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Topics of This Lecture

* Approximate Inference
— Variational methods
— Sampling approaches

» Sampling approaches
— Sampling from a distribution
— Ancestral Sampling
— Rejection Sampling
— Importance Sampling

+ Markov Chain Monte Carlo
— Markov Chains
— Metropolis Algorithm
— Metropolis-Hastings Algorithm
— Gibbs Sampling
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Two Classes of Approximation Schemes

+ Deterministic approximations (Variational methods)
— Based on analytical approximations to the posterior distribution
= E.g. by assuming that it factorizes in a certain form
= Orthatit has a certain parametric form (e.g., a Gaussian).
= Can never generate exact results, but are often scalable to large
applications.

« Stochastic approximations (Sampling methods)
— Given infinite computationally resources, they can generate exact
results.
— Approximation arises from the use of a finite amount of processor time.
= Enable the use of Bayesian techniques across many domains.
= But: computationally demanding, often limited to small-scale problems.
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Course Outline

* Regression Techniques
— Linear Regression
— Regularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabilistic Graphical Models
— Bayesian Networks
— Markov Random Fields
— Inference (exact & approximate)

+ Deep Generative Models = - -
- Generative Adversarial Networks ! -[qmﬁ;] Iz} Lp(xlz}] -
- Variational Autoencoders - .
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Approximate Inference

» Exact Bayesian inference is often intractable.
— Often infeasible to evaluate the posterior distribution or to compute
expectations w.r.t. the distribution.
= E.g. because the dimensionality of the latent space is too high.
= Or because the posterior distribution has a too complex form.

— Problems with continuous variables
= Required integrations may not have closed-form solutions.

— Problems with discrete variables
= Marginalization involves summing over all possible configurations of the
hidden variables.
= There may be exponentially many such states.

= We need to resort to approximation schemes.

Visual Computing Insttute| Prof, Dr . Bastian Leibe
Advanced Machine Learning () -
Part 12 - Approximate nference | s

Topics of This Lectu

« Sampling approaches
— Sampling from a distribution
— Ancestral Sampling
— Rejection Sampling
— Importance Sampling
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Sampling Idea

* Objective:
— Evaluate expectation of a function f(z)
w.r.t. a probability distribution p(z).
Bi71 = [ fan(a)da
+ Sampling idea
— Draw L independent samples z® with [ = 1,...,L from p(z).
— This allows the expectation to be approximated by a finite sum

A1Ll
:L;ﬂﬂ

=1
— As long as the samples z() are drawn independently from p(z), then

= Unbiased estimate, independent of the dimension of z!

kL7 — i) —_—
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Parametric Density Model

* Example:
— A simple multivariate (d-dimensional) Gaussian model

p(xlp, X) = Wexp {%(x )T (x - ,L)}

— This is a “generative” model 5o °
in the sense that we can generate 2ok "
samples x according to the YA
distribution. ﬁ 5

ém
5 o8
o
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Sampling from a pdf (Transformation method)

* In general, assume we are given the pdf p(x) and the
corresponding cumulative distribution:
F(z) = / p(z)dz

— To draw samples from this pdf, we can invert the cumulative distribution

function:
u ~ Uniform(0,1) = F~!(u) ~ p(z)
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Sampling — Challenges

* Problem 1: Samples might not be independent
= Effective sample size might be much smaller than apparent
sample size.

* Problem 2:
— If f(z) is small in regions where p(z) is large and vice versa, the
expectation may be dominated by regions of small probability.
= Large sample sizes necessary to achieve sufficient accuracy.
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Sampling from a Gaussian

* Given:
— 1-dim. Gaussian pdf p(x|u,02) and the corresponding cumulative
T

distribution: 5
Fpr@) = [ plalu. )i
—00

— To draw samples from a Gaussian, we can invert the cumulative
distribution function:

w~ Uniform(0,1) = Fy L(w) ~ plelps o)
[\

o
/

i/

plalu,0%)

irhowogor
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Example 1: Sampling from Exponential Distrib.

16

« Exponential Distribution o

13

ply) =Aexp(-Ny)  z7

where 0 < y < co.

