Advanced Machine Learning Summer 2019

Part 11 – Graphical Models V 15.05.2019

Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

Course Outline

- Regression Techniques
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
- Deep Reinforcement Learning
- Probabilistic Graphical Models
 - Bayesian Networks
 - Markov Random Fields
 - Inference (exact & approximate)
- Deep Generative Models
 - Generative Adversarial Networks
 - Variational Autoencoders

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Recap: MRF Structure for Images

Basic structure

Noisy observations

"True" image content

- Two components
 - Observation model
 - How likely is it that node x_i has label L_i given observation y_i ?
 - This relationship is usually learned from training data.
 - Neighborhood relations
 - Simplest case: 4-neighborhood
 - Serve as smoothing terms.
 - \Rightarrow Discourage neighboring pixels to have different labels.
 - This can either be learned or be set to fixed "penalties".

Recap: Energy Formulation

Energy function

$$E(x, y) = \sum_{i} \varphi(x_i, y_i)$$

$$+\sum_{i,j}\psi(x_i,x_j)$$

Single-node potentials

Pairwise potentials

 $\varphi(x_i, y)$

- Single-node (unary) potentials φ
 - Encode local information about the given pixel/patch.
 - How likely is a pixel/patch to belong to a certain class (e.g. foreground/background)?
- Pairwise potentials ψ
 - Encode neighborhood information.
 - How different is a pixel/patch's label from that of its neighbor? (e.g. based on intensity/color/texture difference, edges)

Recap: How to Set the Potentials?

- Unary potentials
 - E.g. color model, modeled with a Mixture of Gaussians

$$\phi(x_i, y_i; \theta_{\phi}) = \log \sum_k \theta_{\phi}(x_i, k) p(k|x_i) \mathcal{N}(y_i; \bar{y}_k, \Sigma_k)$$

 \Rightarrow Learn color distributions for each label

$$\phi(x_p = 1, y_p)$$

Institute

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

 $\varphi(x_i, y_i)$

Recap: How to Set the Potentials?

- Pairwise potentials
 - Potts Model

$$\psi(x_i, x_j; \theta_{\psi}) = \theta_{\psi} \delta(x_i \neq x_j)$$

- Simplest discontinuity preserving model.
- Discontinuities between any pair of labels are penalized equally.
- Useful when labels are unordered or number of labels is small.
- Extension: "contrast sensitive Potts model"

$$\psi(x_i, x_j, g_{ij}(y); \theta_{\psi}) = \theta_{\psi} g_{ij}(y) \delta(x_i \neq x_j)$$

where

$$g_{ij}(y) = e^{-\beta \|y_i - y_j\|^2}$$
 $\beta = 2 \cdot avg(\|y_i - y_j\|^2)$

 Discourages label changes except in places where there is also a large change in the observations.

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

 $\varphi(x_i, y_i)$

Extension: Conditional Random Fields (CRF)

Idea: Model conditional instead of joint probability

Energy formulation

$$E(\mathbf{x}) = \sum_{i \in S} \left(\phi(\mathbf{D} | \mathbf{x}_i) + \sum_{j \in N_i} (\phi(\mathbf{D} | \mathbf{x}_i, \mathbf{x}_j) + \psi(\mathbf{x}_i, \mathbf{x}_j)) \right) + \text{const}$$
Unary likelihood Contrast Term Uniform Prior
(Potts Model)
Visual Computing Institute | Prof. Dr. Bastian Leibe
Advanced Machine Learning
Part 11 – Graphical Models V

Slide credit: Phil Torr

Example: CRF for Image Segmentation

CRF structure

Data (D)

11

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Unary likelihood

Slide credit: Phil Torr

Pair-wise Terms

MAP Solution

Energy Minimization

- Goal:
 - Infer the optimal labeling of the MRF.
- Many inference algorithms are available, e.g.
 - Simulated annealing
 - Iterated conditional modes (ICM)
 - Belief propagation
 - Graph cuts
 - Variational methods
 - Monte Carlo sampling

What you saw in the movie. Too simple. Lecture 9 Today For more complex problems

- Recently, Graph Cuts have become a popular tool
 - Only suitable for a certain class of energy functions.
 - But the solution can be obtained very fast for typical vision problems (~1MPixel/sec).

