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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Topics of This Lecture

• Recap: MCMC
 Gibbs Sampling

• Recap: Mixtures of Gaussians
 Mixtures of Gaussians
 ML estimation
 EM algorithm for MoGs

• An alternative view of EM
 Latent variables
 General EM
 Mixtures of Gaussians revisited
 Mixtures of Bernoulli distributions

• The EM algorithm in general
 Generalized EM
 Relation to Variational inference
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• Overview
 Allows to sample from a large class of distributions.

 Scales well with the dimensionality of the sample space.

• Idea
 We maintain a record of the current state z(¿)

 The proposal distribution depends on the current state: q(z|z(¿)) 

 The sequence of samples forms a Markov chain z(1), z(2),…

• Approach
 At each time step, we generate a candidate 

sample from the proposal distribution and 

accept the sample according to a criterion.

 Different variants of MCMC for different

criteria.

Slide adapted from Bernt Schiele Image source: C.M. Bishop, 2006

Recap: MCMC – Markov Chain Monte Carlo
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Recap: Markov Chains – Properties

• Invariant distribution
 A distribution is said to be invariant (or stationary) w.r.t. a Markov chain 

if each step in the chain leaves that distribution invariant.

 Transition probabilities:

 For homogeneous Markov chain, distribution p*(z) is invariant if:

• Detailed balance
 Sufficient (but not necessary) condition to ensure that a distribution is 

invariant:

 A Markov chain which respects detailed balance is reversible.

T
³
z(m);z(m+1)

´
= p

³
z(m+1)jz(m)

´

p?(z) =
X

z0

T (z0; z)p?(z0)

p?(z)T (z;z0) = p?(z0)T (z0;z)

Slide credit: Bernt Schiele
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Recap: MCMC – Metropolis Algorithm

• Metropolis algorithm [Metropolis et al., 1953]

 Proposal distribution is symmetric: 

 The new candidate sample z* is accepted with probability

 New candidate samples always accepted if                        .

 The algorithm sometimes accepts a state with lower probability.

• Metropolis-Hastings algorithm
 Generalization: Proposal distribution not necessarily symmetric.

 The new candidate sample z* is accepted with probability

 where k labels the members of the set of considered transitions.

q(zAjzB) = q(zBjzA)

A(z?; z(¿)) = min

µ
1;

~p(z?)

~p(z(¿))

¶

~p(z?) ¸ ~p(z(¿))

Slide adapted from Bernt Schiele

A(z?; z(¿)) = min

µ
1;

~p(z?)qk(z
(¿)jz?)

~p(z(¿))qk(z?jz(¿))

¶

http://www.vision.rwth-aachen.de/
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Recap: Gibbs Sampling

• Approach
 MCMC-algorithm that is simple and widely applicable.

 May be seen as a special case of Metropolis-Hastings.

• Idea

 Sample variable-wise: replace zi by a value drawn from the 

distribution p(zi|z\i).

 This means we update one coordinate at a time.

 Repeat procedure either by cycling through all variables or by 

choosing the next variable.

Slide credit: Bernt Schiele
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Recap: Gibbs Sampling

• Properties
 The factor that determines the acceptance probability in the Metropolis-

Hastings is determined by

 (we have used qk(z*|z) = p(z*
k|z\k) and p(z) = p(zk|z\k) p(z\k)).

 I.e. we get an algorithm which always accepts!

 If you can compute (and sample from) the conditionals, you can apply 

Gibbs sampling.

 The algorithm is completely parameter free.

 Can also be applied to subsets of variables.

A(z?; z) =
p(z?)qk(zjz?)
p(z)qk(z?jz)

=
p(z?kjz?nk)p(z?nk)p(z?kjz?nk)
p(zkjznk)p(znk)p(zkjznk)

= 1

Slide credit: Zoubin Ghahramani
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Discussion

• Gibbs sampling benefits from few free choices and 

convenient features of conditional distributions:
 Conditionals with a few discrete settings can be explicitly normalized:

 Continuous conditionals are often only univariate.

 Amenable to standard sampling methods.

 In case of graphical models, the conditional distributions depend only 

on the variables in the corresponding Markov blankets.

This sum is small

and easy.

Slide adapted from Iain Murray
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Gibbs Sampling

• Example
 20 iterations of Gibbs sampling on a bivariate Gaussian.

 Note: strong correlations can slow down Gibbs sampling.