« Transformation sampling

— Indefinite Integral hiy)=1- exp(—,\y)

— Inverse function
y=hy) ' =-A"n(l-2)

for a uniformly distributed input variable z.
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Example 2: Sampling from Cau Distrib. Note: Efficient Sampling from a Gaussian
¢ e 1

* Problem with transformation method
— Integral over Gaussian cannot be expressed
in analytical form.

— Standard transformation approach is very
inefficient.
1

» More efficient: Box-Muller Algorithm
* Transformation sampling — Generate pairs of uniformly distributed random numbers
— Inverse of integral can be expressed as a tan function. zu2, € ((1.1).
1 — Discard each pair unless it satisfies r’ = zf + zﬁ <1
y= h(y) = tan () — This leads to a uniform distribution of points inside the unit circle with
p(z,,2,) = U,

» Cauchy Distribution

4

1
ply) = ;Ty”

for a uniformly distributed input variable z.
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Box-Muller Algorithm (cont’d) Box-Muller Algorithm (cont'd)
* Box-Muller Algorithm (cont'd) r? = zf + 22 « Multivariate extension
— For each pair z,,z, evaluate - If z is a vector valued random variable whose components are
—2Inr2\ 12 _olnr2\ V2 independent and Gaussian distributed with A{0,1),
h== 7z =2 2 — Then y = p1 + Lz will have mean y and covariance X.
— =LLTi iti
~ Then the joint distribution of y, and y, is given by Where £ = LL' is the Cholesky decomposition of X.
3(z1,22)
PyLY2) = PlEny22) | 50—
(ow) = 2l |50, 5
| eelostr2] [ emt-ui2)]
= |——=exp(— —— exp(—
\/ﬁ PL—U1 \/ﬁ Pl—2

= y, and y, are independent and each has a Gaussian distribution
with mean p and variance o2.

—If y~MN0,1), then oy + p ~ Nu,02).
(9 Ezi
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General Advice Ancestral Sampling

« Generalization of this idea to directed graphical models.

« Use library functions whenever
possible — Joint probability factorizes into conditional probabilities: .
— Many efficient algorithms available i = 9\

p(x) = | plaxlpay) QJ
k=1

for known univariate distributions
(and some other special cases)
» Ancestral sampling
— Assume the variables are ordered such that there are no links from any
node to a lower-numbered node.
— Start with lowest-numbered node and draw a sample from its

distribution. i1 ~ p(a)

— This book (free online) explains
how some of them work

— http://www.nrbook.com/devroye/

— Cycle through each of the nodes in order and draw samples from the
conditional distribution (where the parent variable is set to its sampled

value).

T ~ p(rn|pan)
RWTH
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Logic Sampling

 Extension of Ancestral sampling

— Directed graph where some nodes are instantiated
with observed values.

» Use ancestral sampling, except
— When sample is obtained for an observed variable, if they agree
then sample value is retained and proceed to next variable.
— If they don’t agree, whole sample is discarded.

* Result
— Approach samples correctly from the posterior distribution.
— However, probability of accepting a sample decreases rapidly as
the number of observed variables increases.
= Approach is rarely used in practice.
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Rejection Sampling

» Assumptions
— Sampling directly from p(z) is difficult.
— But we can easily evaluate p(z) (uplx to some normalization factor Z,):
© ldea pe) = 7i(2)
— We need some simpler distribution ¢(z) (called proposal distribution)
from which we can draw samples.
— Choose a constant k such that: Vz: kq(z) > p(z)
kq(z)
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Rejection Sampling — Discussion

« Limitation: high-dimensional spaces
— For rejection sampling to be of practical value, we require that kq(z) be
close to the required distribution, so that the rate of rejection is minimal.

« Artificial example
— Assume that p(z) is Gaussian with covariance matrix o4/
— Assume that q(z) is Gaussian with covariance matrix o3/
— Obviously: 62 > o7 7
—In D dimensions: k = (¢,/0,)°.
= Assume o, is just 1% larger than g,
= D =1000 = k = 1.01%% > 20,000

1
= And —_ ok . |
placcept) < 30000 .

= Impractical to find good proposal distributions for high dimensions!

de credit- Berpt Schiele. lmage source C M. _Bishop, 200¢

* Transformation method
— Limited applicability, as we need to invert the indefinite integral of the
required distribution p(z).
— This will only be feasible for a limited number of simple distributions.

