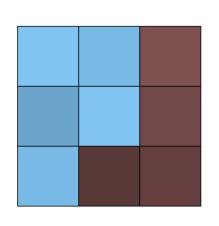
pairwise potentials

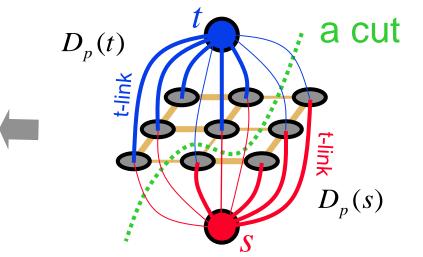
$$E(L) = \sum_{p} D_{p}(L_{p}) + \sum_{pq \in N} w_{pq} \cdot \delta(L_{p} \neq L_{q})$$
 t-links n-links



$$L_p \in \{s,t\}$$
 (binary object segmentation)

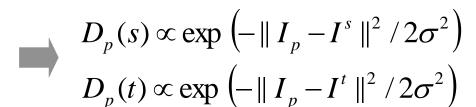
Adding Regional Properties





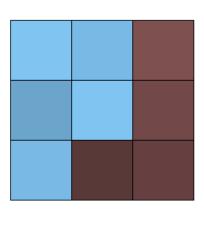
Regional bias example

Suppose I^s and I^t are given "expected" intensities of object and background

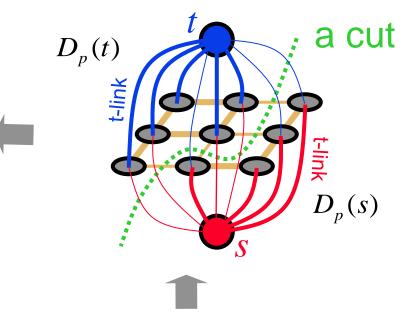


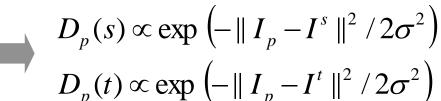
NOTE: hard constrains are not required, in general.

Adding Regional Properties



"expected" intensities of object and background I^s and I^t can be re-estimated





EM-style optimization

Advanced Machine Learning

Visual Computing Institute | Prof. Dr . Bastian Leibe

References and Further Reading

- A gentle introduction to Graph Cuts can be found in the following paper:
 - Y. Boykov, O. Veksler, <u>Graph Cuts in Vision and Graphics: Theories and Applications</u>. In *Handbook of Mathematical Models in Computer Vision*, edited by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006.

 Try the GraphCut implementation at https://pub.ist.ac.at/~vnk/software.html

