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Recap: MRF Structure for Images

* Basic structure @

Noisy observations

“True” image content

» Two components
— Observation model
= How likely is it that node z; has label L, given observation y,?
= This relationship is usually learned from training data.

— Neighborhood relations
= Simplest case: 4-neighborhood
= Serve as smoothing terms.
= Discourage neighboring pixels to have different labels.
= This can either be learned or be set to fixed “penalties”.
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Recap: How to

* Unary potentials
B(wi, i3 05) =log > O (s, k)p(kls) N (yi; G, )
k

= Learn color distributions for each label

lap =1,yp)

B(xp = 0,yp)

Course Outline

* Regression Techniques
— Linear Regression
— Regularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabilistic Graphical Models
— Bayesian Networks
— Markov Random Fields
— Inference (exact & approximate)

+ Deep Generative Models = - -
- Generative Adversarial Networks -[qmﬁ;] Iz} Lp(xlz}] -
— Variational Autoencoders - o0 o
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Recap: Energy Formulation

 Energy function

E(va)=z¢’(xiuyi) +ZW(Xi!Xj)

[ [ ——;
Single-node Pairwise
potentials potentials

« Single-node (unary) potentials ¢
— Encode local information about the given pixel/patch.
— How likely is a pixel/patch to belong to a certain class
(e.g. foreground/background)?

« Pairwise potentials y
— Encode neighborhood information.
— How different is a pixel/patch’s label from that of its neighbor?
(e.g. based on intensity/color/texture difference, edges)
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Recap: How to Set the Poten

« Pairwise potentials

— Potts Model
(i, 255 0p) = Oy6(z; # x;)
= Simplest discontinuity preserving model.

= Discontinuities between any pair of labels are penalized equally.
= Useful when labels are unordered or number of labels is small.

— Extension: “contrast sensitive Potts model”
(@i, w5, 9i5 (Y); O) = Ougi; (y)o(w: # ;)
where
—alyi-y:lf 2
g,(N=¢P1 p-2-aun(|y-y[)

= Discourages label changes except in places where there is also a large
change in the observations.
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Extension: Conditional Random Fields (CRF) Example: CRF for Image Segmentation

* Idea: Model conditional instead of joint probability * CRF structure

Pairwise potential Pixels Pairwise potential

B(Dxi, x5) ~._ D x5) ~.__

+~—— Labels

~—— Pixels

«—— Labels

Unary potential ——

Unary potential ——

G(D]x;) «~——— Prior Potts model AH(D|x; ) «~— Prior Potts model
» Energy formulation n
E(x)=Y_ | eDlx)+ 3 (@Dfxex;) +w{x %)) |+ const
ils JEN;
Unary likelihood Contrast Term Uniform Prior %
(Potts Model) Data (D) Unary likelihood Pair-wise Terms MAP Solution
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Energy Minimization Topics of This Lectu

* Solving MRFs with Graph Cuts
— Graph cuts for image segmentation

. . . — s-t mincut algorithm
» Many inference algorithms are available, e.g. — Graph construction

— Simulated annealing What you saw in the movie.

* Goal:
— Infer the optimal labeling of the MRF.

— Extension to non-binary case

— lterated conditional modes (ICM) Too simple. — Applications
— Belief propagation Lecture 9

— Graph cuts Today

— Variational methodg } For more complex problems

— Monte Carlo sampling

* Recently, Graph Cuts have become a popular tool
— Only suitable for a certain class of energy functions.
— But the solution can be obtained very fast for typical vision problems

(~1MPixel/sec).
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Graph Cuts — Basic ldea Graph Cuts for Binary Problem

+ Construct a graph such that: « Idea: convert MRF into source-sink graph
1. Any st-cut corresponds to an assignment of x t
) hard a cut
2. The cost of the cut is equal to the energy of x : F(x) . constraint
s st—r:mncut - =
V/tl hard
B constraint

Minimum cost cut can be
Solution computed in polynomial time

(max-flow/min-cut algorithms)

ide credit- Pushmeet Kohli [Bovkoy & Jolly ICCV'01




Simple Example of Energy

unary potentials pairwise potentials

E(L) = Y D,(L,) + Z‘;‘wpq.é‘(Lp #L,)
tlinks AN ks

t .
Dp(t)[ jacut
o
(=3
J D, (s) L, e{s/t}
’ S (binary object segmentation)
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Adding Regional Properties

Y

1 T
“expected” intensities of o,
object and baclfground D, (s) cexp (*II I,-1°|° /20 )

S
I"and | D, «coxp (-1, ~1' I 1267
can be re-estimated
EM-style optimization
RWTH
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Topics of This Lecture

* Solving MRFs with Graph Cuts
— Graph cuts for image segmentation
— s-t mincut algorithm
— Graph construction
— Extension to non-binary case
— Applications
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Adding Regional Properties

D,(®)

t-link

/

Regional bias example t
Suppose I° and 1" are given D.(s) o &xp (7”| “rp /202)
“expected” intensities ° R
of object and background D, (M) xep (-1, -1'I/207)

NOTE: hard constrains are not required, in general.
RWTH

Adding Regional Properties

* More generally, unary potentials can be based on any
intensity/color models of object and background.