Topics of This Lecture

- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Graph construction
 - Extension to non-binary case
 - Applications

Graph Cuts – Basic Idea

- Construct a graph such that:
 - 1. Any st-cut corresponds to an assignment of ${\bf x}$
 - 2. The cost of the cut is equal to the energy of \mathbf{x} : $E(\mathbf{x})$

Solution

Slide credit: Pushmeet Kohli

Graph Cuts for Binary Problems

Idea: convert MRF into source-sink graph

Minimum cost cut can be computed in polynomial time

(max-flow/min-cut algorithms)

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Simple Example of Energy

(binary object segmentation)

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide adapted from Yuri Boykov

Adding Regional Properties

Regional bias example Suppose I^s and I^t are given "expected" intensities of object and background

NOTE: hard constrains are not required, in general.

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Yuri Boykov

17

[Boykov & Jolly, ICCV'01]

Adding Regional Properties

"expected" intensities of object and background I^s and I^t can be re-estimated

EM-style optimization

 $D_p(t)$

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Yuri Boykov

18

[Boykov & Jolly, ICCV'01]

a cut

Flink

 $D_p(s)$

Adding Regional Properties

• More generally, unary potentials can be based on any intensity/color models of object and background.

$$D_p(L_p) = -\log p(I_p|L_p)$$

$$p(I_p|t)$$

$$p(I_p|s)$$

Object and background color distributions

Topics of This Lecture

- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Graph construction
 - Extension to non-binary case
 - Applications

Graph (V, E, C)

Institute

Vertices $V = \{v_1, v_2 ... v_n\}$ Edges $E = \{(v_1, v_2) \dots\}$ Costs $C = \{C_{(1, 2)} \dots\}$

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

The s-t-Mincut Problem

What is an st-cut?

An st-cut (S,T) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from S to T

5 + 2 + 9 = 16

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

The s-t-Mincut Problem

2 + 1 + 4 = 7

23

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

What is an st-cut?

An st-cut (S,T) divides the nodes between source and sink.

What is the cost of a st-cut?

Sum of cost of all edges going from S to T

What is the st-mincut?

st-cut with the minimum cost

How to Compute the s-t-Mincut?

Solve the dual maximum flow problem

Compute the maximum flow between Source and Sink

Constraints

Edges: Flow < Capacity

Nodes: Flow in = Flow out

Min-cut/Max-flow Theorem

In every network, the maximum flow equals the cost of the st-mincut

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

Augmenting Path and Push-Relabel

year	discoverer(s)	bound
1951	Dantzig	$O(n^2mU)$
1955	Ford & Fulkerson	$O(m^2 U)$
1970	Dinitz	$O(n^2m)$
1972	Edmonds & Karp	$O(m^2 \log U)$
1973	Dinitz	$O(nm \log U)$
1974	Karzanov	$O(n^3)$
1977	Cherkassky	$O(n^2m^{1/2})$
1980	Galil & Naamad	$O(nm\log^2 n)$
1983	Sleator & Tarjan	$O(nm\log n)$
1986	Goldberg & Tarjan	$O(nm\log(n^2/m))$
1987	Ahuja & Orlin	$O(nm + n^2 \log U)$
1987	Ahuja et al.	$O(nm\log(n\sqrt{\log U}/m))$
1989	Cheriyan & Hagerup	$E(nm + n^2 \log^2 n)$
1990	Cheriyan et al.	$O(n^3/\log n)$
1990	Alon	$O(nm + n^{8/3} \log n)$
1992	King et al.	$O(nm + n^{2+\epsilon})$
1993	Phillips & Westbrook	$O(nm(\log_{m/n} n + \log^{2+\epsilon} n))$
1994	King et al.	$O(nm \log_{m/(n \log n)} n)$
1997	Goldberg & Rao	$O(m^{3/2}\log(n^2/m)\log U)$
		$O(n^{2/3}m\log(n^2/m)\log U)$

n: #nodes *m*: #edges *U*: maximum edge weight

Algorithms assume nonnegative edge weights

Visual Computing

Institute

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Andrew Goldberg

Flow = 0

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Adjust the capacity of the used edges
- 4. Repeat until no path can be found

