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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Topics of This Lecture

• Approximate Inference
 Variational methods

 Sampling approaches

• Sampling approaches
 Sampling from a distribution

 Ancestral Sampling

 Rejection Sampling

 Importance Sampling

• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm

 Metropolis-Hastings Algorithm

 Gibbs Sampling
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Approximate Inference

• Exact Bayesian inference is often intractable.
 Often infeasible to evaluate the posterior distribution or to compute 

expectations w.r.t. the distribution.

 E.g. because the dimensionality of the latent space is too high.

 Or because the posterior distribution has a too complex form.

 Problems with continuous variables

 Required integrations may not have closed-form solutions.

 Problems with discrete variables

 Marginalization involves summing over all possible configurations of the 

hidden variables.

 There may be exponentially many such states.

 We need to resort to approximation schemes.
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Two Classes of Approximation Schemes

• Deterministic approximations (Variational methods)
 Based on analytical approximations to the posterior distribution

 E.g. by assuming that it factorizes in a certain form

 Or that it has a certain parametric form (e.g., a Gaussian).

 Can never generate exact results, but are often scalable to large 

applications.

• Stochastic approximations (Sampling methods)
 Given infinite computationally resources, they can generate exact 

results.

 Approximation arises from the use of a finite amount of processor time.

 Enable the use of Bayesian techniques across many domains.

 But: computationally demanding, often limited to small-scale problems.
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Topics of This Lecture

• Approximate Inference
 Variational methods

 Sampling approaches

• Sampling approaches
 Sampling from a distribution

 Ancestral Sampling

 Rejection Sampling

 Importance Sampling

• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm

 Metropolis-Hastings Algorithm

 Gibbs Sampling
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Sampling Idea

• Objective: 

 Evaluate expectation of a function f(z)

w.r.t. a probability distribution p(z).

• Sampling idea

 Draw L independent samples z(l) with l = 1,…,L from p(z).

 This allows the expectation to be approximated by a finite sum

 As long as the samples z(l) are drawn independently from p(z), then

 Unbiased estimate, independent of the dimension of z!

Slide adapted from Bernt Schiele

f̂ =
1

L

LX

l=1

f(zl)

Image source: C.M. Bishop, 2006
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Sampling – Challenges

• Problem 1: Samples might not be independent
 Effective sample size might be much smaller than apparent 

sample size.

• Problem 2: 
 If f(z) is small in regions where p(z) is large and vice versa, the 

expectation may be dominated by regions of small probability.

 Large sample sizes necessary to achieve sufficient accuracy.

Image source: C.M. Bishop, 2006
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Parametric Density Model

• Example: 
 A simple multivariate (d-dimensional) Gaussian model

 This is a “generative” model

in the sense that we can generate

samples x according to the 

distribution.

Slide adapted from Bernt Schiele

p(xj¹;§) =
1

(2¼)D=2j§j1=2 exp

½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾
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• Given: 
 1-dim. Gaussian pdf p(x|¹,¾2) and the corresponding cumulative 

distribution:

 To draw samples from a Gaussian, we can invert the cumulative 

distribution function:

F¹;¾2(x) =

Z x

¡1
p(xj¹; ¾2)dx

u » Uniform(0; 1)) F¡1
¹;¾2

(u) » p(xj¹;¾2)

F¹;¾2(x)p(xj¹; ¾2)

Slide credit: Bernt Schiele

Sampling from a Gaussian
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• In general, assume we are given the pdf p(x) and the 

corresponding cumulative distribution:

 To draw samples from this pdf, we can invert the cumulative distribution 

function:

F (x) =

Z x

¡1
p(z)dz

u » Uniform(0;1)) F¡1(u) » p(x)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006

Sampling from a pdf (Transformation method)



12
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 12 – Approximate Inference I

• Exponential Distribution

where 0 · y < 1.

• Transformation sampling
 Indefinite Integral

 Inverse function

for a uniformly distributed input variable z.

Image source: Wikipedia

Example 1: Sampling from Exponential Distrib.
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• Cauchy Distribution

• Transformation sampling

 Inverse of integral can be expressed as a tan function.

for a uniformly distributed input variable z.

