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Course Outline

* Regression Techniques
— Linear Regression
— Regqularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabillistic Graphical Models
— Bayesian Networks
— Markov Random Fields
— Inference (exact & approximate)

* Deep Generative Models
— Generative Adversarial Networks
— Variational Autoencoders
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Topics of This Lecture

* Recap: Sampling approaches
— Transformation Sampling
— Ancestral Sampling
— Rejection Sampling
— Importance Sampling

« Markov Chain Monte Carlo
— Markov Chains
— Metropolis Algorithm
— Properties of Markov Chains
— Metropolis-Hastings Algorithm
— Gibbs Sampling
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Recap: Sampling Idea

* Objective:
— Evaluate expectation of a function f(z)

p(2) f(2)

w.r.t. a probability distribution p(z).

E[f] = [ F (2)p(2)dz

N /

« Sampling idea
— Draw L independent samples z) with [ = 1,..., L from p(z).
— This allows the expectation to be approximated by a finite sum

1 &
f:ZZf(Zl)
=1

— As long as the samples z are drawn independently from p(z), then

= Unbiased estimate, independent of the dimension of z!

E[f] = E[f]
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Recap: Transformation Method

 In general, assume we are given the pdf p(x) and the

corresponding cumulative distribution:

F(z) = / " p(2)dz

— OO

— To draw samples from this pdf, we can invert the cumulative distribution

function:

1

Py
>

0
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u ~ Uniform(0,1) = F~1(u) ~ p(x)
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Recap: Rejection Sampling

« Assumptions
— Sampling directly from p(z) is difficult.

— But we can easily evaluate p(z) (up to some norm. factor 2 ):

. lden pla) = ()

— We need some simpler distribution ¢(z) (called proposal distribution)
from which we can draw samples.

— Choose a constant & such that: Vz : kq(z) > p(z)

« Sampling procedure
— Generate a number z, from q(z).

— Generate a number u, from the (2)
uniform distribution over [0, kq(z,)]. )
— If yg > ]5(20) reject sample, otherwise accepit.
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Evaluating Expectations

« Motivation
— Often, our goal is not sampling from p(z) by itself, but to evaluate

expectations of the form

E[f] = / F(2)p(2)dz

« Simplistic strategy: Grid sampling
— Discretize z-space into a uniform grid.
— Evaluate the integrand as a sum of the form

E[f] ~ > f(zD)p(z")dz
=1

— Problem: number of terms grows exponentially with number

of dimensions!
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Recap: Importance Sampling

* Approach
— Approximate expectations directly E|f] = /f(z)p(z)dz

(but does not enable to draw samples from p(z) directly).

* Idea
— Use a proposal distribution ¢(z) from which it is easy to sample.
— Express expectations in the form of a finite sum over samples {z("}

drawn from ¢(z).

Blfl — |1

(2)p
1L
ZE

(l)
~ (2 ()
H/_/
Importance weights
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Curse of Dimensionality

* Problem

— Rejection & Importance Sampling both scale badly with high
dimensionality.

— Example:
p(Z) ~ N(Ov I)a q(Z) ~ j\/’((),o'zf)

* Rejection Sampling
— Requires o > 1. Fraction of proposals accepted: o ~P.

* Importance Sampling 5 D/2
. . . o
— Variance of importance weights: —1
2 —1/02
— Infinite / undefined variance if o < 1/\/5
n S Songtn et ot ® ... W
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Topics of This Lecture

e Markov Chain Monte Carlo
— Markov Chains
— Metropolis Algorithm
— Properties of Markov Chains
— Metropolis-Hastings Algorithm
— Gibbs Sampling
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Independent Sampling vs. Markov Chains

« So far
— We've considered two methods, Rejection Sampling and Importance

Sampling, which were both based on independent samples from ¢(z).
— However, for many problems of practical interest, it is difficult or

impossible to find g(z) with the necessary properties.

« Different approach

We abandon the idea of independent sampling.
Instead, rely on a Markov Chain to generate dependent samples from

the target distribution.
Independence would be a nice thing, but it is not necessary for the

Monte Carlo estimate to be valid.

