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* Regression Techniques
— Linear Regression

Course Outline

f: XX —->R

— Regqularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabillistic Graphical Models
— Bayesian Networks
— Markov Random Fields
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* Deep Generative Models
— Generative Adversarial Networks
— Variational Autoencoders
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Topics of This Lecture

* Approximate Inference
— Variational methods
— Sampling approaches

« Sampling approaches
— Sampling from a distribution
— Ancestral Sampling
— Rejection Sampling
— Importance Sampling

« Markov Chain Monte Carlo
— Markov Chains
— Metropolis Algorithm
— Metropolis-Hastings Algorithm
— Gibbs Sampling
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Approximate Inference

« Exact Bayesian inference is often intractable.

— Often infeasible to evaluate the posterior distribution or to compute
expectations w.r.t. the distribution.
= E.g. because the dimensionality of the latent space is too high.
= Or because the posterior distribution has a too complex form.

— Problems with continuous variables
= Required integrations may not have closed-form solutions.

— Problems with discrete variables

= Marginalization involves summing over all possible configurations of the
hidden variables.

= There may be exponentially many such states.

— We need to resort to approximation schemes.
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Two Classes of Approximation Schemes

« Deterministic approximations (Variational methods)

— Based on analytical approximations to the posterior distribution
= E.g. by assuming that it factorizes in a certain form
= Or that it has a certain parametric form (e.g., a Gaussian).

= Can never generate exact results, but are often scalable to large
applications.

 Stochastic approximations (Sampling methods)

— Given infinite computationally resources, they can generate exact
results.

— Approximation arises from the use of a finite amount of processor time.
= Enable the use of Bayesian techniques across many domains.
= But: computationally demanding, often limited to small-scale problems.
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Topics of This Lecture

« Sampling approaches
— Sampling from a distribution
— Ancestral Sampling
— Rejection Sampling
— Importance Sampling
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Sampling ldea

* Objective:
— Evaluate expectation of a function f(z)

p(2) f(2)

w.r.t. a probability distribution p(z).

E[f] = [ F (2)p(2)dz

N /

« Sampling idea
— Draw L independent samples z) with [ = 1,..., L from p(z).
— This allows the expectation to be approximated by a finite sum

1 &
f:ZZf(Zl)
=1

— As long as the samples z are drawn independently from p(z), then

= Unbiased estimate, independent of the dimension of z!
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Sampling — Challenges

* Problem 1: Samples might not be independent

= Effective sample size might be much smaller than apparent

sample size.
P p(2) f(z)

* Problem 2: / ) L

— If f(z) is small in regions where p(z) is large and vice versa, the
expectation may be dominated by regions of small probability.

— Large sample sizes necessary to achieve sufficient accuracy.
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Parametric Density Model

« Example:
— A simple multivariate (d-dimensional) Gaussian model

1 1 T
X|p, X)) = exp{ —=(x — > i(x—
P D) = s enn { 5 W TR - ) |
— This is a “generative” model goo
In the sense that we can generate ° §€; °
samples x according to the . oﬁigﬂ
distribution. -
_ oS
EL
RWTH
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Sampling from a Gaussian

 Given:
— 1-dim. Gaussian pdf p(x|u,02) and the corresponding cumulative

distribution: T
Fuorla) = [ plaln,ode
— OO
— To draw samples from a Gaussian, we can invert the cumulative
distribution function:
u ~ Uniform(0,1) = Fﬂ_iQ (u) ~ p(x|w, o?)
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Sampling from a pdf (Transformation method)

 In general, assume we are given the pdf p(x) and the
corresponding cumulative distribution:

Fa) = [ pes

— 0
— To draw samples from this pdf, we can invert the cumulative distribution
function:
u ~ Uniform(0,1) = F~1(u) ~ p(x)

1

Py
>

0
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Example 1: Sampling from Exponential Distrib.

« Exponential Distribution

p(y) = Aexp (—Ay)
where 0 < y < 0.

