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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Topics of This Lecture

• Recap: Sampling approaches
 Transformation Sampling

 Ancestral Sampling

 Rejection Sampling

 Importance Sampling

• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm

 Properties of Markov Chains

 Metropolis-Hastings Algorithm

 Gibbs Sampling
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Recap: Sampling Idea

• Objective: 

 Evaluate expectation of a function f(z)

w.r.t. a probability distribution p(z).

• Sampling idea

 Draw L independent samples z(l) with l = 1,…,L from p(z).

 This allows the expectation to be approximated by a finite sum

 As long as the samples z(l) are drawn independently from p(z), then

 Unbiased estimate, independent of the dimension of z!

Slide adapted from Bernt Schiele

f̂ =
1

L

LX

l=1

f(zl)

Image source: C.M. Bishop, 2006
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• In general, assume we are given the pdf p(x) and the 

corresponding cumulative distribution:

 To draw samples from this pdf, we can invert the cumulative distribution 

function:

F (x) =

Z x

¡1
p(z)dz

u » Uniform(0;1)) F¡1(u) » p(x)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006

Recap: Transformation Method
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Recap: Rejection Sampling

• Assumptions

 Sampling directly from p(z) is difficult.

 But we can easily evaluate p(z) (up to some norm. factor Zp):

• Idea

 We need some simpler distribution q(z) (called proposal distribution) 

from which we can draw samples.

 Choose a constant k such that: 

• Sampling procedure

 Generate a number z0 from q(z).

 Generate a number u0 from the

uniform distribution over [0, 𝑘𝑞(𝑧0)].

 If reject sample, otherwise accept.

p(z) =
1

Zp
~p(z)

8z : kq(z) ¸ ~p(z)

Slide adapted from Bernt Schiele

u0 > ~p(z0)

Image source: C.M. Bishop, 2006

http://www.vision.rwth-aachen.de/
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Evaluating Expectations

• Motivation

 Often, our goal is not sampling from p(z) by itself, but to evaluate 

expectations of the form

• Simplistic strategy: Grid sampling

 Discretize z-space into a uniform grid.

 Evaluate the integrand as a sum of the form

 Problem: number of terms grows exponentially with number 

of dimensions!

Slide credit: Bernt Schiele
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Recap: Importance Sampling

• Approach
 Approximate expectations directly

(but does not enable to draw samples from p(z) directly).

• Idea

 Use a proposal distribution q(z) from which it is easy to sample.

 Express expectations in the form of a finite sum over samples {z(l)}

drawn from q(z).

Slide adapted from Bernt Schiele

Importance weights

Image source: C.M. Bishop, 2006
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Curse of Dimensionality

• Problem
 Rejection & Importance Sampling both scale badly with high 

dimensionality.

 Example:

• Rejection Sampling

 Requires ¾ ¸ 1. Fraction of proposals accepted: ¾ –D.

• Importance Sampling
 Variance of importance weights:

 Infinite / undefined variance if

Slide credit: Iain Murray
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Topics of This Lecture

• Recap: Sampling approaches
 Transformation Sampling

 Ancestral Sampling

 Rejection Sampling

 Importance Sampling

• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm

 Properties of Markov Chains

 Metropolis-Hastings Algorithm

 Gibbs Sampling
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Independent Sampling vs. Markov Chains

• So far 
 We’ve considered two methods, Rejection Sampling and Importance 

Sampling, which were both based on independent samples from q(z). 

 However, for many problems of practical interest, it is difficult or 

impossible to find q(z) with the necessary properties.

• Different approach
 We abandon the idea of independent sampling.

 Instead, rely on a Markov Chain to generate dependent samples from 

the target distribution.

 Independence would be a nice thing, but it is not necessary for the 

Monte Carlo estimate to be valid.

Slide credit: Zoubin Ghahramani
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• Overview
 Allows to sample from a large class of distributions.

 Scales well with the dimensionality of the sample space.

• Idea
 We maintain a record of the current state z(¿)

 The proposal distribution depends on the current state: q(z|z(¿)) 

 The sequence of samples forms a Markov chain z(1), z(2),…

• Setting

 We can evaluate p(z) (up to some normalizing factor Zp): 

 At each time step, we generate a candidate sample from the proposal 

distribution and accept the sample according to a criterion.

MCMC – Markov Chain Monte Carlo

Slide credit: Bernt Schiele
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MCMC – Metropolis Algorithm

• Metropolis algorithm [Metropolis et al., 1953]

 Proposal distribution is symmetric: 

 The new candidate sample z* is accepted with probability

• Implementation
 Choose random number u uniformly from unit interval (0,1).

 Accept sample if                        .

• Note
 New candidate samples always accepted if  .

 I.e. when new sample has higher probability than the previous one.

 The algorithm sometimes accepts a state with lower probability.

q(zAjzB) = q(zBjzA)

A(z?; z(¿)) = min

µ
1;

~p(z?)

