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Topics of This Lecture

* Recap: Sampling approaches
— Transformation Sampling
— Ancestral Sampling
— Rejection Sampling
— Importance Sampling

+ Markov Chain Monte Carlo
— Markov Chains
— Metropolis Algorithm
— Properties of Markov Chains
— Metropolis-Hastings Algorithm
— Gibbs Sampling
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Recap: Transformation Method

* In general, assume we are given the pdf p(x) and the
corresponding cumulative distribution:
F(z) = / p(z)dz

— To draw samples from this pdf, we can invert the cumulative distribution
function:
u ~ Uniform(0,1) = F~!(u) ~ p(z)
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Course Outline

* Regression Techniques
— Linear Regression
— Regularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabilistic Graphical Models
— Bayesian Networks
— Markov Random Fields
— Inference (exact & approximate)

+ Deep Generative Models = - -
- Generative Adversarial Networks ! -[qmﬁ;] Iz} Lp(xlz}] -
- Variational Autoencoders - .
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Recap: Sampling Idea

» Objective:
— Evaluate expectation of a function f(z)
w.r.t. a probability distribution p(z).
Bif = [ faiada
« Sampling idea
— Draw L independent samples z® with [ = 1,...,L from p(z).
— This allows the expectation to be approximated by a finite sum
L

L1 ,
= f@)
=1
- As long as the samples z® are drawn independently from p(z), then

HLf|— tlf]

= Unbiased estimate, independent of the dimension of z!
RWTH
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Recap: Rejection Sampling

« Assumptions
— Sampling directly from p(z) is difficult.
- But we can easily evaluate p(z) (up to some norm. factor Z,):
1
. Idea p(2) = 5-5(2)
P
— We need some simpler distribution ¢(z) (called proposal distribution)
from which we can draw samples.
- Choose a constant k such that: Vz : kq(z) > p(z)

ka(zo) kqlz)

« Sampling procedure
- Generate a number z, from ¢(z).
— Generate a number u,, from the
uniform distribution over [0, kq(z)].
~If ug > p(zp) reject sample, otherwise accept.
RWTH
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Evaluating Expectations

+ Motivation
— Often, our goal is not sampling from p(z) by itself, but to evaluate
expectations of the form

E[f] = ff(z);u(z)dz

 Simplistic strategy: Grid sampling
— Discretize z-space into a uniform grid.
— Evaluate the integrand as a sum of the form
L

E[f] =Y f(z")p(z")dz
=1

— Problem: number of terms grows exponentially with number
of dimensions!
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Curse of Dimensionality

* Problem
— Rejection & Importance Sampling both scale badly with high
dimensionality.
— Example:

plz) ~ N(0, 1), q(z) ~ N(0,6°1)

* Rejection Sampling
— Requires o > 1. Fraction of proposals accepted: o 2.

o2 D/2 )
2-1/0?

— Infinite / undefined variance if 7 <1/32
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* Importance Sampling
— Variance of importance weights:

Independent Sampling vs. Markov Chains

* So far
— We've considered two methods, Rejection Sampling and Importance
Sampling, which were both based on independent samples from ¢(z).
— However, for many problems of practical interest, it is difficult or
impossible to find ¢(z) with the necessary properties.

« Different approach
— We abandon the idea of independent sampling.
— Instead, rely on a Markov Chain to generate dependent samples from
the target distribution.
— Independence would be a nice thing, but it is not necessary for the
Monte Carlo estimate to be valid.
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Recap: Importance Sampling

* Approach
— Approximate expectations directly E[f] = [_f(z)p(z)dz

(but does not enable to draw samples from p(z) directly).

« ldea
- Use a proposal distribution g(z) from which it is easy to sample.
— Express expectations in the form of a finite sum over samples {z}
drawn from ¢(z).

Blf) = [ fmtaa- [ f(z)ﬁﬁ—")q(z)dz

z)

o1 L plz) Its
= T2 @)

-
Importance weights
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Topics of This Lectu

» Markov Chain Monte Carlo
— Markov Chains
— Metropolis Algorithm
— Properties of Markov Chains
— Metropolis-Hastings Algorithm
— Gibbs Sampling
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MCMC — Markov Chain Monte Carlo

« Overview
— Allows to sample from a large class of distributions.
— Scales well with the dimensionality of the sample space.