Visual Computing Institute | Prof. Dr . Bastian Leibe
Advanced Machine Learning 0 Visual Camputing
Institute

Part 13 — Approximate Inference Il
Slide credit: Zoubin Ghahramani




MCMC — Markov Chain Monte Carlo

* Overview
— Allows to sample from a large class of distributions.
— Scales well with the dimensionality of the sample space.

* |dea
— We maintain a record of the current state z(™

— The proposal distribution depends on the current state: g(z|z(")
— The sequence of samples forms a Markov chain z, z@, ...

« Setting
— We can evaluate p(z) (up to some normalizing factor Z ):
p(z) = pz)
Z

— At each time step, we generate a candidate sample from the proposal
distribution and accept the sample according to a criterion.
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MCMC — Metropolis Algorithm

« Metropolis algorithm [Metropolis et al., 1953]
— Proposal distribution is symmetric: q(zA|lzB) = q(zB|24)
— The new candidate sample z" is accepted with probability

A(a*,27) = min (1, 2

* Implementation
— Choose random number « uniformly from unit interval (0,1).
— Acceptsample if  A(z*,z(7) > u

* Note
— New candidate samples always accepted if p(z*) > p(z(™).
= |.e. when new sample has higher probability than the previous one.
— The algorithm sometimes accepts a state with lower probability.
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MCMC — Metropolis Algorithm

* TWO cases
— If new sample is accepted: 7T = 2*
— Otherwise: 7T+ — 5(7)

— This is in contrast to rejection sampling, where rejected samples are
simply discarded.

— Leads to multiple copies of the same sample!
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MCMC — Metropolis Algorithm

* Property
— When ¢(z 4|z z) > O for all z, the distribution of z" tends to p(z)
as T — o0.

* Note
— Sequence z, z(@ . is not a set of independent samples from p(z),
as successive samples are highly correlated.

— We can obtain (largely) independent samples by just retaining
every M sample.

3
« Example: Sampling from a Gaussian
— Proposal: Gaussian with o = 0.2.
— Green: accepted samples Ls|
— Red: rejected samples if
0.5
L e oo e (O C—
Part 13 — Approximate Inference Il 0 0.5 1 15 2 25 3
Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006




Line Fitting Example

* Importance Sampling weights

° % o ° % e ° % o ° ™ ° %e

. A At

w =0.00548 1w =1.59e-08 w =9.65e-06 w =0.371 w =0.103

™ e ° % e %o ° %e e e

AV A || A || A | A

w =1.01e-08 w=0.111 w =1.92e-09 w =0.0126 w =1.1le-51
= Many samples with very low weights...
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Line Fitting Example (cont'd)

« Metropolis algorithm

\?

° % e
A
— Perturb parameters: Q(z’; z), e.9. Mz, 0?)
p(Z’ID))
. p(z|D)
— Otherwise, keep old parameters.
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Topics of This Lecture

e Markov Chain Monte Carlo
— Markov Chains
— Metropolis Algorithm
— Properties of Markov Chains
— Metropolis-Hastings Algorithm
— Gibbs Sampling
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Markov Chains

* Question
— How can we show that z" tends to p(z) as 7 — 00?

 Markov chains
— First-order Markov chain:

P (z<m+1> PIONES ,z<m>) —p (Z<m+1> |z<m>)

— Marginal probability

p (2m0) = 3" p (2" V]a™) p (207)

z(m)

A Markov chain is called homogeneous if the transition probabilities
p(z™+1) | z(™) are the same for all m.
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Markov Chains — Properties

* |nvariant distribution

— A distribution is said to be invariant (or stationary) w.r.t. a Markov chain
If each step in the chain leaves that distribution invariant.

— Transition probabilities:
T (z<m>, z<m+1>) —p (Z<m+1> |z<m>)

— Distribution p(z) is invariant if:
p*(z) =) T(z,2)p*(7)
* Detailed balance

— Sufficient (but not necessary) condition to ensure that a distribution is
Invariant: N / oy /
p (Z)T(Z7Z ) =D (Z )T(Z 7Z)
— A Markov chain which respects detailed balance is reversible.
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Detailed Balance

 Detalled balance means

— If we pick a state from the target distribution p(z) and make a transition
under I'to another state, it is just as likely that we will pick z , and go
from z 4 to z 5 than that we will pick z; and go from z; to z ;.