Dy (Lp) = —logp(Ip|Ly)

L s acut
P %

Pl|s) etrsesss |

D, () 5 I,
Object and background color distributions

ide credit- Yuri Bovkoy,
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How Does it Work? The s-t-Mincut Problem

Graph (V, E, C)
Vertices V = {vy, v, ... v}
Edges E = {(vy, V) ...}
Costs C ={cq ) .-}
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The s-t-Mi Problem

What is an st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges
going from Sto T
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How to Compute the s-t-Mincut?

Solve the dual maximum flow problem

Compute the maximum flow between
Source and Sink

Constraints
Edges: Flow < Capacity
Nodes: Flow in = Flow out

Min-cut/Max-flow Theorem

In every network, the maximum flow
equals the cost of the st-mincut
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Maxflow Algorithms

Flow =0 Augmenting Path Based Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Adjust the capacity of the used
edges

4. Repeat until no path can be found
Algorithms assume non-negative capacity
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The s-t-Mi Problem

What is an st-cut?

An st-cut (S,T) divides the nodes
between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges
going fromSto T

What is the st-mincut?

2+1+4
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History of Maxflow Algorithms

Augmenting Path and Push-Relabel

year | discoverer(s) bound n: #nodes
1951 | Dantzig O(nmi’)

1955 | Ford & Fulkerson () m: #edges
1970 Dinitz ICD]

1972 | Edmonds & Karp O(m?logl) U: maximum

1973 | Dinitz o
1974 | Karzanow

1977 | Cherkassky

1980 | Galil & Naamad
1983 | Sleator & Tarjan
1986 | Goldberg & Tarjan
1987 | Ahuja & Orin
1987 | Ahuja et al

1989 | Cheriyan & Hagerup | E(nm + 12 100 n)
1990 | Cheriyan et al. G(n¥/logn)

1950 Alon G + 177 log n)
1992 | King et al. Olnm + n2+7)
1993 | Phillips & Westbraok | O(nm(log,
1994 | King et al. a

1997 | Goldberg & Rac

log )

edge weight

3 Algorithms
n+10g" 0y assume non-
L negative edge
log 1) weights
RWTH

[
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Maxflow Algorithms

Flow =0 Augmenting Path Based Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Adjust the capacity of the used
edges

4. Repeat until no path can be found
Algorithms assume non-negative capacity
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Maxflow Algorithms

Flow=0+2 Augmenting Path Based Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Adjust the capacity of the used
edges

4. Repeat until no path can be found
Algorithms assume non-negative capacity
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Maxflow Algorithms

Flow =2 Augmenting Path Based Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Adjust the capacity of the used
edges

4. Repeat until no path can be found

Algorithms assume non-negative capacity
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Maxflow Algorithms

Flow=2+4 Augmenting Path Based Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Adjust the capacity of the used
edges

4. Repeat until no path can be found
Algorithms assume non-negative capacity
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s ) pe—

Kohli

Maxflow Algorithms

Flow =2 Augmenting Path Based Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Adjust the capacity of the used

“Residual edges and record “residual flows”
flows”

4. Repeat until no path can be found
Algorithms assume non-negative capacity

| Prot O BatianLoie RWTH
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Maxflow Algorithms

Flow = 2 Augmenting Path Based Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Adjust the capacity of the used
edges

4. Repeat until no path can be found
Algorithms assume non-negative capacity

Maxflow Algorithms

Flow =6 Augmenting Path Based Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Adjust the capacity of the used
edges

4. Repeat until no path can be found
Algorithms assume non-negative capacity
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Maxflow Algorithms

Flow =6 Augmenting Path Based Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Adjust the capacity of the used
edges

4. Repeat until no path can be found
Algorithms assume non-negative capacity
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Maxflow Algorithms

Flow =7 Augmenting Path Based Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Adjust the capacity of the used
edges

4. Repeat until no path can be found
Algorithms assume non-negative capacity
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Applications: Maxflow in Computer Vision

* Specialized algorithms for vision I

problems

— Grid graphs
— Low connectivity (m ~ O(n))

x; €T

+ Dual search tree augmenting path algorithm !