* ldea
— We maintain a record of the current state z(™
— The proposal distribution depends on the current state: g(z|z(")
— The sequence of samples forms a Markov chain z(®), z@,...

« Setting
— We can evaluate p(z) (up to some normalizing factor Z,):
plz) = Be)
7z

— At each time step, we generate a candidate sample from the proposal
distribution and accept the sample according to a criterion.
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MCMC — Metropolis Algorithm

» Metropolis algorithm [Metropolis et al., 1953]
— Proposal distribution is symmetric: q(zalzB) = q(zB|24)
— The new candidate sample z" is accepted with probability
o N p(z")
A(z*,2'™) = min <1, @)
* Implementation
— Choose random number u uniformly from unit interval (0,1).
— Acceptsample if  A(z*,z™) > u

* Note
- New candidate samples always accepted if j(z*) > p(z(™).
= |l.e. when new sample has higher probability than the previous one.
— The algorithm sometimes accepts a state with lower probability.
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MCMC — Metropolis Algorithm

* Property
— When ¢(z 4|z ) > O for all z, the distribution of z” tends to p(z)
as T — 00.

* Note
— Sequence z), z@,... is not a set of independent samples from p(z),
as successive samples are highly correlated.
— We can obtain (largely) independent samples by just retaining
every Mt sample.

« Example: Sampling from a Gaussian
— Proposal: Gaussian with o = 0.2.
— Green: accepted samples 13
— Red: rejected samples
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Line Fitting Example (cont'd)

* Metropolis algorithm

) &; - \.-.
d; e &; e

- Perturb parameters: Q(z';z), e.g. Mz, 0?)

p(Z’\D))

. p(z[D)
— Otherwise, keep old parameters.
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— Accept with probability — min (1,

de credit- lain Murra

MCMC — Metropolis Algorithm

* Two cases
— If new sample is accepted: 27D = g+
- Otherwise: 27D = 50

— This is in contrast to rejection sampling, where rejected samples are
simply discarded.
= Leads to multiple copies of the same sample!
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Line Fitting Example

* Importance Sampling weights
s % e s % . on . e
A S | I
w=0,00548 w=1.58e-08 w =9.662-08 w =0.371 w =0.103
. -\-. s % 5 % 5 % s %
A LA A I s N
w=1.01e-08 w=0.111 i =1.92e-09 i =0.0126 w=1.1e-51
= Many samples with very low weights...
et Commuio e P - e ke ( ’9 i | FONTH
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Topics of This Lectu

* Markov Chain Monte Carlo
— Markov Chains
— Metropolis Algorithm
— Properties of Markov Chains
— Metropolis-Hastings Algorithm
— Gibbs Sampling
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Markov Chains

* Question
— How can we show that z7 tends to p(z) as 7 — c0?

» Markov chains
— First-order Markov chain:

» (z(m+l)‘z(l)7 . Vz(rn)) —p (z(m+1) ‘z(m))

— Marginal probability

» (z<m+1>) =3 (Z(mm‘z(m)) » (z<m>)

z(m)

— A Markov chain is called homogeneous if the transition probabilities
p(z") | z(™) are the same for all m.
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Detailed Balance

* Detailed balance means
— If we pick a state from the target distribution p(z) and make a transition
under T'to another state, it is just as likely that we will pick z, and go
from z 4 to z than that we will pick z; and go from z; to z 4.

— It can easily be seen that a transition probability that satisfies detailed
balance w.r.t. a particular distribution will leave that distribution
invariant, because

S ET(E ) = Y p T (a.7)

pi(2) ) pllz) =p'(2)
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Mixture Transition Distributions

* Mixture distributions
— In practice, we often construct the transition probabilities from a set of
‘base’ transitions B,,...,By.
— This can be achieved through a mixture distribution

K
T(z',2) =Y o Bi#,2)
k=1
with mixing coefficients o, > 0 and X, o, = 1.