— It can easily be seen that a transition probability that satisfies detailed
balance w.r.t. a particular distribution will leave that distribution

Invariant, because
Zp )T (z,2)

Y p*(2)T(2,2)
= p*(2) ) _p(2'|z) = p*(2)
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Ergodicity in Markov Chains

* Remark

— QOur goal is to use Markov chains to sample from a given distribution.

— We can achieve this if we set up a Markov chain such that the desired
distribution is invariant.

— However, must also require that for m — o0, the distribution p(z(™)
converges to the required invariant distribution p*(z) irrespective of the
choice of initial distribution p(z(®).

— This property is called ergodicity and the invariant distribution is called
the equilibrium distribution.

— It can be shown that this is the case for a homogeneous Markov chain,
subject only to weak restrictions on the invariant distribution and the
transition probabilities.
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Mixture Transition Distributions

* Mixture distributions

— In practice, we often construct the transition probabilities from a set of
‘base’ transitions B ,...,By.

— This can be achieved through a mixture distribution

K
T(Zz',z) = Z ay By (z', z)
k=1
with mixing coefficients o, > 0 and 2, o, = 1.

* Properties

— If the distribution is invariant w.r.t. each of the base transitions, then it
will also be invariant w.r.t. T(zZ',z).

— If each of the base transitions satisfies detailed balance, then the
mixture transition T will also satisfy detailed balance.

— Common example: each base transition changes only a subset

of variables.
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Topics of This Lecture

e Markov Chain Monte Carlo
— Markov Chains
— Metropolis Algorithm
— Properties of Markov Chains
— Metropolis-Hastings Algorithm
— Gibbs Sampling
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MCMC — Metropolis-Hastings Algorithm

« Metropolis-Hastings Algorithm
— Generalization: Proposal distribution not required to be symmetric.
— The new candidate sample z" is accepted with probability

) =i (1, 2 )
p(z(7))qi(z*]2(7)

— where k labels the members of the set of possible transitions
considered.

 Note

— Evaluation of acceptance criterion does not require normalizing
constant Z,

— When the proposal distributions are symmetric, Metropolis-Hastings
reduces to the standard Metropolis algorithm.
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MCMC — Metropolis-Hastings Algorithm

* Properties

— We can show that p(z) is an invariant distribution of the Markov chain
defined by the Metropolis-Hastings algorithm.
— We show detailed balance:

A7, z) = min{ (2 qi(z]2') }

5@)an(77)
#(2)qr (2 |2) Ay(2,2) = min {p(2)q(2'|2), B(2)ax (2]2)}
— min {§(2)q(2]2)), (2)q(2'|2)}
P(2)qs(2/|2) An(2',2) = B(@)qx(2]z) Ax(2,2)
p(2)T(,2) = p(#)T(z,7)

Note: This is wrong in the Bishop book!
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Random Walks

« Example: Random Walk behavior
— Consider a state space consisting of the integers z € Z with initial state
2(1) = 0 and transition probabilities

p(z ) =27y = 05
p(z Y =27 1 1) = 0.25
p(z Y =27 —1) = 0.25

* Analysis
— Expected state at time 7 : E[z(T)] —0
— Variance: E (Z(r))z] _ 7_/2

— After 7 steps, the random walk has only traversed a distance that is on

average proportional to /7.

= Central goal in MCMC is to avoid random walk behavior!

Visual Computing Institute | Prof. Dr . Bastian Leibe Rm
Advanced Machine Learning 0 Visual Camputing
Part 13 — Approximate Inference Il Institute




MCMC — Metropolis-Hastings Algorithm

 Schematic illustration

— For continuous state spaces, a common Tmax
choice of proposal distribution is a
Gaussian centered on the current state.

= What should be the variance of the '\
proposal distribution? 7min
= Large variance: rejection rate will be high for complex problems.

= The scale p of the proposal distribution should be as large as possible without

incurring high rejection rates.
= p should be of the same order as the smallest length scale o,

— This causes the system to explore the distribution by means of a
random walk.