[Boykov and Kolmogorov PAMI 2004]

— Finds approximate shortest augmenting
paths efficiently.

— High worst-case time complexity.

— Empirically outperforms other
algorithms on vision problems. ®C O O GO0

- Efficient code available on the web -~ =O=0=0 0 O =0 ©
http://pub.ist.ac.at/~vnk/software.html = 020202020,

O~ O~

ﬁ 5V
de credit: Kohli

Maxflow Algorithms

Augmenting Path Based Algorithms

Flow=6+1

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Adjust the capacity of the used
edges

4. Repeat until no path can be found
Algorithms assume non-negative capacity
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Maxflow Algorithms

Flow=7 Augmenting Path Based Algorithms

1. Find path from source to sink with
positive capacity

2. Push maximum possible flow
through this path

3. Adjust the capacity of the used
edges

4. Repeat until no path can be found
Algorithms assume non-negative capacity
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When Can s-t Graph Cuts Be Applied?

unary potentials pairwise potentials
E(L) = > E,(L,) + D E(L,L,)
® inks PN s L, e{s,t}

« s-t graph cuts can only globally minimize binary energies that
are submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

E(L) can be minimized by ‘ < [E(5,9)+EY) <E(s.)+E(t9)]

s-t graph cuts

Submodularity  (“convexity”)

« Submodularity is the discrete equivalent to convexity.
— Implies that every local energy minimum is a global minimum.
= Solution will be globally optimal.

® = ™M



http://pub.ist.ac.at/~vnk/software.html

Topics of This Lecture

* Solving MRFs with Graph Cuts
— Graph cuts for image segmentation ® @
— s-t mincut algorithm N
— Graph construction
— Extension to non-binary case
— Applications
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Example: Graph Construction

E(ay,az) = 20,

Source (0)

2

a1© O ay

B s«
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Example: Graph Construction

E(al.az) = 2ay + 5@; + 9as + 4a-

Source (0)

2 9

ay O a,

N/

B s«
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Example: Graph Construction

Ela,a2)

. Source (0)
ay O O a

B s

Visual Computing Institute | Prof. Dr . Bastian Leibe
Advanced Machine Learning
Part 11 - Graphical Models V

ide credit: Pushmeet Kohli

Example: Graph Construction

E(ay,ay) = 2a, + 54,

Source (0)

2

alo O ay
5

B s
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Example: Graph Construction

E(al,ﬂ.g) = 2a; + 5a; + 9as + 4as + a1 a-

Source (0)

Visual Computing ntiute| rot,Dr . Bastan Lobe
Raanced Machine Loaring ) —
Part 1 < Grapica Mool v

ide credit- Pushmeet Kohli




Example: Graph Construction

E(al,ag) = 2a, + 5@, + 9as + 4@y + a1d@s + 20,0

Source (0)
2 9
1
ay 04_ ay
2
5 4

B s«
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Example: Graph Construction

E(ay,a2) = 2a; + 5a, + 9as + 4> + ayay + 2a,a,

Source (0)

Cost of cut =11

1
e — —
@) w [la=la

2

5 4

B s«
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E(1,1) =11

How Does the Code Look Like?

Graph *g;
For all pixels p

/* Add a node to the graph */
nodelD(p) = g->add_node();

. Source (0)

/* Set cost of terminal edges */
set_weights(nodelD(p), fgCost(p), bgCost(p));

end
for all adjacent pixels p,q

add_weights(nodelD(p), nodelD(q), cost);
end

g->compute_maxflow(); . Sink (1)
label_p = g->is_connected_to_source(nodelD(p));

// is the label of pixel p (0 or 1)
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Example: Graph Construction

E(al,ag) = 2a) + 5a; + 9as + 4as + a ds + 2a,a2

Source (0)
2 9
1
a, 04_ ay
2
5 4

B s
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Example: Graph Construction

E(ay,a9) = 2a; + 5a, + 9ay + 4@, + a,a, + 2a,a»

Source (0)

Cost of cut =7 ‘

"1
—'_y
Ay & E(10)=7

B s
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How Does the Code Look Like!