Image source: Wikipedia

Example 2: Sampling from Cauchy Distrib.
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• Problem with transformation method
 Integral over Gaussian cannot be expressed

in analytical form.

 Standard transformation approach is very

inefficient.

• More efficient: Box-Muller Algorithm
 Generate pairs of uniformly distributed random numbers 

z1,z2 2 (-1,1).

 Discard each pair unless it satisfies                             . 

 This leads to a uniform distribution of points inside the unit circle with 

p(z1,z2) = 1/¼.

Image source: C.M. Bishop, 2006

Note: Efficient Sampling from a Gaussian
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Box-Muller Algorithm (cont’d)

• Box-Muller Algorithm (cont’d)
 For each pair z1,z2 evaluate

 Then the joint distribution of y1 and y2 is given by 

 y1 and y2 are independent and each has a Gaussian distribution  

with mean ¹ and variance ¾2.

 If  y ~ N(0,1), then  ¾y + ¹ ~ N(¹,¾2).
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Box-Muller Algorithm (cont’d)

• Multivariate extension

 If z is a vector valued random variable whose components are 

independent and Gaussian distributed with N(0,1),

 Then y = ¹ + Lz will have mean ¹ and covariance 𝚺.

 Where 𝚺 = 𝐋𝐋⊤ is the Cholesky decomposition of 𝚺.
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General Advice

• Use library functions whenever

possible 
 Many efficient algorithms available

for known univariate distributions

(and some other special cases)

 This book (free online) explains 

how some of them work

 http://www.nrbook.com/devroye/

Slide credit: Iain Murray

http://www.nrbook.com/devroye/
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Ancestral Sampling

• Generalization of this idea to directed graphical models.
 Joint probability factorizes into conditional probabilities:

• Ancestral sampling
 Assume the variables are ordered such that there are no links from any 

node to a lower-numbered node.

 Start with lowest-numbered node and draw a sample from its 

distribution.

 Cycle through each of the nodes in order and draw samples from the 

conditional distribution (where the parent variable is set to its sampled 

value).

x̂1 » p(x1)

x̂n » p(xnjpan)

Image source: C.M. Bishop, 2006
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Logic Sampling

• Extension of Ancestral sampling
 Directed graph where some nodes are instantiated 

with observed values.

• Use ancestral sampling, except
 When sample is obtained for an observed variable, if they agree 

then sample value is retained and proceed to next variable.

 If they don’t agree, whole sample is discarded.

• Result
 Approach samples correctly from the posterior distribution.

 However, probability of accepting a sample decreases rapidly as 

the number of observed variables increases.

 Approach is rarely used in practice.
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Discussion

• Transformation method
 Limited applicability, as we need to invert the indefinite integral of the 

required distribution p(z).

 This will only be feasible for a limited number of simple distributions.

• More general
 Rejection Sampling

 Importance Sampling

Slide adapted from Bernt Schiele
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Rejection Sampling

• Assumptions

 Sampling directly from p(z) is difficult.

 But we can easily evaluate p(z) (up to some normalization factor Zp):

• Idea

 We need some simpler distribution q(z) (called proposal distribution) 

from which we can draw samples.

 Choose a constant k such that: 

p(z) =
1

Zp

~p(z)

8z : kq(z) ¸ ~p(z)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Rejection Sampling

• Sampling procedure

 Generate a number z0 from q(z).

 Generate a number u0 from the

uniform distribution over [0,kq(z0)].

 If                      reject sample, otherwise accept.

 Sample is rejected if it lies in the grey shaded area.

 The remaining pairs (u0,z0) have uniform distribution under the curve .

• Discussion

 Original values of z are generated from the distribution q(z).

 Samples are accepted with probability

 k should be as small as possible!

Slide credit: Bernt Schiele

u0 > ~p(z0)

~p(z)

~p(z)=kq(z)

Image source: C.M. Bishop, 2006
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• Limitation: high-dimensional spaces

 For rejection sampling to be of practical value, we require that kq(z) be 

close to the required distribution, so that the rate of rejection is minimal.