* More general

— Rejection Sampling
— Importance Sampling
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Rejection Sampling

* Sampling procedure
— Generate a number z, from g(z).
— Generate a number u, from the
uniform distribution over [0,kq(z,)].
—1If uo > P(20) reject sample, otherwise accept.
= Sample is rejected if it lies in the grey shaded area.
+ The remaining pairs (u,,z,) have uniform distribution under the curve p(z).

« Discussion
— Original values of z are generated from the distribution ¢(z).
— Samples are accepted with probability p(z)/kq(z)
placcept) = f %q(z}dz = % .[ﬁ(z)dz
= k should be as small as possible!
RWTH
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Example: Sampling from a Gamma Distrib.

« Gamma distribution
Gam(z

1 (L, 1—
a,b) = ITE} z lexp(—bz) @1

a)
 Rejection sampling approach
— For a>1, Gamma distribution has a
bell-shaped form.
— Suitable proposal distribution is
Cauchy (for which we can use
the transformation method). N
— Generalize Cauchy slightly to ensure o oo 30
it is nowhere smaller than Gamma: y = b tan y + ¢ for uniform y.
— This gives random numbers distributed according to
a(z) = k with optimal ‘
1+ (z - c)iﬂ,‘l rejection rate for o= 21

c =a—1
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Evaluating Expectations

+ Motivation
— Often, our goal is not sampling from p(z) by itself, but to evaluate
expectations of the form

Elf) = [ ratada
 Simplistic strategy: Grid sampling

— Discretize z-space into a uniform grid.
— Evaluate the integrand as a sum of the form
L

E[f] =Y f(z")p(z")dz
=1

— Problem: number of terms grows exponentially with number
of dimensions!
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Importance Sampling

* Typical setting:
— p(z) can only be evaluated up to an unknown normalization
constant p(z) = p(z)/Z,
— ¢(z) can also be treated in a similar fashion.
a(z) = 4(2)/2,

— Then
53 q(z)dz

—
-Qr|"Br

Blf] = [ fwiada - j— [ 1@

— with: T = (z(l)
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Importance Sampling — Discussion

* Observations
— Success of importance sampling depends crucially on how well the
sampling distribution ¢(z) matches the desired distribution p(z).
— Often, p(z) f(z) is strongly varying and has a significant propor-tion of
its mass concentrated over small regions of z-space.
= Weights r; may be dominated by a few weights having large values.

— Practical issue: if none of the samples falls in the regions where

p(z) f(z) is large...
= The results may be arbitrary in error.
= And there will be no diagnostic indication (no large variance in r;) !

— Key requirement for sampling distribution ¢(z):
= Should not be small or zero in regions where p(z) is significant!

Importance Sampling

* ldea
— Use a proposal distribution g(z) from which it is easy to draw samples.
— Express expectations in the form of a finite sum over samples {z}
drawn from ¢(z).

plz)

Bl = [ fawtaia— [ f(Z)%q(Z)dz

p(zﬂ]

L
; q—(z(l))f(z(ﬂl)

=

— with importance weights
B p(z(l))
q(z")

Visual Computing Institute | Prof. Dr . Bastian Leibe
Advanced Machine Learring
Part 12 - Approximate Inference |

ide credit- Bernt Schiele

r; =
Visual Computing Isiitute | Prof. Dr . Bastian Leibe
Advanced Machine Learming
Part 12 - Approximate Inference |
ide credit Bernt Schiele

Importance Sampling

* Removing the unknown normalization constants
— We can use the sample set to evaluate the ratio of normalization
constants

Z, 1 [. P(z0) 1&
Z: Z—q/p(z)dz:/mq(z)dz: f;n

— and therefore

L
Elf] = 3 wif(z")
1=1

N (=)

. Tl 3z
with i SR A
e m qztm)

= In contrast to Rejection Sampling, all generated samples are retained
(but they may get a small weight).
g rpnapae e o sesnove ( ’9 o | FONTH
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Sampling-Importance-Resampling

« Two stages
— Draw L samples z(),..., z(1) from ¢(z).

— Construct weights using importance weighting

N Bz
iy j(z0
wy = ! = 7"‘(2 ‘) T
1 Z Fon plz(m])
" Zm (z0mT)

and draw a second set of samples z(), ..., z() with probabilities
given by the weights w®,..., w®).