Slide credit: Zoubin Ghahramani
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How Should We Run MCMC?

• Arbitrary initialization means starting iterations are bad
 Discard a “burn-in” period.

• How do we know if we have run for long enough?
 You don’t. That’s the problem.

• The samples are not independent
 Solution 1: Keep only every Mth sample (“thinning”).

 Solution 2: Keep all samples and use the simple Monte Carlo 
estimator on MCMC samples
 It is consistent and unbiased if the chain has “burned in”.

 Use thinning only if computing f(x(s)) is expensive.

• For opinion on thinning, multiple runs, burn in, etc.
 Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science. 7(4):473{483, 

1992. (http://www.jstor.org/stable/2246094)

Slide adapted from Iain Murray
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Summary: Approximate Inference

• Exact Bayesian Inference often intractable.

• Rejection and Importance Sampling
 Generate independent samples.

 Impractical in high-dimensional state spaces.

• Markov Chain Monte Carlo (MCMC)
 Simple & effective (even though typically computationally expensive).

 Scales well with the dimensionality of the state space.

 Issues of convergence have to be considered carefully.

• Gibbs Sampling
 Used extensively in practice.

 Parameter free

 Requires sampling conditional distributions.

http://www.jstor.org/stable/2246094
http://www.jstor.org/stable/2246094
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Topics of This Lecture

• Recap: MCMC
 Gibbs Sampling

• Recap: Mixtures of Gaussians
 Mixtures of Gaussians
 ML estimation
 EM algorithm for MoGs

• An alternative view of EM
 Latent variables
 General EM
 Mixtures of Gaussians revisited
 Mixtures of Bernoulli distributions

• The EM algorithm in general
 Generalized EM
 Relation to Variational inference
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Recap: Mixture of Gaussians (MoG)

• “Generative model”

x

x

j

p(x)

p(x)

1
2 3

p(j) = ¼j

p(xjµj)

p(xjµ) =

MX

j=1

p(xjµj)p(j)

“Weight” of mixture

component

Mixture

component

Mixture density

Slide credit: Bernt Schiele
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Recap: Mixture of Multivariate Gaussians

• Multivariate Gaussians

 Mixture weights / mixture coefficients:

with                     and

 Parameters:

p(xjµ) =

MX

j=1

p(xjµj)p(j)

p(xjµj) =
1

(2¼)D=2j§jj1=2
exp

½
¡1

2
(x¡¹j)T§¡1

j (x¡¹j)
¾

p(j) = ¼j

MX

j=1

¼j = 10 · ¼j · 1

µ = (¼1;¹1;§1; : : : ; ¼M;¹M;§M)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Recap: Mixtures of Gaussians

• “Generative model”

p(xjµ) =

3X

j=1

¼jp(xjµj)
p(j) = ¼j

j

1
2

3

p(xjµ1)
p(xjµ2)

p(xjµ3)

Image source: C.M. Bishop, 2006Slide credit: Bernt Schiele
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E = ¡ lnL(µ) = ¡
NX

n=1

ln p(xnjµ)

• Maximum Likelihood

 Minimize 

 We can already see that this will be difficult, since

ln p(Xj¼;¹;§) =

NX

n=1

ln

(
KX

k=1

¼kN (xnj¹k;§k)
)

This will cause problems!

Slide adapted from Bernt Schiele

Recap: ML for Mixtures of Gaussians
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• Minimization:

• We thus obtain

) ¹j =

PN

n=1 °j(xn)xnPN

n=1 °j(xn)

@E

@¹j
= ¡

NX

n=1

@
@¹

j

p(xnjµj)
PK

k=1 p(xnjµk)

= ¡
NX

n=1

Ã
§¡1(xn ¡ ¹j)

p(xnjµj)PK

k=1 p(xnjµk)

!

= ¡§¡1
NX

n=1

(xn ¡ ¹j)
¼jN (xnj¹j ;§j)PK

k=1 ¼kN (xnj¹k;§k)

!
= 0

@E

@¹j
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@
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n=1
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!
= 0

@

@¹j
N (xnj¹k;§k) =
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= °j(xn)

“responsibility” of
component j for xn

Recap: ML for Mixtures of Gaussians
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• But…

• I.e. there is no direct analytical solution!

 Complex gradient function (non-linear mutual dependencies)

 Optimization of one Gaussian depends on all other Gaussians!