A=0.5 |
—_— A=l

A=15 |

« Transformation sampling

— Indefinite Integral h(y) =1—exp (—\y)
— Inverse function
-1 _

y = h(y) A7 n (1 — 2)

for a uniformly distributed input variable z.
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Example 2: Sampling from Cauchy Distrib.

e Cauchy Distribution

» Transformation sampling

— Inverse of integral can be expressed as a tan function.

y=h(y)"" = tan(z)

for a uniformly distributed input variable z.
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Note: Efficient Sampling from a Gaussian

* Problem with transformation method

— Integral over Gaussian cannot be expressed
in analytical form. . '
— Standard transformation approach is very .

Inefficient.

« More efficient: Box-Muller Algorithm —1 - 1
— Generate pairs of uniformly distributed random numbers
2,2, € (-1,1).
— Discard each pair unless it satisfies rP =242 <1
— This leads to a uniform distribution of points inside the unit circle with

p(z,,2,) = 1.
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Box-Muller Algorithm (cont'd)

« Box-Muller Algorithm (cont'd) r? =27 + 23
— For each pair z ,z, evaluate
—2Inr? 1/2 —21n r? 1/2
won (), (2
r r
— Then the joint distribution of y, and y, is given by
8(21, ZQ)

P(ylayQ) = P(Zla 22)

a(yb yZ)

1 2 oy 1 2 ]
= exp(—y7 /2 exp(—y5 /2
= exp(—22/2)| | = exp(-3/2
= gy, and y, are independent and each has a Gaussian distribution
with mean p and variance o=.

—If y~MNO0,1), then oy + p ~ Mu,o2).
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Box-Muller Algorithm (cont'd)

« Multivariate extension
— If z Is a vector valued random variable whose components are
independent and Gaussian distributed with A(0,1),

— Then y = u + Lz will have mean u and covariance X.
— Where £ = LL' is the Cholesky decomposition of X.
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General Advice

« Use library functions whenever

possible

— Many efficient algorithms available
for known univariate distributions
(and some other special cases)

— This book (free online) explains
how some of them work
— http://www.nrbook.com/devroye/
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Ancestral Sampling

« Generalization of this idea to directed graphical models.
— Joint probability factorizes into conditional probabilities:

p(x) = ] | p(=xlpay)

Ty

* Ancestral sampling o

— Assume the variables are ordered such that there are no links from any
node to a lower-numbered node.

— Start with lowest-numbered node and draw a sample from its
distribution. .
Ly ~ p(wl)

— Cycle through each of the nodes in order and draw samples from the
conditional distribution (where the parent variable is set to its sampled

value).
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Logic Sampling

« Extension of Ancestral sampling

— Directed graph where some nodes are instantiated
with observed values.

« Use ancestral sampling, except

— When sample is obtained for an observed variable, if they agree
then sample value is retained and proceed to next variable.

— If they don’t agree, whole sample is discarded.

* Result
— Approach samples correctly from the posterior distribution.

— However, probability of accepting a sample decreases rapidly as
the number of observed variables increases.

= Approach is rarely used in practice.
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Discussion

 Transformation method

— Limited applicability, as we need to invert the indefinite integral of the

required distribution p(z).

— This will only be feasible for a limited number of simple distributions.

* More general
— Rejection Sampling
— Importance Sampling
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Rejection Sampling

« Assumptions

— Sampling directly from p(z) is difficult.
— But we can easily evaluate p(z) (up to some normalization factor Z ):

1

p(z) = ——p(z)

e |[dea

Zp

— We need some simpler distribution ¢(z) (called proposal distribution)
from which we can draw samples.

— Choose a constant & such that:

kq(2o)

N

Vz : kq(z) = p(2)

kq(z)

o~

p(2)

20
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Rejection Sampling

kq(zo) kq(z)

« Sampling procedure
— Generate a number z, from ¢(2).

— Generate a number u, from the / (2)
uniform distribution over [0,kq(z,)].

—If up > 25(20) reject sample, otherwise accepit.
= Sample is rejected if it lies in the grey shaded area.
- The remaining pairs (u,,z,) have uniform distribution under the curve p(z2).

* Discussion
— Original values of z are generated from the distribution g(z).
— Samples are accepted with probability p(z)/kq(z)

p(accept) :f plz) q(z)dz = %/ﬁ(z)dz

kq(2)
= k should be as small as possible!
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Rejection Sampling — Discussion

 Limitation: high-dimensional spaces
— For rejection sampling to be of practical value, we require that kq(z) be
close to the required distribution, so that the rate of rejection is minimal.

