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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Topics of This Lecture

• Approximate Inference
 Variational methods

 Sampling approaches

• Sampling approaches
 Sampling from a distribution

 Ancestral Sampling

 Rejection Sampling

 Importance Sampling

• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm

 Metropolis-Hastings Algorithm

 Gibbs Sampling
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Approximate Inference

• Exact Bayesian inference is often intractable.
 Often infeasible to evaluate the posterior distribution or to compute 

expectations w.r.t. the distribution.

 E.g. because the dimensionality of the latent space is too high.

 Or because the posterior distribution has a too complex form.

 Problems with continuous variables

 Required integrations may not have closed-form solutions.

 Problems with discrete variables

 Marginalization involves summing over all possible configurations of the 

hidden variables.

 There may be exponentially many such states.

 We need to resort to approximation schemes.
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Two Classes of Approximation Schemes

• Deterministic approximations (Variational methods)
 Based on analytical approximations to the posterior distribution

 E.g. by assuming that it factorizes in a certain form

 Or that it has a certain parametric form (e.g., a Gaussian).

 Can never generate exact results, but are often scalable to large 

applications.

• Stochastic approximations (Sampling methods)
 Given infinite computationally resources, they can generate exact 

results.

 Approximation arises from the use of a finite amount of processor time.

 Enable the use of Bayesian techniques across many domains.

 But: computationally demanding, often limited to small-scale problems.
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Topics of This Lecture

• Approximate Inference
 Variational methods

 Sampling approaches

• Sampling approaches
 Sampling from a distribution

 Ancestral Sampling

 Rejection Sampling

 Importance Sampling

• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm

 Metropolis-Hastings Algorithm

 Gibbs Sampling

http://www.vision.rwth-aachen.de/
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Sampling Idea

• Objective: 

 Evaluate expectation of a function f(z)

w.r.t. a probability distribution p(z).

• Sampling idea

 Draw L independent samples z(l) with l = 1,…,L from p(z).

 This allows the expectation to be approximated by a finite sum

 As long as the samples z(l) are drawn independently from p(z), then

 Unbiased estimate, independent of the dimension of z!

Slide adapted from Bernt Schiele

f̂ =
1

L

LX

l=1

f(zl)

Image source: C.M. Bishop, 2006
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Sampling – Challenges

• Problem 1: Samples might not be independent
 Effective sample size might be much smaller than apparent 

sample size.

• Problem 2: 
 If f(z) is small in regions where p(z) is large and vice versa, the 

expectation may be dominated by regions of small probability.

 Large sample sizes necessary to achieve sufficient accuracy.

Image source: C.M. Bishop, 2006
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Parametric Density Model

• Example: 
 A simple multivariate (d-dimensional) Gaussian model

 This is a “generative” model

in the sense that we can generate

samples x according to the 

distribution.

Slide adapted from Bernt Schiele

p(xj¹;§) =
1

(2¼)D=2j§j1=2 exp

½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾
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• Given: 
 1-dim. Gaussian pdf p(x|¹,¾2) and the corresponding cumulative 

distribution:

 To draw samples from a Gaussian, we can invert the cumulative 

distribution function:

F¹;¾2(x) =

Z x

¡1
p(xj¹; ¾2)dx

u » Uniform(0; 1)) F¡1
¹;¾2

(u) » p(xj¹;¾2)

F¹;¾2(x)p(xj¹; ¾2)

Slide credit: Bernt Schiele

Sampling from a Gaussian
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• In general, assume we are given the pdf p(x) and the 

corresponding cumulative distribution:

 To draw samples from this pdf, we can invert the cumulative distribution 

function:

F (x) =

Z x

¡1
p(z)dz

u » Uniform(0;1)) F¡1(u) » p(x)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006

Sampling from a pdf (Transformation method)
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• Exponential Distribution

where 0 · y < 1.

• Transformation sampling
 Indefinite Integral

 Inverse function

for a uniformly distributed input variable z.

Image source: Wikipedia

Example 1: Sampling from Exponential Distrib.
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• Cauchy Distribution

• Transformation sampling
 Inverse of integral can be expressed as a tan function.

for a uniformly distributed input variable z.