Graph *g;
For all pixels p

/* Add a node to the graph */ Source (0)
nodelD(p) = g->add_node();

/* Set cost of terminal edges */ bgCost(a,) bgCost(a,)
set_weights(nodelD(p), fgCost(p), bgCost(p));

end
a; O )

for all adjacent pixels p,q
add_weights(nodelD(p), nodelD(q), cost);
end fgCost(a,) fgCost(a,)

g->compute_maxflow(); . Sink (1)
label_p = g->is_connected_to_source(nodelD(p));

// is the label of pixel p (0 or 1)
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How Does the Code Look Like?

Graph *g;
For all pixels p

/* Add a node to the graph */ Source (0)

nodelD(p) = g->add_node();

/* Set cost of terminal edges */ bgCost(a,) bgCost(a,)

set_weights(nodelD(p), fgCost(p), bgCost(p));

cost(p,q)
end
a1 Oq— a2

for all adjacent pixels p,q

add_weights(nodelD(p), nodelD(q), cost);
end fgCost(a,) fgCost(a,)
g->compute_maxflow(); . Si

ink (1)

label_p = g->is_connected_to_source(nodelD(p));

// is the label of pixel p (0 or 1)
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Topics of This Lecture

* Solving MRFs with Graph Cuts
— Graph cuts for image segmentation
— s-t mincut algorithm
— Graph construction
— Extension to non-binary case
— Applications
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* Basic idea:
— Break multi-way cut computation into a sequence of
binary s-t cuts.

de credit Yuri Bovkg

How Does the Code Look Lik

Graph *g;
For all pixels p

/* Add a node to the graph */ Source (0)

nodelD(p) = g->add_node();

/* Set cost of terminal edges */ bgCost(a,) bgCost(a,)

set_weights(nodelD(p), fgCost(p), bgCost(p));
end
for all adjacent pixels p,q

add_weights(nodelD(p), nodelD(q), cost);
end
g->compute_maxflow();

label_p = g->is_connected_to_source(nodelD(p));

// is the label of pixel p (0 or 1)
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Dealing with Non-Binary Cases

« Limitation to binary energies is often a nuisance.
= E.g. binary segmentation only...

« We would like to solve also multi-label problems.
— The bad news: Problem is NP-hard with 3 or more labels!

» There exist some approximation algorithms which extend
graph cuts to the multi-label case:
— a-Expansion
— aff-Swap

* They are no longer guaranteed to return the globally optimal
result.

— But a-Expansion has a guaranteed approximation quality
(2-approx) and converges in a few iterations.
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a-Expansion Algorithm

1. Start with any initial solution

2. Foreach label “a” in any (e.g. random) order:
1. Compute optimal a-expansion move (s-t graph cuts).
2. Decline the move if there is no energy decrease.

3. Stop when no expansion move would decrease energy.
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Example: Stereo Vision

Depth map

Original pair of “stereo” images
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Topics of This Lecture

* Solving MRFs with Graph Cuts
— Graph cuts for image segmentation
— s-t mincut algorithm
— Extension to non-binary case
— Applications
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a-Expansion Moves

— In each a-expansion a given label “o” grabs space from other labels

initial solution
@ -expansion

@ -expansion

@ -expansion

@ -expansion

For each move, we choose the expansion that gives the largest
decrease in the energy: = binary optimization problem
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GraphCut Applications: “GrabCut”

« Interactive Image Segmentation [Boykov & Jolly, ICCV'01]
— Rough region cues sufficient

— Segmentation boundary can be extracted from edges
* Procedure
— User marks foreground and background regions with a brush.
— This is used to create an initial segmentation
which can then be corrected by additional brush strokes.

—

— ._,?

Additional

segmentation J 5
cues L

User segmentation cues

GrabCut: Data Model
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Foreground

Background
color

color

i X . X Global optimum of the
* Obtained from interactive user input

energy
— User marks foreground and background regions with a brush

— Alternatively, user can specify a bounding box
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Iterated Graph Cuts

R =

Foreground

Background G

Color model

(Mixture of Gaussians)

Result

1 2 3 4
Energy after
each jteration

(9 i |

10



€ Example Results

This is included in all MS Office versions since 2010!
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Image source: Carsten Rother]

References and Further Reading

A gentle introduction to Graph Cuts can be found in the
following paper:

— Y. Boykov, O. Veksler, Graph Cuts in Vision and Graphics: Theories and
Applications. In Handbook of Mathematical Models in Computer Vision, edited
by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006.

* Try the GraphCut implementation at
http:/pub.ist.ac.at/~vnk/software.html|
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Applications: Interactive 3D Segmentation
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http://www.csd.uwo.ca/~yuri/Papers/chapter_04.pdf
http://pub.ist.ac.at/~vnk/software.html