* Artificial example
— Assume that p(z) is Gaussian with covariance matrix o3/

— Assume that q(z) is Gaussian with covariance matrix o5/

— Obviously: ¢ = g 05

—In D dimensions: k = (g,/0,)". )
= Assume o Is just 1% larger than o, 025
« D=1000 = k£ =1.01%000 > 20,000

« And p(accept) <

20000 . ’ :
= Impractical to find good proposal distributions for high dimensions!
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Example: Sampling from a Gamma Distrib.

« Gamma distribution

1
Gam(z|a,b) =

['(a)

« Rejection sampling approach
— For a>1, Gamma distribution has a
bell-shaped form.

— Suitable proposal distribution Is
Cauchy (for which we can use
the transformation method). . |

— Generalize Cauchy slightly to ensure 0 10 20 30
it is nowhere smaller than Gamma: y = b tan y + ¢ for uniform Y.

— This gives random numbers distributed according to

b2 exp(—bz) a> 1

0.15

0.1}
p(2)

0.05¢

(2) = k with optimal ¢c =a—1
q 1+ (2 —¢)?/b? rejection rate for b2 = 2a—1
2 [ ® ... W
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Evaluating Expectations

« Motivation
— Often, our goal is not sampling from p(z) by itself, but to evaluate

expectations of the form

E[f] = / F(2)p(2)dz

« Simplistic strategy: Grid sampling
— Discretize z-space into a uniform grid.
— Evaluate the integrand as a sum of the form

E[f] ~ > f(zD)p(z")dz
=1

— Problem: number of terms grows exponentially with number

of dimensions!
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Importance Sampling

e |[dea

Use a proposal distribution ¢(z) from which it is easy to draw samples.
Express expectations in the form of a finite sum over samples {z(}
drawn from g(z).

Bl = [ fwin = [ 18 Sat

P(Z(l) l
f(z)
1=1 (Z(l))l

\-/

R
I
Mh

p(z)

_ p(z")
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Importance Sampling

 Typical setting:
— p(z) can only be evaluated up to an unknown normalization
constant p(z) =p(z)/Z,

— ¢(z) can also be treated in a similar fashion.
q(z) = 4(z)/Z,

— Then
— Z Z)0Z — é Z ﬁ(Z) Z)07Z
5lf) = [ sp(eiz= 5 [ 1@2 o
- 213 nsa)
P 1=
o p(aY)
— with: r; = cj(zT))
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Importance Sampling

 Removing the unknown normalization constants

— We can use the sample set to evaluate the ratio of normalization
constants

Zy 1 [ [ p(zY) 1 < .
7. Z—q/p(z)dz = / mq(z)dz ~ Ez_:rl

— and therefore

Elf]

2
M-
g
KH
N

with wp = Z — = (20
7
m M 2 o)
= In contrast to Rejection Sampling, all generated samples are retained

(but they may get a small weight).
RWNTH
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Importance Sampling — Discussion

» Observations
— Success of importance sampling depends crucially on how well the

sampling distribution ¢(z) matches the desired distribution p(z).

— Often, p(z) f(z) is strongly varying and has a significant propor-tion of

its mass concentrated over small regions of z-space.

= Weights r; may be dominated by a few weights having large values.

— Practical issue: if none of the samples falls in the regions where

p(z) f(z) is large...
= The results may be arbitrary in error.
= And there will be no diagnostic indication (no large variance in 7)) !

— Key requirement for sampling distribution ¢(z):

« Should not be small or zero in regions where p(z) is significant!
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Sampling-Importance-Resampling

* Two stages
— Draw L samples z,..., z(&) from ¢(z).

— Construct weights using importance weighting

5 p(z)
w T q(z")
l p— — p— —
r p(z(m))

and draw a second set of samples z), ..., z(L) with probabilities
given by the weights w®),. .., w(b),

* Result
— The resulting L samples are only approximately distributed according to
p(z), but the distribution becomes correct in the limit L — oo.
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Curse of Dimensionality

* Problem

— Rejection & Importance Sampling both scale badly with high
dimensionality.