• Artificial example
 Assume that 𝑝(𝐳) is Gaussian with covariance matrix σ𝑝

2𝐼

 Assume that 𝑞(𝐳) is Gaussian with covariance matrix σ𝑞
2𝐼

 Obviously: 𝜎𝑞
2 ≥ 𝜎𝑝

2

 In D dimensions: 𝑘 = (𝜎𝑞/𝜎𝑝)
𝐷.

 Assume 𝜎𝑞 is just 1% larger than 𝜎𝑝.

 D = 1000  k = 1.011000 ¸ 20,000

 And 

 Impractical to find good proposal distributions for high dimensions!

Rejection Sampling – Discussion

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006

𝑝 𝑎𝑐𝑐𝑒𝑝𝑡 <
1

20000
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Example: Sampling from a Gamma Distrib.

• Gamma distribution

• Rejection sampling approach
 For a>1, Gamma distribution has a 

bell-shaped form.

 Suitable proposal distribution is

Cauchy (for which we can use

the transformation method).

 Generalize Cauchy slightly to ensure 

it is nowhere smaller than Gamma: y = b tan y + c for uniform y.

 This gives random numbers distributed according to 

Image source: C.M. Bishop, 2006

with optimal

rejection rate for
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Evaluating Expectations

• Motivation

 Often, our goal is not sampling from p(z) by itself, but to evaluate 

expectations of the form

• Simplistic strategy: Grid sampling

 Discretize z-space into a uniform grid.

 Evaluate the integrand as a sum of the form

 Problem: number of terms grows exponentially with number 

of dimensions!

Slide credit: Bernt Schiele
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Importance Sampling

• Idea

 Use a proposal distribution q(z) from which it is easy to draw samples.

 Express expectations in the form of a finite sum over samples {z(l)}

drawn from q(z).

 with importance weights

Slide credit: Bernt Schiele

rl =
p(z(l))

q(z(l))
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Importance Sampling

• Typical setting:

 p(z) can only be evaluated up to an unknown normalization 

constant

 q(z) can also be treated in a similar fashion.

 Then

 with:

Slide credit: Bernt Schiele

p(z) = ~p(z)=Zp

q(z) = ~q(z)=Zq

~rl =
~p(z(l))

~q(z(l))
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Importance Sampling

• Removing the unknown normalization constants
 We can use the sample set to evaluate the ratio of normalization 

constants

 and therefore

with

 In contrast to Rejection Sampling, all generated samples are retained 

(but they may get a small weight).

Slide adapted from Bernt Schiele

Zp

Zq

=
1

Zq

Z
~p(z)dz =

Z
~p(z(l))

~q(z(l))
q(z)dz ' 1

L

LX

l=1

~rl

wl =
~rlP
m ~rm

=

~p(z(l))

~q(z(l))P
m

~p(z(m))

~q(z(m))
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Importance Sampling – Discussion

• Observations
 Success of importance sampling depends crucially on how well the 

sampling distribution q(z) matches the desired distribution p(z).

 Often, p(z)f(z) is strongly varying and has a significant propor-tion of 

its mass concentrated over small regions of z-space.

 Weights rl may be dominated by a few weights having large values.

 Practical issue: if none of the samples falls in the regions where 

p(z)f(z) is large…

 The results may be arbitrary in error.

 And there will be no diagnostic indication (no large variance in rl) !

 Key requirement for sampling distribution q(z):

 Should not be small or zero in regions where p(z) is significant!

Slide credit: Bernt Schiele
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Sampling-Importance-Resampling

• Two stages

 Draw L samples z(1),…, z(L) from q(z).

 Construct weights using importance weighting

and draw a second set of samples z(1),…, z(L) with probabilities 

given by the weights w(1),…, w(L).

• Result

 The resulting L samples are only approximately distributed according to 

p(z), but the distribution becomes correct in the limit L ! 1.
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Curse of Dimensionality

• Problem
 Rejection & Importance Sampling both scale badly with high 

dimensionality.

 Example:

• Rejection Sampling

 Requires ¾ ¸ 1. Fraction of proposals accepted: ¾ –D.