Algorithms assume non-negative capacity

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

Flow = 0

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Adjust the capacity of the used edges
- 4. Repeat until no path can be found

Algorithms assume non-negative capacity

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

Flow = 0 + 2

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Adjust the capacity of the used edges
- 4. Repeat until no path can be found

Algorithms assume non-negative capacity

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

Flow = 2

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Adjust the capacity of the used edges and record "residual flows"
- 4. Repeat until no path can be found

Algorithms assume non-negative capacity

29

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

Flow = 2

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Adjust the capacity of the used edges
- 4. Repeat until no path can be found

Algorithms assume non-negative capacity

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

Flow = 2

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Adjust the capacity of the used edges
- 4. Repeat until no path can be found

Algorithms assume non-negative capacity

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

Flow = 2 + 4

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Adjust the capacity of the used edges
- 4. Repeat until no path can be found

Algorithms assume non-negative capacity

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

Flow = 6

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Adjust the capacity of the used edges
- 4. Repeat until no path can be found

Algorithms assume non-negative capacity

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

Flow = 6

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Adjust the capacity of the used edges
- 4. Repeat until no path can be found

Algorithms assume non-negative capacity

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

Flow = 6 + 1

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Adjust the capacity of the used edges
- 4. Repeat until no path can be found

Algorithms assume non-negative capacity

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

Flow = 7

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Adjust the capacity of the used edges
- 4. Repeat until no path can be found

Algorithms assume non-negative capacity

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

Augmenting Path Based Algorithms

- 1. Find path from source to sink with positive capacity
- 2. Push maximum possible flow through this path
- 3. Adjust the capacity of the used edges
- 4. Repeat until no path can be found

Algorithms assume non-negative capacity

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

Applications: Maxflow in Computer Vision

- Specialized algorithms for vision problems
 - Grid graphs
 - Low connectivity (m ~ O(n))

- Finds approximate shortest augmenting paths efficiently.
- High worst-case time complexity.
- Empirically outperforms other algorithms on vision problems.
- Efficient code available on the web http://pub.ist.ac.at/~vnk/software.html

 x_i

Visual Computing Institute | Prof. Dr . Bastian Leibe **Advanced Machine Learning** Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

When Can s-t Graph Cuts Be Applied?

$$\begin{split} & \text{unary potentials} \\ E(L) &= \sum_{p} E_p(L_p) + \sum_{pq \in N} E(L_p, L_q) \\ & \text{t-links} \\ & \text{n-links} \\ L_p \in \{s, t\} \end{split}$$

 s-t graph cuts can only globally minimize binary energies that are submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

$$E(L) \text{ can be minimized by} \\ s-t \text{ graph cuts} \longleftrightarrow E(s,s) + E(t,t) \le E(s,t) + E(t,s) \\ \text{Submodularity} \quad (\text{``convexity''})$$

- Submodularity is the discrete equivalent to convexity.
 - Implies that every local energy minimum is a global minimum.
 - \Rightarrow Solution will be globally optimal.

Topics of This Lecture

- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Graph construction
 - Extension to non-binary case
 - Applications

 $E(a_1, a_2)$

41

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

$$E(a_1, a_2) = 2a_1$$

42

Slide credit: Pushmeet Kohli

$$E(a_1, a_2) = 2a_1 + 5\bar{a}_1$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

$$E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

$$E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + a_1\bar{a}_2$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

$$E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + a_1\bar{a}_2 + 2\bar{a}_1a_2$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

$$E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + a_1\bar{a}_2 + 2\bar{a}_1a_2$$

47

Slide credit: Pushmeet Kohli

$$E(a_1, a_2) = 2\mathbf{a_1} + 5\bar{a}_1 + 9\mathbf{a_2} + 4\bar{a}_2 + a_1\bar{a}_2 + 2\bar{a}_1a_2$$

Visual Computing

Institute

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

$$E(a_1, a_2) = 2a_1 + 5\bar{a}_1 + 9a_2 + 4\bar{a}_2 + a_1\bar{a}_2 + 2\bar{a}_1a_2$$

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Pushmeet Kohli

Graph *g;

For all pixels p

```
/* Add a node to the graph */
nodeID(p) = g->add_node();
```

```
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
```

end

```
g->compute_maxflow();
```

```
label_p = g->is_connected_to_source(nodeID(p));
```