— Example:
p(Z) ~ N(Ov I)a q(Z) ~ j\/’((),o'zf)

* Rejection Sampling
— Requires o > 1. Fraction of proposals accepted: o ~P.

* Importance Sampling 5 D/2
. . . o
— Variance of importance weights: —1
2—1/0%
— Infinite / undefined variance if o < 1/\/5
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Topics of This Lecture

« Markov Chain Monte Carlo
— Markov Chains
— Metropolis Algorithm
— Metropolis-Hastings Algorithm
— Gibbs Sampling
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Independent Sampling vs. Markov Chains

« So far
— We've considered two methods, Rejection Sampling and Importance

Sampling, which were both based on independent samples from ¢(z).
— However, for many problems of practical interest, it is difficult or

impossible to find g(z) with the necessary properties.

« Different approach

We abandon the idea of independent sampling.
Instead, rely on a Markov Chain to generate dependent samples from

the target distribution.
Independence would be a nice thing, but it is not necessary for the

Monte Carlo estimate to be valid.
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MCMC — Markov Chain Monte Carlo

* Overview
— Allows to sample from a large class of distributions.
— Scales well with the dimensionality of the sample space.

* |dea
— We maintain a record of the current state z(™

— The proposal distribution depends on the current state: g(z|z(")
— The sequence of samples forms a Markov chain z, z@, ...

« Setting
— We can evaluate p(z) (up to some normalizing factor Z ):
p(z) = pz)
Z

— At each time step, we generate a candidate sample from the proposal
distribution and accept the sample according to a criterion.
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MCMC — Metropolis Algorithm

« Metropolis algorithm [Metropolis et al., 1953]
— Proposal distribution is symmetric: q(zA|lzB) = q(zB|24)
— The new candidate sample z" is accepted with probability

A(a*,27) = min (1, 2

* Implementation
— Choose random number « uniformly from unit interval (0,1).
— Acceptsample if  A(z*,z(7) > u

* Note
— New candidate samples always accepted if p(z*) > p(z(™).
= |.e. when new sample has higher probability than the previous one.
— The algorithm sometimes accepts a state with lower probability.
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MCMC — Metropolis Algorithm

* TWO cases
— If new sample is accepted: 7T = 2*
— Otherwise: 7T+ — 5(7)

— This is in contrast to rejection sampling, where rejected samples are
simply discarded.

— Leads to multiple copies of the same sample!
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MCMC — Metropolis Algorithm

* Property
— When ¢(z 4|z z) > O for all z, the distribution of z" tends to p(z)
as T — o0.

* Note
— Sequence z, z(@ . is not a set of independent samples from p(z),
as successive samples are highly correlated.

— We can obtain (largely) independent samples by just retaining
every M sample.

3
« Example: Sampling from a Gaussian
— Proposal: Gaussian with o = 0.2.
— Green: accepted samples Ls|
— Red: rejected samples if
0.5
L e oo e (O C—
Part 12 — Approximate Inference | 0 0.5 1 15 2 25 3
Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006




Line Fitting Example

* Importance Sampling weights

° % o ° % e ° % o ° ™ ° %e

. A At

w =0.00548 1w =1.59e-08 w =9.65e-06 w =0.371 w =0.103

™ e ° % e %o ° %e e e

AV A || A || A | A

w =1.01e-08 w=0.111 w =1.92e-09 w =0.0126 w =1.1le-51
= Many samples with very low weights...
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Line Fitting Example (cont'd)

« Metropolis algorithm

\?

° % e
A
— Perturb parameters: Q(z’; z), e.9. Mz, 0?)
p(Z’ID))
. p(z|D)
— Otherwise, keep old parameters.
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Markov Chains

* Question
— How can we show that z" tends to p(z) as 7 — 00?

 Markov chains
— First-order Markov chain:

P (z<m+1> PIONES ,z<m>) —p (Z<m+1> |z<m>)

— Marginal probability

p (2m0) = 3" p (2" V]a™) p (207)

z(m)

A Markov chain is called homogeneous if the transition probabilities
p(z™+1) | z(™) are the same for all m.