• Importance Sampling
 Variance of importance weights:

 Infinite / undefined variance if

Slide credit: Iain Murray
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Topics of This Lecture

• Approximate Inference
 Variational methods

 Sampling approaches

• Sampling approaches
 Sampling from a distribution

 Ancestral Sampling

 Rejection Sampling

 Importance Sampling

• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm

 Metropolis-Hastings Algorithm

 Gibbs Sampling
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Independent Sampling vs. Markov Chains

• So far 
 We’ve considered two methods, Rejection Sampling and Importance 

Sampling, which were both based on independent samples from q(z). 

 However, for many problems of practical interest, it is difficult or 

impossible to find q(z) with the necessary properties.

• Different approach
 We abandon the idea of independent sampling.

 Instead, rely on a Markov Chain to generate dependent samples from 

the target distribution.

 Independence would be a nice thing, but it is not necessary for the 

Monte Carlo estimate to be valid.

Slide credit: Zoubin Ghahramani
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• Overview
 Allows to sample from a large class of distributions.

 Scales well with the dimensionality of the sample space.

• Idea

 We maintain a record of the current state z(¿)

 The proposal distribution depends on the current state: q(z|z(¿)) 

 The sequence of samples forms a Markov chain z(1), z(2),…

• Setting

 We can evaluate p(z) (up to some normalizing factor Zp): 

 At each time step, we generate a candidate sample from the proposal 

distribution and accept the sample according to a criterion.

MCMC – Markov Chain Monte Carlo

Slide credit: Bernt Schiele
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MCMC – Metropolis Algorithm

• Metropolis algorithm [Metropolis et al., 1953]

 Proposal distribution is symmetric: 

 The new candidate sample z* is accepted with probability

• Implementation

 Choose random number u uniformly from unit interval (0,1).

 Accept sample if                        .

• Note
 New candidate samples always accepted if  .

 I.e. when new sample has higher probability than the previous one.

 The algorithm sometimes accepts a state with lower probability.

q(zAjzB) = q(zBjzA)

A(z?; z(¿)) = min

µ
1;

~p(z?)

~p(z(¿))

¶

A(z?;z(¿)) > u

~p(z?) ¸ ~p(z(¿))

Slide credit: Bernt Schiele
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MCMC – Metropolis Algorithm

• Two cases
 If new sample is accepted:

 Otherwise: 

 This is in contrast to rejection sampling, where rejected samples are 

simply discarded.

 Leads to multiple copies of the same sample!

z(¿+1) = z?

z(¿+1) = z(¿)

Slide credit: Bernt Schiele
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MCMC – Metropolis Algorithm

• Property

 When q(zA|zB) > 0 for all z, the distribution of z¿ tends to p(z)

as ¿ ! 1.

• Note

 Sequence z(1), z(2),… is not a set of independent samples from p(z), 
as successive samples are highly correlated.

 We can obtain (largely) independent samples by just retaining 

every Mth sample.

• Example: Sampling from a Gaussian

 Proposal: Gaussian with ¾ = 0.2.

 Green: accepted samples

 Red: rejected samples

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Line Fitting Example

• Importance Sampling weights

 Many samples with very low weights…

Slide credit: Iain Murray
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Line Fitting Example (cont’d)

• Metropolis algorithm

 Perturb parameters:               ,  e.g.  N(z, ¾2)

 Accept with probability 

 Otherwise, keep old parameters. 

Slide credit: Iain Murray
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Markov Chains

• Question

 How can we show that z¿ tends to p(z) as ¿ ! 1?

• Markov chains
 First-order Markov chain:

 Marginal probability

 A Markov chain is called homogeneous if the transition probabilities 

p(z(m+1) | z(m)) are the same for all m.

p
³
z(m+1)jz(1); : : : ;z(m)

´
= p

³
z(m+1)jz(m)

´

p
³
z(m+1)

´
=
X

z(m)

p
³
z(m+1)jz(m)

´
p
³
z(m)

´

Slide adapted from Bernt Schiele
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Markov Chains – Properties

• Invariant distribution
 A distribution is said to be invariant (or stationary) w.r.t. a Markov chain 

if each step in the chain leaves that distribution invariant.