Image source: Wikipedia

Example 2: Sampling from Cauchy Distrib.
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• Problem with transformation method
 Integral over Gaussian cannot be expressed

in analytical form.

 Standard transformation approach is very

inefficient.

• More efficient: Box-Muller Algorithm
 Generate pairs of uniformly distributed random numbers 

z1,z2 2 (-1,1).

 Discard each pair unless it satisfies                             . 

 This leads to a uniform distribution of points inside the unit circle with 

p(z1,z2) = 1/¼.

Image source: C.M. Bishop, 2006

Note: Efficient Sampling from a Gaussian
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Box-Muller Algorithm (cont’d)

• Box-Muller Algorithm (cont’d)
 For each pair z1,z2 evaluate

 Then the joint distribution of y1 and y2 is given by 

 y1 and y2 are independent and each has a Gaussian distribution  

with mean ¹ and variance ¾2.

 If  y ~ N(0,1), then  ¾y + ¹ ~ N(¹,¾2).
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Box-Muller Algorithm (cont’d)

• Multivariate extension

 If z is a vector valued random variable whose components are 

independent and Gaussian distributed with N(0,1),

 Then y = ¹ + Lz will have mean ¹ and covariance 𝚺.

 Where 𝚺 = 𝐋𝐋⊤ is the Cholesky decomposition of 𝚺.
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General Advice

• Use library functions whenever

possible 
 Many efficient algorithms available

for known univariate distributions

(and some other special cases)

 This book (free online) explains 

how some of them work

 http://www.nrbook.com/devroye/

Slide credit: Iain Murray
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Ancestral Sampling

• Generalization of this idea to directed graphical models.
 Joint probability factorizes into conditional probabilities:

• Ancestral sampling
 Assume the variables are ordered such that there are no links from any 

node to a lower-numbered node.

 Start with lowest-numbered node and draw a sample from its 

distribution.

 Cycle through each of the nodes in order and draw samples from the 

conditional distribution (where the parent variable is set to its sampled 

value).

x̂1 » p(x1)

x̂n » p(xnjpan)

Image source: C.M. Bishop, 2006

http://www.nrbook.com/devroye/
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Logic Sampling

• Extension of Ancestral sampling
 Directed graph where some nodes are instantiated 

with observed values.

• Use ancestral sampling, except
 When sample is obtained for an observed variable, if they agree 

then sample value is retained and proceed to next variable.

 If they don’t agree, whole sample is discarded.

• Result
 Approach samples correctly from the posterior distribution.

 However, probability of accepting a sample decreases rapidly as 

the number of observed variables increases.

 Approach is rarely used in practice.
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Discussion

• Transformation method
 Limited applicability, as we need to invert the indefinite integral of the 

required distribution p(z).

 This will only be feasible for a limited number of simple distributions.

• More general
 Rejection Sampling

 Importance Sampling

Slide adapted from Bernt Schiele
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Rejection Sampling

• Assumptions

 Sampling directly from p(z) is difficult.

 But we can easily evaluate p(z) (up to some normalization factor Zp):

• Idea

 We need some simpler distribution q(z) (called proposal distribution) 

from which we can draw samples.

 Choose a constant k such that: 

p(z) =
1

Zp

~p(z)

8z : kq(z) ¸ ~p(z)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Rejection Sampling

• Sampling procedure

 Generate a number z0 from q(z).

 Generate a number u0 from the

uniform distribution over [0,kq(z0)].

 If                      reject sample, otherwise accept.

 Sample is rejected if it lies in the grey shaded area.

 The remaining pairs (u0,z0) have uniform distribution under the curve .

• Discussion

 Original values of z are generated from the distribution q(z).

 Samples are accepted with probability

 k should be as small as possible!

Slide credit: Bernt Schiele

u0 > ~p(z0)

~p(z)

~p(z)=kq(z)

Image source: C.M. Bishop, 2006
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• Limitation: high-dimensional spaces

 For rejection sampling to be of practical value, we require that kq(z) be 

close to the required distribution, so that the rate of rejection is minimal.