 It is possible to apply iterative numerical optimization here, 

but the EM algorithm provides a simpler alternative.

¹j =

PN

n=1 °j(xn)xnPN

n=1 °j(xn)
°j(xn) =

¼jN (xnj¹j;§j)PN

k=1 ¼kN (xnj¹k;§k)

Recap: ML for Mixtures of Gaussians
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Recap: EM Algorithm

• Expectation-Maximization (EM) Algorithm
 E-Step: softly assign samples to mixture components

 M-Step: re-estimate the parameters (separately for each mixture 

component) based on the soft assignments

8j = 1; : : : ;K; n = 1; : : : ;N

¼̂newj Ã N̂j

N

¹̂
new
j Ã 1

N̂j

NX

n=1

°j(xn)xn

§̂new
j Ã 1

N̂j

NX

n=1

°j(xn)(xn ¡ ¹̂newj )(xn ¡ ¹̂newj )T

N̂j Ã
NX

n=1

°j(xn) = soft #samples labeled j

°j(xn) Ã
¼jN (xnj¹j ;§j)PN

k=1 ¼kN (xnj¹k;§k)

Slide adapted from Bernt Schiele
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Outlook for Today

• Criticism
 This is all very nice, but in the ML lecture, the EM algorithm 

miraculously fell out of thin air.

 Why do we actually solve it this way?

• This lecture
 We will take a more general view on EM

 Different interpretation in terms of latent variables

 Detailed derivation

 This will allow us to derive EM algorithms also for other cases.
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Topics of This Lecture

• Recap: MCMC
 Gibbs Sampling

• Recap: Mixtures of Gaussians
 Mixtures of Gaussians
 ML estimation
 EM algorithm for MoGs

• An alternative view of EM
 Latent variables
 General EM
 Mixtures of Gaussians revisited
 Mixtures of Bernoulli distributions

• The EM algorithm in general
 Generalized EM
 Relation to Variational inference
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• Mixture of Gaussians
 Can be written as linear superposition of Gaussians in the form

• Let’s write this in a different form…

 Introduce a K-dimensional binary random variable z with 

a 1-of-K coding, i.e., zk = 1 and all other elements are zero.

 Define the joint distribution over x and z as

 This corresponds to the following graphical model:

Image source: C.M. Bishop, 2006

Gaussian Mixtures as Latent Variable Model
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• Marginal distribution over z

 Specified in terms of the mixing coefficients ¼k, such that

where                       and .

 Since z uses a 1-of-K representation, we can also write this as

 Similarly, we can write for the conditional distribution

0 · ¼j · 1

Gaussian Mixtures as Latent Variable Models
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• Marginal distribution of x

 Summing the joint distribution over all possible states of z

• What have we gained by this?
 The resulting formula looks still the same after all…

 We have represented the marginal distribution in terms of 

latent variables z.

 Since p(x) = z p(x, z), there is a corresponding latent variable zn
for each data point xn.

 We are now able to work with the joint distribution p(x, z) instead of 

the marginal distribution p(x).

 This will lead to significant simplifications…

Gaussian Mixtures as Latent Variable Models
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• Conditional probability of z given x:

 Use again the “responsibility” notation 𝛾(𝑧𝑘)

 We can view ¼k as the prior probability of 𝑧𝑘 = 1 and 𝛾(𝑧𝑘) as the 

corresponding posterior once we have observed x.

Gaussian Mixtures as Latent Variable Models
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• MoG Sampling
 We can use ancestral sampling to generate random samples from a 

Gaussian mixture model.

1. Generate a value      from the marginal distribution p(z).

2. Generate a value      from the conditional distribution           .

Samples from the

joint p(x, z)
Samples from the

marginal p(x)
Evaluating the

responsibilities (znk)

Image source: C.M. Bishop, 2006

Sidenote: Sampling from a Gaussian Mixture
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Alternative View of EM

• Complementary view of the EM algorithm
 The goal of EM is to find ML solutions for models having latent 

variables.

 Notation

 Set of all data                 X = [x1,…,xN]T

 Set of all latent variables Z = [z1,…,zN]T

 Set of all model parameters µ

 Log-likelihood function

 Key observation: summation inside logarithm  difficult.
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Alternative View of EM

• Now, suppose we were told for each observation in X the 

corresponding value of the latent variable Z…

 Call {X,Z} the complete data set and 

refer to the actual observed data X as incomplete.