 Transition probabilities:

 Distribution p*(z) is invariant if:

• Detailed balance
 Sufficient (but not necessary) condition to ensure that a distribution is 

invariant:

 A Markov chain which respects detailed balance is reversible.

T
³
z(m);z(m+1)

´
= p

³
z(m+1)jz(m)

´

p?(z) =
X

z0

T (z0; z)p?(z0)

p?(z)T (z;z0) = p?(z0)T (z0;z)

Slide credit: Bernt Schiele
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Detailed Balance

• Detailed balance means

 If we pick a state from the target distribution p(z) and make a transition 

under T to another state, it is just as likely that we will pick zA and go 

from zA to zB than that we will pick zB and go from zB to zA.

 It can easily be seen that a transition probability that satisfies detailed 

balance w.r.t. a particular distribution will leave that distribution 

invariant, because
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Ergodicity in Markov Chains

• Remark
 Our goal is to use Markov chains to sample from a given distribution.

 We can achieve this if we set up a Markov chain such that the desired 

distribution is invariant.

 However, must also require that for m !1, the distribution p(z(m))

converges to the required invariant distribution p*(z) irrespective of the 

choice of initial distribution p(z(0)). 

 This property is called ergodicity and the invariant distribution is called 

the equilibrium distribution.

 It can be shown that this is the case for a homogeneous Markov chain, 

subject only to weak restrictions on the invariant distribution and the 

transition probabilities.



45
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 12 – Approximate Inference I

Mixture Transition Distributions

• Mixture distributions
 In practice, we often construct the transition probabilities from a set of 

‘base’ transitions B1,…,BK.

 This can be achieved through a mixture distribution

with mixing coefficients ®k ¸ 0 and k ®k = 1.

• Properties
 If the distribution is invariant w.r.t. each of the base transitions, then it 

will also be invariant w.r.t. T(z’,z).

 If each of the base transitions satisfies detailed balance, then the 
mixture transition T will also satisfy detailed balance.

 Common example: each base transition changes only a subset 
of variables.
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• Metropolis-Hastings Algorithm
 Generalization: Proposal distribution not required to be symmetric.

 The new candidate sample z* is accepted with probability

 where k labels the members of the set of possible transitions 

considered.

• Note
 Evaluation of acceptance criterion does not require normalizing 

constant Zp.

 When the proposal distributions are symmetric, Metropolis-Hastings 

reduces to the standard Metropolis algorithm.

Slide credit: Bernt Schiele

A(z?; z(¿)) = min

µ
1;

~p(z?)qk(z
(¿)jz?)

~p(z(¿))qk(z?jz(¿))

¶

MCMC – Metropolis-Hastings Algorithm
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MCMC – Metropolis-Hastings Algorithm

• Properties

 We can show that p(z) is an invariant distribution of the Markov chain 

defined by the Metropolis-Hastings algorithm.

 We show detailed balance:

Note: This is wrong in the Bishop book!
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Random Walks

• Example: Random Walk behavior
 Consider a state space consisting of the integers z 2 Z with initial state 

z(1) = 0 and transition probabilities

• Analysis

 Expected state at time ¿ : 

 Variance:

 After ¿ steps, the random walk has only traversed a distance that is on 

average proportional to 𝜏.

 Central goal in MCMC is to avoid random walk behavior!

E[z(¿)] = 0

E[(z(¿))2] = ¿=2
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MCMC – Metropolis-Hastings Algorithm

• Schematic illustration
 For continuous state spaces, a common 

choice of proposal distribution is a 
Gaussian centered on the current state.

 What should be the variance of the
proposal distribution?
 Large variance: rejection rate will be high for complex problems.

 The scale ½ of the proposal distribution should be as large as possible without 
incurring high rejection rates.

 ½ should be of the same order as the smallest length scale ¾min.

 This causes the system to explore the distribution by means of a 
random walk.
 Undesired behavior: number of steps to arrive at state that is independent of 

original state is of order (¾max/¾min)
2.