* Result

— The resulting L samples are only approximately distributed according to
p(z), but the distribution becomes correct in the limit L — oo.
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Curse of Dimensionality

* Problem

— Rejection & Importance Sampling both scale badly with high
dimensionality.
— Example:

plz) ~ N(0, 1), q(z) ~ N(0,6°1)

* Rejection Sampling
— Requires o > 1. Fraction of proposals accepted: o ~P.

o2 D/2 )
2-1/0?

— Infinite / undefined variance if o< ]/\/5
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* Importance Sampling
— Variance of importance weights:

Independent Sampling vs. Markov Chains

* So far
— We've considered two methods, Rejection Sampling and Importance
Sampling, which were both based on independent samples from ¢(z).
— However, for many problems of practical interest, it is difficult or
impossible to find ¢(z) with the necessary properties.

« Different approach
— We abandon the idea of independent sampling.
— Instead, rely on a Markov Chain to generate dependent samples from
the target distribution.
— Independence would be a nice thing, but it is not necessary for the
Monte Carlo estimate to be valid.
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MCMC — Metropolis Algorithm

» Metropolis algorithm [Metropolis et al., 1953]
— Proposal distribution is symmetric: q(za|zB) = q(zB|24)
— The new candidate sample z" is accepted with probability
* (7)) — s p(z")
A(z*,2'™) = min <1, @)
* Implementation
— Choose random number u uniformly from unit interval (0,1).
— Acceptsample if  A(z*,2(D) > u

* Note
— New candidate samples always accepted if j(z*) > j(z(").
= lLe. when new sample has higher probability than the previous one.
— The algorithm sometimes accepts a state with lower probability.
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Topics of This Lecture

« Markov Chain Monte Carlo
— Markov Chains
— Metropolis Algorithm
— Metropolis-Hastings Algorithm
— Gibbs Sampling

MCMC — Markov Chain Monte Carlo

* Overview
— Allows to sample from a large class of distributions.
— Scales well with the dimensionality of the sample space.

* ldea
— We maintain a record of the current state z(”
— The proposal distribution depends on the current state: g(z|z™)
— The sequence of samples forms a Markov chain z), 2@, ...

« Setting
- We can evaluate p(z) (up to some normalizing factor Z,):
plz) = #a)
7z

. o
— At each time step, we generate a candidate sample from the proposal
distribution and accept the sample according to a criterion.
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MCMC — Metropolis Algorithm

« Two cases
— If new sample is accepted: 20D = g
- Otherwise: 2T+ = 5

— This is in contrast to rejection sampling, where rejected samples are
simply discarded.
= Leads to multiple copies of the same sample!
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MCMC — Metropolis Algorithm

* Property
— When ¢(z4|zg) > 0O for all z, the distribution of z” tends to p(z)
as T — 00.

* Note
- Sequence zM, z@,... is not a set of independent samples from p(z),
as successive samples are highly correlated.

— We can obtain (largely) independent samples by just retaining
every Mt sample.

» Example: Sampling from a Gaussian
- Proposal: Gaussian with o = 0.2.
— Green: accepted samples £
— Red: rejected samples
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Line Fitting Example (cont'd)

» Metropolis algorithm

) &; - \.-.
&; e &; e

— Perturb parameters: Q(z';z), e.g. Mz, 0?)
p(z'\v))

) p(z[D)

— Otherwise, keep old parameters.
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— Accept with probability —min | 1,

Markov Chains — Properties

* Invariant distribution

— Adistribution is said to be invariant (or stationary) w.r.t. a Markov chain
if each step in the chain leaves that distribution invariant.
— Transition probabilities:
T (Z(m)’ Z(m+1)) =p (z(m+l)‘z(m))

- Distribution p'(z) is invariant if:

P2 =) T(&,2)p()

Detailed balance
— Sufficient (but not necessary) condition to ensure that a distribution is

invariant:
P (2T (2,2) =p*(2)T (7, 2)

— A Markov chain which respects detailed balance is reversible.
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Line Fitting Example

* Importance Sampling weights

PR e wme P . ,\;’ o %e
- | N - - | o
. &% s e [ &
w=0,00548 w=1.58e-08 w =9.662-08 w =0.371 w =0.103
S . L1 - LTy - s
— 2t T S *
& & 1 &

m=1.01e-08 mw=0.111 i =1.92e-09 i =0.0126 tm=1.1e-51
= Many samples with very low weights...
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Markov Chains

* Question
— How can we show that z" tends to p(z) as 7 — o0?