Visual Computing Institute | Prof. Dr . Bastian Leibe
Advanced Machine Learning 0 Visual Camputing
Institute

Part 12 — Approximate Inference |

Slide adapted from Bernt Schiele




Markov Chains — Properties

* |nvariant distribution

— A distribution is said to be invariant (or stationary) w.r.t. a Markov chain
If each step in the chain leaves that distribution invariant.

— Transition probabilities:
T (z<m>, z<m+1>) —p (Z<m+1> |z<m>)

— Distribution p(z) is invariant if:
p*(z) =) T(z,2)p*(7)
* Detailed balance

— Sufficient (but not necessary) condition to ensure that a distribution is
Invariant: N / oy /
p (Z)T(Z7Z ) =D (Z )T(Z 7Z)
— A Markov chain which respects detailed balance is reversible.
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Detailed Balance

 Detalled balance means

— If we pick a state from the target distribution p(z) and make a transition
under I'to another state, it is just as likely that we will pick z , and go
from z 4 to z 5 than that we will pick z; and go from z; to z ;.

— It can easily be seen that a transition probability that satisfies detailed
balance w.r.t. a particular distribution will leave that distribution

Invariant, because
Zp )T (z,2)

Y p*(2)T(2,2)
= p*(2) ) _p(2'|z) = p*(2)
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Ergodicity in Markov Chains

* Remark

— QOur goal is to use Markov chains to sample from a given distribution.

— We can achieve this if we set up a Markov chain such that the desired
distribution is invariant.

— However, must also require that for m — o0, the distribution p(z(™)
converges to the required invariant distribution p*(z) irrespective of the
choice of initial distribution p(z(®).

— This property is called ergodicity and the invariant distribution is called
the equilibrium distribution.

— It can be shown that this is the case for a homogeneous Markov chain,
subject only to weak restrictions on the invariant distribution and the
transition probabilities.
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Mixture Transition Distributions

* Mixture distributions

— In practice, we often construct the transition probabilities from a set of
‘base’ transitions B ,...,By.

— This can be achieved through a mixture distribution

K
T(Zz',z) = Z ay By (z', z)
k=1
with mixing coefficients o, > 0 and 2, o, = 1.

* Properties

— If the distribution is invariant w.r.t. each of the base transitions, then it
will also be invariant w.r.t. T(zZ',z).

— If each of the base transitions satisfies detailed balance, then the
mixture transition T will also satisfy detailed balance.

— Common example: each base transition changes only a subset

of variables.
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MCMC — Metropolis-Hastings Algorithm

« Metropolis-Hastings Algorithm
— Generalization: Proposal distribution not required to be symmetric.
— The new candidate sample z" is accepted with probability

) =i (1, 2 )
p(z(7))qi(z*]2(7)

— where k labels the members of the set of possible transitions
considered.

 Note

— Evaluation of acceptance criterion does not require normalizing
constant Z,

— When the proposal distributions are symmetric, Metropolis-Hastings
reduces to the standard Metropolis algorithm.
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MCMC — Metropolis-Hastings Algorithm

* Properties

— We can show that p(z) is an invariant distribution of the Markov chain
defined by the Metropolis-Hastings algorithm.
— We show detailed balance:

A7, z) = min{ (2 qi(z]2') }

5@)an(77)
#(2)qr (2 |2) Ay(2,2) = min {p(2)q(2'|2), B(2)ax (2]2)}
— min {§(2)q(2]2)), (2)q(2'|2)}
P(2)qs(2/|2) An(2',2) = B(@)qx(2]z) Ax(2,2)
p(2)T(,2) = p(#)T(z,7)

Note: This is wrong in the Bishop book!
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Random Walks

« Example: Random Walk behavior
— Consider a state space consisting of the integers z € Z with initial state
2(1) = 0 and transition probabilities

p(z ) =27y = 05
p(z Y =27 1 1) = 0.25
p(z Y =27 —1) = 0.25

* Analysis
— Expected state at time 7 : E[z(T)] —0
— Variance: E (Z(r))z] _ 7_/2

— After 7 steps, the random walk has only traversed a distance that is on

average proportional to /7.

= Central goal in MCMC is to avoid random walk behavior!
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MCMC — Metropolis-Hastings Algorithm

 Schematic illustration

— For continuous state spaces, a common Tmax
choice of proposal distribution is a
Gaussian centered on the current state.