 The likelihood for the complete data set now takes the form

 Straightforward to marginalize…

Image source: C.M. Bishop, 2006
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Alternative View of EM

• In practice, however,…

 We are not given the complete data set {X,Z}, but only the 

incomplete data X.

 Our knowledge of the latent variable values in Z is given only by the 

posterior distribution    .

 Since we cannot use the complete-data log-likelihood, we consider 

instead its expected value under the posterior distribution of the 

latent variables:

 This corresponds to the E-step of the EM algorithm.

 In the subsequent M-step, we then maximize the expectation to obtain 

the revised parameter set µnew.
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General EM Algorithm

• Algorithm
1. Choose an initial setting for the parameters 

2. E-step: Evaluate 

3. M-step: Evaluate           given by

where 

4. While not converged, let                      and return to step 2.
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Remark: MAP-EM

• Modification for MAP
 The EM algorithm can be adapted to find MAP solutions for models for 

which a prior    is defined over the parameters.

 Only changes needed:

2. E-step: Evaluate 

3. M-step: Evaluate           given by

 Suitable choices for the prior will remove the ML singularities!
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Remark: Monte Carlo EM

• EM procedure
 M-step: Maximize expectation of complete-data log-likelihood

 For more complex models, we may not be able to compute this 
analytically anymore…

• Idea
 Use sampling to approximate this integral by a finite sum over samples 

{Z(l)} drawn from the current estimate of the posterior

 This procedure is called the Monte Carlo EM algorithm. 
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Gaussian Mixtures Revisited

• Applying the latent variable view of EM

 Goal is to maximize the log-likelihood using the observed data X

 Corresponding graphical model:

 Suppose we are additionally given the values

of the latent variables Z.

 The corresponding graphical model for the

complete data now looks like this:

Image source: C.M. Bishop, 2006
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Gaussian Mixtures Revisited

• Maximize the likelihood

 For the complete-data set {X,Z}, the likelihood has the form

 Taking the logarithm, we obtain 

 Compared to the incomplete-data case, the order of the sum and 

logarithm has been interchanged.

 Much simpler solution to the ML problem.

 Maximization w.r.t. a mean or covariance is exactly as for a single 

Gaussian, except that it involves only the subset of data points that are 

“assigned” to that component 𝑧𝑛𝑘 = 1 .
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Gaussian Mixtures Revisited

• Maximization w.r.t. mixing coefficients

 More complex, since the ¼k are coupled by the summation constraint

 Solve with a Lagrange multiplier

 Solution (after a longer derivation):

 The complete-data log-likelihood can be maximized trivially in 

closed form.



7

40
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 13 – Approximate Inference II

Gaussian Mixtures Revisited

• In practice, we don’t have values for the latent variables
 Consider the expectation w.r.t. the posterior distribution of the latent 

variables instead.

 The posterior distribution takes the form

and factorizes over n, so that the {zn} are independent under the 

posterior.

 Expected value of indicator variable znk under the posterior.

E[znk] =

P
znk

znk [¼kN (xnj¹k;§k)]
znk

P
znj

£
¼jN (xnj¹j ;§j)

¤znj

=
¼kN (xnj¹k;§k)PK

j=1 ¼jN (xnj¹j ;§j)
= °(znk)
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Gaussian Mixtures Revisited

• Continuing the estimation
 The expected value of the complete-data log-likelihood is therefore

• Putting everything together

 Start by choosing some initial values for 𝝁𝑜𝑙𝑑 , 𝚺𝑜𝑙𝑑 , and 𝝅𝑜𝑙𝑑 .

 Use these to evaluate the responsibilities (the E-Step).

 Keep the responsibilities fixed and maximize the above for 𝝁𝑛𝑒𝑤 , 𝚺𝑛𝑒𝑤 , 

and 𝝅𝑛𝑒𝑤 (the M-Step).

 This leads to the familiar closed-form solutions for 𝝁𝑛𝑒𝑤, 𝚺𝑛𝑒𝑤 , and 

𝝅𝑛𝑒𝑤 .

 This is precisely the EM algorithm for Gaussian mixtures as 

derived before. But we can now also apply it to other distributions.

EZ[log p(X;Zj¹;§;¼)] =

NX

n=1

KX

k=1

°znk flog¼k + logN (xnj¹k;§k)g
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