• Artificial example
 Assume that 𝑝(𝐳) is Gaussian with covariance matrix σ𝑝

2𝐼

 Assume that 𝑞(𝐳) is Gaussian with covariance matrix σ𝑞
2𝐼

 Obviously: 𝜎𝑞
2 ≥ 𝜎𝑝

2

 In D dimensions: 𝑘 = (𝜎𝑞/𝜎𝑝)
𝐷.

 Assume 𝜎𝑞 is just 1% larger than 𝜎𝑝.

 D = 1000  k = 1.011000 ¸ 20,000

 And 

 Impractical to find good proposal distributions for high dimensions!

Rejection Sampling – Discussion

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006

𝑝 𝑎𝑐𝑐𝑒𝑝𝑡 <
1

20000
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Example: Sampling from a Gamma Distrib.

• Gamma distribution

• Rejection sampling approach
 For a>1, Gamma distribution has a 

bell-shaped form.

 Suitable proposal distribution is

Cauchy (for which we can use

the transformation method).

 Generalize Cauchy slightly to ensure 

it is nowhere smaller than Gamma: y = b tan y + c for uniform y.

 This gives random numbers distributed according to 

Image source: C.M. Bishop, 2006

with optimal

rejection rate for
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Evaluating Expectations

• Motivation

 Often, our goal is not sampling from p(z) by itself, but to evaluate 

expectations of the form

• Simplistic strategy: Grid sampling

 Discretize z-space into a uniform grid.

 Evaluate the integrand as a sum of the form

 Problem: number of terms grows exponentially with number 

of dimensions!

Slide credit: Bernt Schiele
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Importance Sampling

• Idea

 Use a proposal distribution q(z) from which it is easy to draw samples.

 Express expectations in the form of a finite sum over samples {z(l)}

drawn from q(z).

 with importance weights

Slide credit: Bernt Schiele

rl =
p(z(l))

q(z(l))
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Importance Sampling

• Typical setting:

 p(z) can only be evaluated up to an unknown normalization 

constant

 q(z) can also be treated in a similar fashion.

 Then

 with:

Slide credit: Bernt Schiele

p(z) = ~p(z)=Zp

q(z) = ~q(z)=Zq

~rl =
~p(z(l))

~q(z(l))
28
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Importance Sampling

• Removing the unknown normalization constants
 We can use the sample set to evaluate the ratio of normalization 

constants

 and therefore

with

 In contrast to Rejection Sampling, all generated samples are retained 

(but they may get a small weight).

Slide adapted from Bernt Schiele

Zp

Zq

=
1

Zq

Z
~p(z)dz =

Z
~p(z(l))

~q(z(l))
q(z)dz ' 1

L

LX

l=1

~rl

wl =
~rlP
m ~rm

=

~p(z(l))

~q(z(l))P
m

~p(z(m))

~q(z(m))
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Importance Sampling – Discussion

• Observations
 Success of importance sampling depends crucially on how well the 

sampling distribution q(z) matches the desired distribution p(z).

 Often, p(z)f(z) is strongly varying and has a significant propor-tion of 

its mass concentrated over small regions of z-space.

 Weights rl may be dominated by a few weights having large values.

 Practical issue: if none of the samples falls in the regions where 

p(z)f(z) is large…

 The results may be arbitrary in error.

 And there will be no diagnostic indication (no large variance in rl) !

 Key requirement for sampling distribution q(z):

 Should not be small or zero in regions where p(z) is significant!

Slide credit: Bernt Schiele
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Sampling-Importance-Resampling

• Two stages

 Draw L samples z(1),…, z(L) from q(z).

 Construct weights using importance weighting

and draw a second set of samples z(1),…, z(L) with probabilities 

given by the weights w(1),…, w(L).

• Result

 The resulting L samples are only approximately distributed according to 

p(z), but the distribution becomes correct in the limit L ! 1.
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Curse of Dimensionality

• Problem
 Rejection & Importance Sampling both scale badly with high 

dimensionality.

 Example:

• Rejection Sampling

 Requires ¾ ¸ 1. Fraction of proposals accepted: ¾ –D.