= Undesired behavior: number of steps to arrive at state that is independent of
original state is of order (0,.,/0 min)?-

= Strong correlations can slow down the Metropolis algorithm!
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Topics of This Lecture

e Markov Chain Monte Carlo
— Markov Chains
— Metropolis Algorithm
— Properties of Markov Chains
— Metropolis-Hastings Algorithm
— Gibbs Sampling
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Gibbs Sampling

* Approach
— MCMC-algorithm that is simple and widely applicable.
— May be seen as a special case of Metropolis-Hastings.

* ldea
— Sample variable-wise: replace z, by a value drawn from the

distribution p(z;|z,,).
= This means we update one coordinate at a time.

— Repeat procedure either by cycling through all variables or by

choosing the next variable.
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Gibbs Sampling

« Example
— Assume distribution p(z,, z,, 2.).
. 1
— Replace 2{™ with new value drawn from 27" ~ p(z|237, 27
. 1 1
~ Replace 2! with new value drawn from 2T p(zo) 47T 2T
. 1 1 1
— Replace z{™ with new value drawn from 2§ ™ ~ p(zs|2{""" 2{7tY)
— And so on...
Visual Computilng InstitgtelProf. Dr . Bastian Leibe (0 lel
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Gibbs Sampling

* Properties

— The factor that determines the acceptance probability in the Metropolis-
Hastings is determined by

Az, z) = P P22, (2, )p(2; |2)
’ p(z)qr(z*z)  p(2k|z\k)p(2\1)P(2k |2\ 1)
— (we have used q,(z*|z) = p(z";Jzy) and p(z) = p(zlzy,) p(z)-

=1

— l.e. we get an algorithm which always accepts!

= If you can compute (and sample from) the conditionals, you can apply
Gibbs sampling.

= The algorithm is completely parameter free.

— Can also be applied to subsets of variables.
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Discussion

* Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:
— Conditionals with a few discrete settings can be explicitly normalized:
P(Ti; Xj4) This sum is small
Plx;|Xi2i) = —
(@il Zm; p(@;, Xj2i) and easy.

— Continuous conditionals are often only univariate.
— amenable to standard sampling methods.

— In case of graphical models, the conditional distributions depend only
on the variables in the corresponding Markov blankets.
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Gibbs Sampling

« Example
— 20 iterations of Gibbs sampling on a bivariate Gaussian.

/

— Note: strong correlations can slow down Gibbs sampling.
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How Should We Run MCMC?

 Arbitrary initialization means starting iterations are bad
— Discard a “burn-in” period.

 How do we know If we have run for long enough?
— You don’t. That's the problem.

« The samples are not independent
— Solution 1: Keep only every M sample (“thinning”).
— Solution 2: Keep all samples and use the simple Monte Carlo estimator
on MCMC samples

= It is consistent and unbiased if the chain has “burned in”.
= Use thinning only if computing f(x(®) is expensive.

 For opinion on thinning, multiple runs, burn in, etc.

— Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science. 7(4):473{483,
1992. (http://www.jstor.org/stable/2246094)
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Summary: Approximate Inference

« Exact Bayesian Inference often intractable.

* Rejection and Importance Sampling
— Generate independent samples.
— Impractical in high-dimensional state spaces.

« Markov Chain Monte Carlo (MCMC)
— Simple & effective (even though typically computationally expensive).
— Scales well with the dimensionality of the state space.
— Issues of convergence have to be considered carefully.

* Gibbs Sampling
— Used extensively in practice.
— Parameter free
— Requires sampling conditional distributions.
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References and Further Reading

« Sampling methods for approximate inference are described
in detail in Chapter 11 of Bishop’s book.

Owvd € a0y Christopher M. Bishop
. = o Pattern Recognition and Machine Learning
and Learning Algorithms Springer, 2006
g - David MacKay
v P Information Theory, Inference, and Learning Algorithms

Cambridge University Press, 2003

« Another good introduction to Monte Carlo methods can be
found in Chapter 29 of MacKay’s book (also available online:
http://www.inference.phv.cam.ac.uk/mackav/itprnn/book.html)
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