 Strong correlations can slow down the Metropolis algorithm!

Image source: C.M. Bishop, 2006
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Gibbs Sampling

• Approach
 MCMC-algorithm that is simple and widely applicable.

 May be seen as a special case of Metropolis-Hastings.

• Idea

 Sample variable-wise: replace zi by a value drawn from the 

distribution p(zi|z\i).

 This means we update one coordinate at a time.

 Repeat procedure either by cycling through all variables or by 

choosing the next variable.

Slide credit: Bernt Schiele
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Gibbs Sampling

• Example

 Assume distribution p(z1, z2, z3).

 Replace       with new value drawn from 

 Replace       with new value drawn from 

 Replace       with new value drawn from 

 And so on…

Slide credit: Bernt Schiele

z
(¿)
1

z
(¿)
2

z
(¿)
3

z
(¿+1)
1 » p(z1jz(¿)2 ; z

(¿)
3 )

z
(¿+1)
2 » p(z2jz(¿+1)1 ; z

(¿)
3 )

z
(¿+1)
3 » p(z3jz(¿+1)1 ; z

(¿+1)
2 )
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Gibbs Sampling

• Properties
 The factor that determines the acceptance probability in the Metropolis-

Hastings is determined by

 (we have used qk(z*|z) = p(z*
k|z\k) and p(z) = p(zk|z\k) p(z\k)).

 I.e. we get an algorithm which always accepts!

 If you can compute (and sample from) the conditionals, you can apply 

Gibbs sampling.

 The algorithm is completely parameter free.

 Can also be applied to subsets of variables.

A(z?; z) =
p(z?)qk(zjz?)
p(z)qk(z?jz)

=
p(z?kjz?nk)p(z?nk)p(z

?
kjz?nk)

p(zkjznk)p(znk)p(zkjznk)
= 1

Slide credit: Zoubin Ghahramani
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Discussion

• Gibbs sampling benefits from few free choices and 

convenient features of conditional distributions:
 Conditionals with a few discrete settings can be explicitly normalized:

 Continuous conditionals are often only univariate.

 amenable to standard sampling methods.

 In case of graphical models, the conditional distributions depend only 

on the variables in the corresponding Markov blankets.

This sum is small

and easy.

Slide adapted from Iain Murray
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Gibbs Sampling

• Example
 20 iterations of Gibbs sampling on a bivariate Gaussian.

 Note: strong correlations can slow down Gibbs sampling.

Slide credit: Zoubin Ghahramani
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How Should We Run MCMC?

• Arbitrary initialization means starting iterations are bad
 Discard a “burn-in” period.

• How do we know if we have run for long enough?
 You don’t. That’s the problem.

• The samples are not independent
 Solution 1: Keep only every Mth sample (“thinning”).

 Solution 2: Keep all samples and use the simple Monte Carlo estimator 
on MCMC samples
 It is consistent and unbiased if the chain has “burned in”.

 Use thinning only if computing f(x(s)) is expensive.

• For opinion on thinning, multiple runs, burn in, etc.
 Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science. 7(4):473{483, 

1992. (http://www.jstor.org/stable/2246094)

Slide adapted from Iain Murray

http://www.jstor.org/stable/2246094
http://www.jstor.org/stable/2246094
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Summary: Approximate Inference

• Exact Bayesian Inference often intractable.

• Rejection and Importance Sampling
 Generate independent samples.

 Impractical in high-dimensional state spaces.

• Markov Chain Monte Carlo (MCMC)
 Simple & effective (even though typically computationally expensive).

 Scales well with the dimensionality of the state space.

 Issues of convergence have to be considered carefully.

• Gibbs Sampling
 Used extensively in practice.

 Parameter free

 Requires sampling conditional distributions.
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References and Further Reading

• Sampling methods for approximate inference are described 

in detail in Chapter 11 of Bishop’s book.

• Another good introduction to Monte Carlo methods can be 

found in Chapter 29 of MacKay’s book (also available online: 

http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)
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David MacKay
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Cambridge University Press, 2003

http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html