• Importance Sampling
 Variance of importance weights:

 Infinite / undefined variance if

Slide credit: Iain Murray
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Topics of This Lecture

• Approximate Inference
 Variational methods

 Sampling approaches

• Sampling approaches
 Sampling from a distribution

 Ancestral Sampling

 Rejection Sampling

 Importance Sampling

• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm

 Metropolis-Hastings Algorithm

 Gibbs Sampling
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Independent Sampling vs. Markov Chains

• So far 
 We’ve considered two methods, Rejection Sampling and Importance 

Sampling, which were both based on independent samples from q(z). 

 However, for many problems of practical interest, it is difficult or 

impossible to find q(z) with the necessary properties.

• Different approach
 We abandon the idea of independent sampling.

 Instead, rely on a Markov Chain to generate dependent samples from 

the target distribution.

 Independence would be a nice thing, but it is not necessary for the 

Monte Carlo estimate to be valid.

Slide credit: Zoubin Ghahramani
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• Overview
 Allows to sample from a large class of distributions.

 Scales well with the dimensionality of the sample space.

• Idea
 We maintain a record of the current state z(¿)

 The proposal distribution depends on the current state: q(z|z(¿)) 

 The sequence of samples forms a Markov chain z(1), z(2),…

• Setting

 We can evaluate p(z) (up to some normalizing factor Zp): 

 At each time step, we generate a candidate sample from the proposal 

distribution and accept the sample according to a criterion.

MCMC – Markov Chain Monte Carlo

Slide credit: Bernt Schiele
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MCMC – Metropolis Algorithm

• Metropolis algorithm [Metropolis et al., 1953]

 Proposal distribution is symmetric: 

 The new candidate sample z* is accepted with probability

• Implementation
 Choose random number u uniformly from unit interval (0,1).

 Accept sample if                        .

• Note
 New candidate samples always accepted if  .

 I.e. when new sample has higher probability than the previous one.

 The algorithm sometimes accepts a state with lower probability.

q(zAjzB) = q(zBjzA)

A(z?; z(¿)) = min

µ
1;

~p(z?)

~p(z(¿))

¶

A(z?;z(¿)) > u

~p(z?) ¸ ~p(z(¿))

Slide credit: Bernt Schiele
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MCMC – Metropolis Algorithm

• Two cases
 If new sample is accepted:

 Otherwise: 

 This is in contrast to rejection sampling, where rejected samples are 

simply discarded.

 Leads to multiple copies of the same sample!

z(¿+1) = z?

z(¿+1) = z(¿)

Slide credit: Bernt Schiele



7

38
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 12 – Approximate Inference I

MCMC – Metropolis Algorithm

• Property

 When q(zA|zB) > 0 for all z, the distribution of z¿ tends to p(z)

as ¿ ! 1.

• Note

 Sequence z(1), z(2),… is not a set of independent samples from p(z), 

as successive samples are highly correlated.

 We can obtain (largely) independent samples by just retaining 

every Mth sample.

• Example: Sampling from a Gaussian

 Proposal: Gaussian with ¾ = 0.2.

 Green: accepted samples

 Red: rejected samples

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Line Fitting Example

• Importance Sampling weights

 Many samples with very low weights…

Slide credit: Iain Murray
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Line Fitting Example (cont’d)

• Metropolis algorithm

 Perturb parameters:               ,  e.g.  N(z, ¾2)

 Accept with probability 

 Otherwise, keep old parameters. 

Slide credit: Iain Murray
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Markov Chains

• Question

 How can we show that z¿ tends to p(z) as ¿ ! 1?

• Markov chains
 First-order Markov chain:

 Marginal probability

 A Markov chain is called homogeneous if the transition probabilities 

p(z(m+1) | z(m)) are the same for all m.

p
³
z(m+1)jz(1); : : : ;z(m)

´
= p

³
z(m+1)jz(m)

´

p
³
z(m+1)

´
=
X

z(m)

p
³
z(m+1)jz(m)

´
p
³
z(m)

´

Slide adapted from Bernt Schiele
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Markov Chains – Properties

• Invariant distribution
 A distribution is said to be invariant (or stationary) w.r.t. a Markov chain 

if each step in the chain leaves that distribution invariant.