« Markov chains
— First-order Markov chain:

» (z(m+l)|z(l)’ . yz(m)) —p (z('rrH»l)‘z(m))

— Marginal probability

P (z(m“)) = Z P (z(m“) \z(’")) p (z("’))

z(m)

— A Markov chain is called homogeneous if the transition probabilities
p(z"+) | z(™) are the same for all m.
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Detailed Balance

« Detailed balance means
— If we pick a state from the target distribution p(z) and make a transition
under T'to another state, it is just as likely that we will pick z, and go
from z , to z than that we will pick z; and go from z; to z 4.

— It can easily be seen that a transition probability that satisfies detailed
balance w.r.t. a particular distribution will leave that distribution
invariant, because

Y rE)T (. 2)

> P (@) (z.2)
= p'(2))_p(@)2) =p"(2)
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Ergodicity in Markov Chains

Mixture Transition Distributions

* Remark

— Our goal is to use Markov chains to sample from a given distribution.

— We can achieve this if we set up a Markov chain such that the desired
distribution is invariant.

— However, must also require that for m — oo, the distribution p(z(™)
converges to the required invariant distribution p*(z) irrespective of the
choice of initial distribution p(z©®).

— This property is called ergodicity and the invariant distribution is called
the equilibrium distribution.

— It can be shown that this is the case for a homogeneous Markov chain,
subject only to weak restrictions on the invariant distribution and the
transition probabilities.
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« Mixture distributions
— In practice, we often construct the transition probabilities from a set of
‘base’ transitions B,,...,By.
— This can be achieved through a mixture distribution

K
T(z',z) = Zn-kﬂk(z', z)
k=1
with mixing coefficients o, > 0 and X, o, = 1.

* Properties
— If the distribution is invariant w.r.t. each of the base transitions, then it
will also be invariant w.r.t. T(Z',z).
— If each of the base transitions satisfies detailed balance, then the
mixture transition T will also satisfy detailed balance.
— Common example: each base transition changes only a subset
of variables.
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MCMC — Metropolis-Hastings Algorithm

» Metropolis-Hastings Algorithm
— Generalization: Proposal distribution not required to be symmetric.
- The new candidate sample z" is accepted with probability
A(z*,2")) = min (1. M)
’ " 5(z)gx,(z*[2)
— where k labels the members of the set of possible transitions
considered.

* Note
— Evaluation of acceptance criterion does not require normalizing
constant Z,,.
— When the proposal distributions are symmetric, Metropolis-Hastings
reduces to the standard Metropolis algorithm.
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MCMC — Metropolis-Hastings Algorithm

* Properties
— We can show that p(z) is an invariant distribution of the Markov chain
defined by the Metropolis-Hastings algorithm.
— We show detailed balance:

e Pl
Az’ z) = nnu{l. m}

pla)gi(a|2) A2’ 2) = wmin{p(2)ax(2'|2), p(2")qr (]2}
= win{j(z')g (z|2"), plz) g (2'2)}
plz)an(z'|2)Ak(2,2) = Bl(2)gu(zlz)Ax(z,2))
#(z)T(z'2z) = pl(z')T(z.2)

Note: This is wrong in the Bishop book!
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Random Walks

» Example: Random Walk behavior
— Consider a state space consisting of the integers z € Z with initial state
2(1) = 0 and transition probabilities
p(z7t0 =y = 05
p(2m) =27 4 1) = 025
(2™ =20 _1) = 0.25

* Analysis
— Expected state at time 7: ]E[z(T)] )
— Variance: E Z(T))2 =7/2

— After 7 steps, the random walk has only traversed a distance that is on
average proportional to /7.
= Central goal in MCMC is to avoid random walk behavior!
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MCMC — Metropolis-Hastings Algorithm

« Schematic illustration

— For continuous state spaces, a common
choice of proposal distribution is a
Gaussian centered on the current state.

= What should be the variance of the
proposal distribution?
= Large variance: rejection rate will be high for complex problems.
= The scale p of the proposal distribution should be as large as possible without

incurring high rejection rates.