* Properties
— If the distribution is invariant w.r.t. each of the base transitions, then it
will also be invariant w.r.t. T(Z',z).
— If each of the base transitions satisfies detailed balance, then the
mixture transition T will also satisfy detailed balance.
— Common example: each base transition changes only a subset
of variables.
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Markov Chains — Properties

« Invariant distribution
— A distribution is said to be invariant (or stationary) w.r.t. a Markov chain

if each step in the chain leaves that distribution invariant.

— Transition probabilities:
T (Z(m)7z(m+l)) =p (Z(m+1) ‘Z(m))
— Distribution p*(z) is invariant if:
P(@) =) T(@,2)p"@)
« Detailed balance

— Sufficient (but not necessary) condition to ensure that a distribution is

invariant: . , o ,

p*(2)T (z,2) =p*(2')T (2, 2)

— A Markov chain which respects detailed balance is reversible.
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Ergodicity in Markov Chains

* Remark

— Our goal is to use Markov chains to sample from a given distribution.

— We can achieve this if we set up a Markov chain such that the desired
distribution is invariant.

— However, must also require that for m — oo, the distribution p(z(™)
converges to the required invariant distribution p*(z) irrespective of the
choice of initial distribution p(z®).

— This property is called ergodicity and the invariant distribution is called
the equilibrium distribution.

— It can be shown that this is the case for a homogeneous Markov chain,
subject only to weak restrictions on the invariant distribution and the
transition probabilities.
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Topics of This Lecture

* Markov Chain Monte Carlo
— Markov Chains
— Metropolis Algorithm
— Properties of Markov Chains
— Metropolis-Hastings Algorithm
— Gibbs Sampling
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MCMC — Metropolis-Hastings Algorithm

MCMC — Metropolis-Hastings Algorithm

» Metropolis-Hastings Algorithm
— Generalization: Proposal distribution not required to be symmetric.
— The new candidate sample z" is accepted with probability
P(z*)gi (27 |z*) )
p(27))qi(z*]2(7)
— where k labels the members of the set of possible transitions
considered.

A(z*,27) = min (1,

* Note
— Evaluation of acceptance criterion does not require normalizing
constant Z,.
— When the proposal distributions are symmetric, Metropolis-Hastings
reduces to the standard Metropolis algorithm.
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* Properties
— We can show that p(z) is an invariant distribution of the Markov chain
defined by the Metropolis-Hastings algorithm.
— We show detailed balance:

A2’ z) = 111_‘111{1 M}

" pla)ax(#'|z)
pla)gi(a|2) A2’ 2) = wmin{p(2)ax(2'|2), p(2")qr (]2}
= win{j(z')g (z|2"), plz) g (2'2)}
plz)an(z'|2)Ak(2,2) = Bl(2)gu(zlz)Ax(z,2))
#(z)T(z'2z) = pl(z')T(z.2)

Note: This is wrong in the Bishop book!
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Random Walks

» Example: Random Walk behavior
— Consider a state space consisting of the integers z € Z with initial state
2(1) = 0 and transition probabilities
p(2t7+D = (7)) 0.5
p(2m) =27 4 1) = 025
p(2™) =20 —1) = 025

* Analysis
- Expected state at time 7 : ]E[z(T)] )
— Variance: El(z(M)2] = 7/2

— After 7 steps, the random walk has only traversed a distance that is on
average proportional to /7.
= Central goal in MCMC is to avoid random walk behavior!
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MCMC — Metropolis-Hastings Algorithm

» Schematic illustration

— For continuous state spaces, a common
choice of proposal distribution is a
Gaussian centered on the current state.

= What should be the variance of the
proposal distribution?
= Large variance: rejection rate will be high for complex problems.
= The scale p of the proposal distribution should be as large as possible without

incurring high rejection rates.