 Transition probabilities:

 Distribution p*(z) is invariant if:

• Detailed balance
 Sufficient (but not necessary) condition to ensure that a distribution is 

invariant:

 A Markov chain which respects detailed balance is reversible.

T
³
z(m);z(m+1)

´
= p

³
z(m+1)jz(m)

´

p?(z) =
X

z0

T (z0; z)p?(z0)

p?(z)T (z;z0) = p?(z0)T (z0;z)

Slide credit: Bernt Schiele
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Detailed Balance

• Detailed balance means

 If we pick a state from the target distribution p(z) and make a transition 

under T to another state, it is just as likely that we will pick zA and go 

from zA to zB than that we will pick zB and go from zB to zA.

 It can easily be seen that a transition probability that satisfies detailed 

balance w.r.t. a particular distribution will leave that distribution 

invariant, because
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Ergodicity in Markov Chains

• Remark
 Our goal is to use Markov chains to sample from a given distribution.

 We can achieve this if we set up a Markov chain such that the desired 

distribution is invariant.

 However, must also require that for m !1, the distribution p(z(m))

converges to the required invariant distribution p*(z) irrespective of the 

choice of initial distribution p(z(0)). 

 This property is called ergodicity and the invariant distribution is called 

the equilibrium distribution.

 It can be shown that this is the case for a homogeneous Markov chain, 

subject only to weak restrictions on the invariant distribution and the 

transition probabilities.
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Mixture Transition Distributions

• Mixture distributions
 In practice, we often construct the transition probabilities from a set of 

‘base’ transitions B1,…,BK.

 This can be achieved through a mixture distribution

with mixing coefficients ®k ¸ 0 and k ®k = 1.

• Properties
 If the distribution is invariant w.r.t. each of the base transitions, then it 

will also be invariant w.r.t. T(z’,z).

 If each of the base transitions satisfies detailed balance, then the 
mixture transition T will also satisfy detailed balance.

 Common example: each base transition changes only a subset 
of variables.
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• Metropolis-Hastings Algorithm
 Generalization: Proposal distribution not required to be symmetric.

 The new candidate sample z* is accepted with probability

 where k labels the members of the set of possible transitions 

considered.

• Note
 Evaluation of acceptance criterion does not require normalizing 

constant Zp.

 When the proposal distributions are symmetric, Metropolis-Hastings 

reduces to the standard Metropolis algorithm.

Slide credit: Bernt Schiele

A(z?; z(¿)) = min

µ
1;

~p(z?)qk(z
(¿)jz?)

~p(z(¿))qk(z?jz(¿))

¶

MCMC – Metropolis-Hastings Algorithm
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MCMC – Metropolis-Hastings Algorithm

• Properties

 We can show that p(z) is an invariant distribution of the Markov chain 

defined by the Metropolis-Hastings algorithm.

 We show detailed balance:

Note: This is wrong in the Bishop book!
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Random Walks

• Example: Random Walk behavior
 Consider a state space consisting of the integers z 2 Z with initial state 

z(1) = 0 and transition probabilities

• Analysis
 Expected state at time ¿ : 

 Variance:

 After ¿ steps, the random walk has only traversed a distance that is on 

average proportional to 𝜏.

 Central goal in MCMC is to avoid random walk behavior!

E[z(¿)] = 0

E[(z(¿))2] = ¿=2
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MCMC – Metropolis-Hastings Algorithm

• Schematic illustration
 For continuous state spaces, a common 

choice of proposal distribution is a 
Gaussian centered on the current state.

 What should be the variance of the
proposal distribution?
 Large variance: rejection rate will be high for complex problems.

 The scale ½ of the proposal distribution should be as large as possible without 
incurring high rejection rates.

 ½ should be of the same order as the smallest length scale ¾min.

 This causes the system to explore the distribution by means of a 
random walk.
 Undesired behavior: number of steps to arrive at state that is independent of 

original state is of order (¾max/¾min)
2.