= p should be of the same order as the smallest length scale o,

— This causes the system to explore the distribution by means of a
random walk.
= Undesired behavior: number of steps to arrive at state that is independent of
original state is of order (T e T min)?-
= Strong correlations can slow down the Metropolis algorithm!
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Gibbs Sampling

Gibbs Sampling

* Approach
— MCMC-algorithm that is simple and widely applicable.
— May be seen as a special case of Metropolis-Hastings.

* Idea
— Sample variable-wise: replace z; by a value drawn from the
distribution p(z;|z;).
= This means we update one coordinate at a time.
— Repeat procedure either by cycling through all variables or by
choosing the next variable.
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* Example
— Assume distribution p(z,, z,, z,)-
™ i e do (r+1) G
- Replace z,"’ with new value drawn from z; ~pzlzy 23 7)

- Replace z;T) with new value drawn from 2% ~ p(z| 2™, 27)

~ Replace 2{” with new value drawn from 2T~ p(asl2 ™, D)

—And soon...

Gibbs Sampling

* Properties
— The factor that determines the acceptance probability in the Metropolis-
Hastings is determined by

Ala",2) = p(z%)qi(zz*) P(Zi|z<k)P(z<k)P(zmz<k) -~

p(2)ai(z*[2)  p(zklz\e)p(e k)P (k]2 1)
- (we have used ¢;(z*|z) = p(z"}|z) and p(z) = p(z/lzy) p(2y))-

— l.e. we get an algorithm which always accepts!

= If you can compute (and sample from) the conditionals, you can apply
Gibbs sampling.

= The algorithm is completely parameter free.

= Can also be applied to subsets of variables.

Visual Computing nstitut | Prof.Dr . Basan Loibe RWTH
Rovanced eching Loaring ) pe—
Par 12 Aponmate e | :

de credit- Zoubin,

isualCamputing sttute Prol. O Bastan i

Nt i Lo () .

o e aemai viance |
lide_credit: Bernt Schiele

» Gibbs sampling benefits from few free choices and

convenient features of conditional distributions:

— Conditionals with a few discrete settings can be explicitly normalized:

p(&is X;i) s sum i
.‘P(I1|X‘J/L) — i ,J#’ This sum is small
Z‘,;,[p(.‘c,!xj#-,) and easy.
— Continuous conditionals are often only univariate.
= amenable to standard sampling methods.

— In case of graphical models, the conditional distributions depend only
on the variables in the corresponding Markov blankets.

Gibbs Sampling

Visual Computing Institute | Prof. Dr . Bastian Leibe
Advanced Machine Learning
Part 12 - Approximate Inference |

ide adapted from Jain Mucca

How Should We Run MCMC?

» Example
— 20 iterations of Gibbs sampling on a bivariate Gaussian.

— Note: strong correlations can slow down Gibbs sampling.
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« Arbitrary initialization means starting iterations are bad
— Discard a “burn-in” period.

* How do we know if we have run for long enough?
— You don't. That’s the problem.

« The samples are not independent
— Solution 1: Keep only every M sample (“thinning”).
— Solution 2: Keep all samples and use the simple Monte Carlo estimator
on MCMC samples
= ltis consistent and unbiased if the chain has “burned in”.
= Use thinning only if computing f(x()) is expensive.

« For opinion on thinning, multiple runs, burn in, etc.
— Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science. 7(4):473{483,
1992. (http://www.jstor.org/stable/2246094)
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Summary: Approximate Inference

+ Exact Bayesian Inference often intractable.

* Rejection and Importance Sampling
— Generate independent samples.
— Impractical in high-dimensional state spaces.

» Markov Chain Monte Carlo (MCMC)
— Simple & effective (even though typically computationally expensive).
— Scales well with the dimensionality of the state space.
— Issues of convergence have to be considered carefully.

* Gibbs Sampling
— Used extensively in practice.
— Parameter free
— Requires sampling conditional distributions.
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References and Further Readin

» Sampling methods for approximate inference are described
in detail in Chapter 11 of Bishop’s book.

owed) ey Christopher M. Bishop
Pattern Recognition and Machine Learning

1’.‘.:""...‘.";.:‘;.......;:.; = Springer, 2006

- David MacKay
. £ Information Theory, Inference, and Learning Algorithms
Cambridge University Press, 2003

« Another good introduction to Monte Carlo methods can be
found in Chapter 29 of MacKay’s book (also available online:
http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)
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