~p(z(¿))

¶

A(z?;z(¿)) > u

~p(z?) ¸ ~p(z(¿))

Slide credit: Bernt Schiele
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MCMC – Metropolis Algorithm

• Two cases
 If new sample is accepted:

 Otherwise: 

 This is in contrast to rejection sampling, where rejected samples are 

simply discarded.

 Leads to multiple copies of the same sample!

z(¿+1) = z?

z(¿+1) = z(¿)

Slide credit: Bernt Schiele
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MCMC – Metropolis Algorithm

• Property

 When q(zA|zB) > 0 for all z, the distribution of z¿ tends to p(z)

as ¿ !1.

• Note

 Sequence z(1), z(2),… is not a set of independent samples from p(z), 

as successive samples are highly correlated.

 We can obtain (largely) independent samples by just retaining 

every Mth sample.

• Example: Sampling from a Gaussian

 Proposal: Gaussian with ¾ = 0.2.

 Green: accepted samples

 Red: rejected samples

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Line Fitting Example

• Importance Sampling weights

 Many samples with very low weights…

Slide credit: Iain Murray
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Line Fitting Example (cont’d)

• Metropolis algorithm

 Perturb parameters:               ,  e.g.  N(z, ¾2)

 Accept with probability 

 Otherwise, keep old parameters. 

Slide credit: Iain Murray
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 Ancestral Sampling

 Rejection Sampling
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• Markov Chain Monte Carlo
 Markov Chains

 Metropolis Algorithm
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 Metropolis-Hastings Algorithm

 Gibbs Sampling
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Markov Chains

• Question

 How can we show that z¿ tends to p(z) as ¿! 1?

• Markov chains
 First-order Markov chain:

 Marginal probability

 A Markov chain is called homogeneous if the transition probabilities 

p(z(m+1) | z(m)) are the same for all m.

p
³
z(m+1)jz(1); : : : ;z(m)

´
= p

³
z(m+1)jz(m)

´

p
³
z(m+1)

´
=
X

z(m)

p
³
z(m+1)jz(m)

´
p
³
z(m)

´

Slide adapted from Bernt Schiele
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Markov Chains – Properties

• Invariant distribution
 A distribution is said to be invariant (or stationary) w.r.t. a Markov chain 

if each step in the chain leaves that distribution invariant.

 Transition probabilities:

 Distribution p*(z) is invariant if:

• Detailed balance
 Sufficient (but not necessary) condition to ensure that a distribution is 

invariant:

 A Markov chain which respects detailed balance is reversible.

T
³
z(m);z(m+1)

´
= p

³
z(m+1)jz(m)

´

p?(z) =
X

z0

T (z0; z)p?(z0)

p?(z)T (z;z0) = p?(z0)T (z0;z)

Slide credit: Bernt Schiele
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Detailed Balance

• Detailed balance means

 If we pick a state from the target distribution p(z) and make a transition 

under T to another state, it is just as likely that we will pick zA and go 

from zA to zB than that we will pick zB and go from zB to zA.

 It can easily be seen that a transition probability that satisfies detailed 

balance w.r.t. a particular distribution will leave that distribution 

invariant, because
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Ergodicity in Markov Chains

• Remark
 Our goal is to use Markov chains to sample from a given distribution.

 We can achieve this if we set up a Markov chain such that the desired 

distribution is invariant.

 However, must also require that for m!1, the distribution p(z(m))

converges to the required invariant distribution p*(z) irrespective of the 

choice of initial distribution p(z(0)). 

 This property is called ergodicity and the invariant distribution is called 

the equilibrium distribution.

 It can be shown that this is the case for a homogeneous Markov chain, 

subject only to weak restrictions on the invariant distribution and the 

transition probabilities.
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Mixture Transition Distributions

• Mixture distributions
 In practice, we often construct the transition probabilities from a set of 

‘base’ transitions B1,…,BK.

 This can be achieved through a mixture distribution

with mixing coefficients ®k ¸ 0 and k ®k = 1.

• Properties
 If the distribution is invariant w.r.t. each of the base transitions, then it 

will also be invariant w.r.t. T(z’,z).

 If each of the base transitions satisfies detailed balance, then the 
mixture transition T will also satisfy detailed balance.

 Common example: each base transition changes only a subset 
of variables.
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• Metropolis-Hastings Algorithm
 Generalization: Proposal distribution not required to be symmetric.

 The new candidate sample z* is accepted with probability

 where k labels the members of the set of possible transitions 

considered.

• Note
 Evaluation of acceptance criterion does not require normalizing 

constant Zp.

 When the proposal distributions are symmetric, Metropolis-Hastings 

reduces to the standard Metropolis algorithm.

Slide credit: Bernt Schiele

A(z?; z(¿)) = min

µ
1;

~p(z?)qk(z
(¿)jz?)

~p(z(¿))qk(z?jz(¿))

¶

MCMC – Metropolis-Hastings Algorithm
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MCMC – Metropolis-Hastings Algorithm

• Properties

 We can show that p(z) is an invariant distribution of the Markov chain 

defined by the Metropolis-Hastings algorithm.