// is the label of pixel p (0 or 1)

50

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V Slide credit: Pushmeet Kohli

Graph *g;

For all pixels p

```
/* Add a node to the graph */
nodeID(p) = g->add_node();
```

```
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
```

end

```
g->compute_maxflow();
```

label_p = g->is_connected_to_source(nodeID(p));

// is the label of pixel p (0 or 1)

51

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V Slide credit: Pushmeet Kohli

Graph *g;

For all pixels p

```
/* Add a node to the graph */
nodeID(p) = g->add_node();
```

```
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
```

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));

// is the label of pixel p (0 or 1)

52 Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V Slide credit: Pushmeet Kohli

Graph *g;

For all pixels p

```
/* Add a node to the graph */
nodeID(p) = g->add_node();
```

```
/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));
```

end

```
g->compute_maxflow();
```

```
label_p = g->is_connected_to_source(nodeID(p));
```

```
// is the label of pixel p (0 or 1)
```

```
53 Visual Computing Institute | Prof. Dr . Bastian Leibe
Advanced Machine Learning
Part 11 – Graphical Models V
Slide credit: Pushmeet Kohli
```


Topics of This Lecture

- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Graph construction
 - Extension to non-binary case
 - Applications

Dealing with Non-Binary Cases

- Limitation to binary energies is often a nuisance.
 ⇒ E.g. binary segmentation only...
- We would like to solve also multi-label problems. – The bad news: Problem is NP-hard with 3 or more labels!
- There exist some approximation algorithms which extend graph cuts to the multi-label case:
 - $-\alpha$ -Expansion
 - $-\alpha\beta$ -Swap

- They are no longer guaranteed to return the globally optimal result.
 - But α -Expansion has a guaranteed approximation quality (2-approx) and converges in a few iterations.

α -Expansion Move

- Basic idea:
 - Break multi-way cut computation into a sequence of binary s-t cuts.

Slide credit: Yuri Boykov

α -Expansion Algorithm

- 1. Start with any initial solution
- 2. For each label " α " in any (e.g. random) order:
 - 1. Compute optimal α -expansion move (s-t graph cuts).
 - 2. Decline the move if there is no energy decrease.
- 3. Stop when no expansion move would decrease energy.

Example: Stereo Vision

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Yuri Boykov

Depth map

α -Expansion Moves

– In each α -expansion a given label " α " grabs space from other labels

For each move, we choose the expansion that gives the largest decrease in the energy: \Rightarrow binary optimization problem

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Yuri Boykov

Topics of This Lecture

- Solving MRFs with Graph Cuts
 - Graph cuts for image segmentation
 - s-t mincut algorithm
 - Extension to non-binary case
 - Applications

GraphCut Applications: "GrabCut"

- Interactive Image Segmentation [Boykov & Jolly, ICCV'01]
 - Rough region cues sufficient
 - Segmentation boundary can be extracted from edges
- Procedure
 - User marks foreground and background regions with a brush.
 - This is used to create an initial segmentation which can then be corrected by additional brush strokes.

Slide credit: Matthieu Bray

GrabCut: Data Model

• Obtained from interactive user input

Global optimum of the energy

- User marks foreground and background regions with a brush
- Alternatively, user can specify a bounding box

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V Slide credit: Carsten Rother

Iterated Graph Cuts

Color model (Mixture of Gaussians)

Result

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

Slide credit: Carsten Rother

GrabCut: Example Results

This is included in all MS Office versions since 2010!

64

UNIVERSITY

Image source: Carsten Rother

Applications: Interactive 3D Segmentation

Slide credit: Yuri Boykov

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 11 – Graphical Models V

[Y. Boykov, V. Kolmogorov, ICCV'03]

References and Further Reading

- A gentle introduction to Graph Cuts can be found in the following paper:
 - Y. Boykov, O. Veksler, <u>Graph Cuts in Vision and Graphics: Theories and</u> <u>Applications</u>. In *Handbook of Mathematical Models in Computer Vision*, edited by N. Paragios, Y. Chen and O. Faugeras, Springer, 2006.

• Try the GraphCut implementation at http://pub.ist.ac.at/~vnk/software.html