 Strong correlations can slow down the Metropolis algorithm!

Image source: C.M. Bishop, 2006
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Gibbs Sampling

• Approach
 MCMC-algorithm that is simple and widely applicable.

 May be seen as a special case of Metropolis-Hastings.

• Idea

 Sample variable-wise: replace zi by a value drawn from the 

distribution p(zi|z\i).

 This means we update one coordinate at a time.

 Repeat procedure either by cycling through all variables or by 

choosing the next variable.

Slide credit: Bernt Schiele
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Gibbs Sampling

• Example

 Assume distribution p(z1, z2, z3).

 Replace       with new value drawn from 

 Replace       with new value drawn from 

 Replace       with new value drawn from 

 And so on…

Slide credit: Bernt Schiele

z
(¿)
1

z
(¿)
2

z
(¿)
3

z
(¿+1)
1 » p(z1jz(¿)2 ; z

(¿)
3 )

z
(¿+1)
2 » p(z2jz(¿+1)1 ; z

(¿)
3 )

z
(¿+1)
3 » p(z3jz(¿+1)1 ; z

(¿+1)
2 )

53
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 12 – Approximate Inference I

Gibbs Sampling

• Properties
 The factor that determines the acceptance probability in the Metropolis-

Hastings is determined by

 (we have used qk(z*|z) = p(z*
k|z\k) and p(z) = p(zk|z\k) p(z\k)).

 I.e. we get an algorithm which always accepts!

 If you can compute (and sample from) the conditionals, you can apply 

Gibbs sampling.

 The algorithm is completely parameter free.

 Can also be applied to subsets of variables.

A(z?; z) =
p(z?)qk(zjz?)
p(z)qk(z?jz)

=
p(z?kjz?nk)p(z?nk)p(z

?
kjz?nk)

p(zkjznk)p(znk)p(zkjznk)
= 1

Slide credit: Zoubin Ghahramani
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Discussion

• Gibbs sampling benefits from few free choices and 

convenient features of conditional distributions:
 Conditionals with a few discrete settings can be explicitly normalized:

 Continuous conditionals are often only univariate.

 amenable to standard sampling methods.

 In case of graphical models, the conditional distributions depend only 

on the variables in the corresponding Markov blankets.

This sum is small

and easy.

Slide adapted from Iain Murray
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Gibbs Sampling

• Example
 20 iterations of Gibbs sampling on a bivariate Gaussian.

 Note: strong correlations can slow down Gibbs sampling.

Slide credit: Zoubin Ghahramani
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How Should We Run MCMC?

• Arbitrary initialization means starting iterations are bad
 Discard a “burn-in” period.

• How do we know if we have run for long enough?
 You don’t. That’s the problem.

• The samples are not independent
 Solution 1: Keep only every Mth sample (“thinning”).

 Solution 2: Keep all samples and use the simple Monte Carlo estimator 
on MCMC samples
 It is consistent and unbiased if the chain has “burned in”.

 Use thinning only if computing f(x(s)) is expensive.

• For opinion on thinning, multiple runs, burn in, etc.
 Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science. 7(4):473{483, 

1992. (http://www.jstor.org/stable/2246094)

Slide adapted from Iain Murray

http://www.jstor.org/stable/2246094
http://www.jstor.org/stable/2246094
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Summary: Approximate Inference

• Exact Bayesian Inference often intractable.

• Rejection and Importance Sampling
 Generate independent samples.

 Impractical in high-dimensional state spaces.

• Markov Chain Monte Carlo (MCMC)
 Simple & effective (even though typically computationally expensive).

 Scales well with the dimensionality of the state space.

 Issues of convergence have to be considered carefully.

• Gibbs Sampling
 Used extensively in practice.

 Parameter free

 Requires sampling conditional distributions.
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References and Further Reading

• Sampling methods for approximate inference are described 

in detail in Chapter 11 of Bishop’s book.

• Another good introduction to Monte Carlo methods can be 

found in Chapter 29 of MacKay’s book (also available online: 

http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006

David MacKay

Information Theory, Inference, and Learning Algorithms

Cambridge University Press, 2003

http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html