= What should be the variance of the '\
proposal distribution? 7min
= Large variance: rejection rate will be high for complex problems.

= The scale p of the proposal distribution should be as large as possible without

incurring high rejection rates.
= p should be of the same order as the smallest length scale o,

— This causes the system to explore the distribution by means of a
random walk.

= Undesired behavior: number of steps to arrive at state that is independent of
original state is of order (0,.,/0 min)?-

= Strong correlations can slow down the Metropolis algorithm!
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Gibbs Sampling

* Approach
— MCMC-algorithm that is simple and widely applicable.
— May be seen as a special case of Metropolis-Hastings.

* ldea
— Sample variable-wise: replace z, by a value drawn from the

distribution p(z;|z,,).
= This means we update one coordinate at a time.

— Repeat procedure either by cycling through all variables or by

choosing the next variable.
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Gibbs Sampling

« Example
— Assume distribution p(z,, z,, 2.).
. 1
— Replace 2{™ with new value drawn from 27" ~ p(z|237, 27
. 1
~ Replace 2! with new value drawn from 2T p(zo) 47T 2T
— Replace z{™ with new value drawn from 2§ ™ ~ p(zs|2{""" 2{7tY)
— And so on...
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Gibbs Sampling

* Properties

— The factor that determines the acceptance probability in the Metropolis-
Hastings is determined by

Az, z) = P P22, (2, )p(2; |2)
’ p(z)qr(z*z)  p(2k|z\k)p(2\1)P(2k |2\ 1)
— (we have used q,(z*|z) = p(z";Jzy) and p(z) = p(zlzy,) p(z)-

=1

— l.e. we get an algorithm which always accepts!

= If you can compute (and sample from) the conditionals, you can apply
Gibbs sampling.

= The algorithm is completely parameter free.

— Can also be applied to subsets of variables.
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Discussion

* Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:

— Conditionals with a few discrete settings can be explicitly normalized:

p(:cz- Xj;,gi) . :
p(xi|xj2) = ' This sum is small
Zm; P(ﬂ%a Xj;éz') and easy.
— Continuous conditionals are often only univariate.
— amenable to standard sampling methods.

— In case of graphical models, the conditional distributions depend only
on the variables in the corresponding Markov blankets.
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Gibbs Sampling

« Example
— 20 iterations of Gibbs sampling on a bivariate Gaussian.

/

— Note: strong correlations can slow down Gibbs sampling.
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How Should We Run MCMC?

 Arbitrary initialization means starting iterations are bad
— Discard a “burn-in” period.

 How do we know If we have run for long enough?
— You don’t. That's the problem.

« The samples are not independent
— Solution 1: Keep only every M sample (“thinning”).
— Solution 2: Keep all samples and use the simple Monte Carlo estimator
on MCMC samples

= It is consistent and unbiased if the chain has “burned in”.
= Use thinning only if computing f(x(®) is expensive.

 For opinion on thinning, multiple runs, burn in, etc.

— Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science. 7(4):473{483,
1992. (http://www.jstor.org/stable/2246094)
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Summary: Approximate Inference

« Exact Bayesian Inference often intractable.

* Rejection and Importance Sampling
— Generate independent samples.
— Impractical in high-dimensional state spaces.

« Markov Chain Monte Carlo (MCMC)
— Simple & effective (even though typically computationally expensive).
— Scales well with the dimensionality of the state space.
— Issues of convergence have to be considered carefully.

* Gibbs Sampling
— Used extensively in practice.
— Parameter free
— Requires sampling conditional distributions.
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References and Further Reading

« Sampling methods for approximate inference are described
in detail in Chapter 11 of Bishop’s book.

Owvd € a0y Christopher M. Bishop
. = o Pattern Recognition and Machine Learning
and Learning Algorithms Springer, 2006
g - David MacKay
v P Information Theory, Inference, and Learning Algorithms

Cambridge University Press, 2003

« Another good introduction to Monte Carlo methods can be
found in Chapter 29 of MacKay’s book (also available online:
http://www.inference.phv.cam.ac.uk/mackav/itprnn/book.html)
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