= p should be of the same order as the smallest length scale oy,

— This causes the system to explore the distribution by means of a
random walk.
= Undesired behavior: number of steps to arrive at state that is independent of
original state is of order (T e T min)?-
= Strong correlations can slow down the Metropolis algorithm!
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Topics of This Lecture

» Markov Chain Monte Carlo
— Markov Chains
— Metropolis Algorithm
— Properties of Markov Chains
— Metropolis-Hastings Algorithm
— Gibbs Sampling
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Gibbs Sampling

 Approach
— MCMC-algorithm that is simple and widely applicable.
— May be seen as a special case of Metropolis-Hastings.

* ldea
— Sample variable-wise: replace z, by a value drawn from the
distribution p(z;|z;).
= This means we update one coordinate at a time.
— Repeat procedure either by cycling through all variables or by
choosing the next variable.
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Gibbs Sampling

* Example
— Assume distribution p(z,, z,, 2,).

~ Replace z{” (D) Q)

with new value drawn from z; p(Zl\ZéT), 23")

~ Replace z{") with new value drawn from AT~ p(zl2Y, 27)

~ Replace z{” with new value drawn from AT~ p(zal2Y, )

—And soon...
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* Gibbs sampling benefits from few free choices and

convenient features of conditional distributions:

— Conditionals with a few discrete settings can be explicitly normalized:

P&, X4) is sum i
P(-’E:‘\X.;/i) _ i ’J#’ This sum is small
E.“: plah, Xj2) and easy.
— Continuous conditionals are often only univariate.
= amenable to standard sampling methods.

— In case of graphical models, the conditional distributions depend only
on the variables in the corresponding Markov blankets.
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How Should We Run MCMC?

« Arbitrary initialization means starting iterations are bad
— Discard a “burn-in” period.

» How do we know if we have run for long enough?
— You don't. That's the problem.

* The samples are not independent
— Solution 1: Keep only every Mt sample (“thinning”).
— Solution 2: Keep all samples and use the simple Monte Carlo estimator
on MCMC samples
= Itis consistent and unbiased if the chain has “burned in”.
= Use thinning only if computing f(x(*)) is expensive.
« For opinion on thinning, multiple runs, burn in, etc.

— Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science. 7(4):473{483,
1992. (http://www.jstor.org/stable/2246094)

Visual Computing Institute | Prof. Dr . Bastian Leibe
Advanced Machine Learring
Part 13 - Approximate Inference I

ide adapted from lain Mura

Gibbs Sampling

* Properties
— The factor that determines the acceptance probability in the Metropolis-
Hastings is determined by

v\ D@ )ak(zz") P(Zi‘sz)mztk)l’(zlﬂzik) o
AT D) = T PR

~ (we have used ¢,(z*|z) = p(2";lz) and p(z) = p(z/2) p(2)).

— l.e. we get an algorithm which always accepts!

= If you can compute (and sample from) the conditionals, you can apply
Gibbs sampling.

= The algorithm is completely parameter free.

= Can also be applied to subsets of variables.
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Gibbs Sampling

* Example
— 20 iterations of Gibbs sampling on a bivariate Gaussian.

— Note: strong correlations can slow down Gibbs sampling.
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Summary: Approximate Inference

« Exact Bayesian Inference often intractable.

« Rejection and Importance Sampling
— Generate independent samples.
— Impractical in high-dimensional state spaces.

* Markov Chain Monte Carlo (MCMC)
— Simple & effective (even though typically computationally expensive).
— Scales well with the dimensionality of the state space.
— Issues of convergence have to be considered carefully.

* Gibbs Sampling
— Used extensively in practice.
— Parameter free
— Requires sampling conditional distributions.
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References and Further Reading

« Sampling methods for approximate inference are described
in detail in Chapter 11 of Bishop’s book.

ot Christopher M. Bishop
Pattern Recognition and Machine Learning
--m.mm' Springer, 2006
f, b David MacKay
v s Information Theory, Inference, and Learning Algorithms

Cambridge University Press, 2003

 Another good introduction to Monte Carlo methods can be
found in Chapter 29 of MacKay’s book (also available online:
mp:/lwww.inference,nhv.cam.ac.uk/mackavlitprnn/book.html)
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