 We show detailed balance:

Note: This is wrong in the Bishop book!
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Random Walks

• Example: Random Walk behavior
 Consider a state space consisting of the integers z 2 Z with initial state 

z(1) = 0 and transition probabilities

• Analysis
 Expected state at time ¿ : 

 Variance:

 After ¿ steps, the random walk has only traversed a distance that is on 

average proportional to 𝜏.

 Central goal in MCMC is to avoid random walk behavior!

E[z(¿)] = 0

E[(z(¿))2] = ¿=2
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MCMC – Metropolis-Hastings Algorithm

• Schematic illustration
 For continuous state spaces, a common 

choice of proposal distribution is a 
Gaussian centered on the current state.

 What should be the variance of the
proposal distribution?
 Large variance: rejection rate will be high for complex problems.

 The scale ½ of the proposal distribution should be as large as possible without 
incurring high rejection rates.

 ½ should be of the same order as the smallest length scale ¾min.

 This causes the system to explore the distribution by means of a 
random walk.
 Undesired behavior: number of steps to arrive at state that is independent of 

original state is of order (¾max/¾min)
2.

 Strong correlations can slow down the Metropolis algorithm!

Image source: C.M. Bishop, 2006
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Gibbs Sampling

• Approach
 MCMC-algorithm that is simple and widely applicable.

 May be seen as a special case of Metropolis-Hastings.

• Idea

 Sample variable-wise: replace zi by a value drawn from the 

distribution p(zi|z\i).

 This means we update one coordinate at a time.

 Repeat procedure either by cycling through all variables or by 

choosing the next variable.

Slide credit: Bernt Schiele
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Gibbs Sampling

• Example

 Assume distribution p(z1, z2, z3).

 Replace       with new value drawn from 

 Replace       with new value drawn from 

 Replace       with new value drawn from 

 And so on…

Slide credit: Bernt Schiele

z
(¿)
1

z
(¿)
2

z
(¿)
3

z
(¿+1)
1 » p(z1jz(¿)2 ; z

(¿)
3 )

z
(¿+1)
2 » p(z2jz(¿+1)1 ; z

(¿)
3 )

z
(¿+1)
3 » p(z3jz(¿+1)1 ; z

(¿+1)
2 )
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Gibbs Sampling

• Properties
 The factor that determines the acceptance probability in the Metropolis-

Hastings is determined by

 (we have used qk(z*|z) = p(z*
k|z\k) and p(z) = p(zk|z\k) p(z\k)).

 I.e. we get an algorithm which always accepts!

 If you can compute (and sample from) the conditionals, you can apply 

Gibbs sampling.

 The algorithm is completely parameter free.

 Can also be applied to subsets of variables.

A(z?; z) =
p(z?)qk(zjz?)
p(z)qk(z?jz)

=
p(z?kjz?nk)p(z?nk)p(z

?
kjz?nk)

p(zkjznk)p(znk)p(zkjznk)
= 1

Slide credit: Zoubin Ghahramani
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Discussion

• Gibbs sampling benefits from few free choices and 

convenient features of conditional distributions:
 Conditionals with a few discrete settings can be explicitly normalized:

 Continuous conditionals are often only univariate.

 amenable to standard sampling methods.

 In case of graphical models, the conditional distributions depend only 

on the variables in the corresponding Markov blankets.

This sum is small

and easy.

Slide adapted from Iain Murray
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Gibbs Sampling

• Example
 20 iterations of Gibbs sampling on a bivariate Gaussian.

 Note: strong correlations can slow down Gibbs sampling.

Slide credit: Zoubin Ghahramani
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How Should We Run MCMC?

• Arbitrary initialization means starting iterations are bad
 Discard a “burn-in” period.

• How do we know if we have run for long enough?
 You don’t. That’s the problem.

• The samples are not independent
 Solution 1: Keep only every Mth sample (“thinning”).

 Solution 2: Keep all samples and use the simple Monte Carlo estimator 
on MCMC samples
 It is consistent and unbiased if the chain has “burned in”.

 Use thinning only if computing f(x(s)) is expensive.

• For opinion on thinning, multiple runs, burn in, etc.
 Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science. 7(4):473{483, 

1992. (http://www.jstor.org/stable/2246094)

Slide adapted from Iain Murray
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Summary: Approximate Inference

• Exact Bayesian Inference often intractable.

• Rejection and Importance Sampling
 Generate independent samples.

 Impractical in high-dimensional state spaces.

• Markov Chain Monte Carlo (MCMC)
 Simple & effective (even though typically computationally expensive).

 Scales well with the dimensionality of the state space.

 Issues of convergence have to be considered carefully.

• Gibbs Sampling
 Used extensively in practice.

 Parameter free

 Requires sampling conditional distributions.

http://www.jstor.org/stable/2246094
http://www.jstor.org/stable/2246094
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References and Further Reading

• Sampling methods for approximate inference are described 

in detail in Chapter 11 of Bishop’s book.

• Another good introduction to Monte Carlo methods can be 

found in Chapter 29 of MacKay’s book (also available online: 

http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)
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