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Topics of This Lecture

* Recap: MCMC
— Gibbs Sampling

« Recap: Mixtures of Gaussians
— Mixtures of Gaussians
— ML estimation
— EM algorithm for MoGs

« An alternative view of EM
— Latent variables
— General EM
— Mixtures of Gaussians revisited
— Mixtures of Bernoulli distributions

* The EM algorithm in general
— Generalized EM
— Relation to Variational inference
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Recap: Markov Chains — Properties

* Invariant distribution
— Adistribution is said to be invariant (or stationary) w.r.t. a Markov chain
if each step in the chain leaves that distribution invariant.
— Transition probabilities:

T (Z(m,), Z(m+l)) =p (z(wH»l)‘z(m))
— For homogeneous Markov chain, distribution p'(z) is invariant if:

P2 =) T(z,2)p()

* Detailed balance

— Sufficient (but not necessary) condition to ensure that a distribution is
invariant:
P (2)T (2,2) =p*(2)T (', 2)
— A Markov chain which respects detailed balance is reversible.
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Course Outline

* Regression Techniques
— Linear Regression
— Regularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabilistic Graphical Models
— Bayesian Networks
— Markov Random Fields
— Inference (exact & approximate)
— Latent Variable Models

» Deep Generative Models } = . -
— Generative Adversarial Networks 1 qu] & Lw‘\'i’ 1
— Variational Autoencoders i@
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Recap: MCMC — Markov Chain Monte Carlo

* Overview
— Allows to sample from a large class of distributions.
— Scales well with the dimensionality of the sample space.

* ldea
— We maintain a record of the current state z(”
— The proposal distribution depends on the current state: g(z|z™)
— The sequence of samples forms a Markov chain z), 2@, ...

» Approach |
— At each time step, we generate a candidate |
sample from the proposal distribution and \
accept the sample according to a criterion. }

— Different variants of MCMC for different st
criteria.
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Recap: MCMC — Metropolis Algorithm

« Metropolis algorithm [Metropolis et al., 1953]
— Proposal distribution is symmetric: ¢(z4|zg) = q(zp|z4)
— The new candidate sample z" is accepted with probability
A(z*,2(7) = min (1, ﬂ)
p(z)
= New candidate samples always accepted if 5(z*) > p(z(")
— The algorithm sometimes accepts a state with lower probability.

» Metropolis-Hastings algorithm
— Generalization: Proposal distribution not necessarily symmetric.
— The new candidate sample z" is accepted with probability
A(z*,2(”)) = min (1, 7}3(Z*Mk(z<r)lz*) )
B(2(7))qi(z*[2(7)
— where £ labels the members of the set of considered transitions.
RWTH



http://www.vision.rwth-aachen.de/

Recap: Gibbs Sampling

* Approach
— MCMC-algorithm that is simple and widely applicable.
— May be seen as a special case of Metropolis-Hastings.

* Idea
— Sample variable-wise: replace z; by a value drawn from the
distribution p(z;|z;).
= This means we update one coordinate at a time.
— Repeat procedure either by cycling through all variables or by
choosing the next variable.
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* Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:
— Conditionals with a few discrete settings can be explicitly normalized:

plwi]xjp) = M This sum is small
' D DT X) and easy.

— Continuous conditionals are often only univariate.
= Amenable to standard sampling methods.

— In case of graphical models, the conditional distributions depend only
on the variables in the corresponding Markov blankets.
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How Should We Run MCMC?

« Arbitrary initialization means starting iterations are bad
— Discard a “burn-in” period.

» How do we know if we have run for long enough?
— You don't. That's the problem.

* The samples are not independent
— Solution 1: Keep only every Mt sample (“thinning”).
— Solution 2: Keep all samples and use the simple Monte Carlo
estimator on MCMC samples
= Itis consistent and unbiased if the chain has “burned in”.
= Use thinning only if computing f(x(*) is expensive.
« For opinion on thinning, multiple runs, burn in, etc.

- Charles J. Geyer, Practical Markov chain Monte Carlo, Science. 7(4):473{483,
1992. (http://www.jstor.org/stable/2246094)
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Recap: Gibbs Sampling

* Properties
— The factor that determines the acceptance probability in the Metropolis-
Hastings is determined by

v\ D@ )ak(zz") P(Zi‘sz)mztk)l’(zlﬂzik) o
AT D) = T PR

~ (we have used ¢,(z*|z) = p(2";lz) and p(z) = p(z/2) p(2)).

— l.e. we get an algorithm which always accepts!

= If you can compute (and sample from) the conditionals, you can apply
Gibbs sampling.

= The algorithm is completely parameter free.

= Can also be applied to subsets of variables.
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Gibbs Sampling

* Example
— 20 iterations of Gibbs sampling on a bivariate Gaussian.

— Note: strong correlations can slow down Gibbs sampling.
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Summary: Approximate Inference

« Exact Bayesian Inference often intractable.

« Rejection and Importance Sampling
— Generate independent samples.
— Impractical in high-dimensional state spaces.

* Markov Chain Monte Carlo (MCMC)
— Simple & effective (even though typically computationally expensive).
— Scales well with the dimensionality of the state space.
— Issues of convergence have to be considered carefully.

* Gibbs Sampling
— Used extensively in practice.
— Parameter free
— Requires sampling conditional distributions.
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Topics of This Lecture

« Recap: Mixtures of Gaussians
— Mixtures of Gaussians
— ML estimation
— EM algorithm for MoGs
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Recap: Mixture of Multivariate Gaussians

* Multivariate Gaussians

M

p(x(0) = p(x[0,)p()
j=1

p(x[0;) = W@(F {—;(x - l‘j)TEj_l(x - ”.7')}

— Mixture weights / mixture coefficients:

M
p(j) =m; with 0+ 7;- 1 and Zﬂ']' =1 il %
j=1
— Parameters: 05 h2
9:(7r17“1721a"'a7TMauM72M) 05

o
“I‘“I}‘Is }
1 o’ p—

lmage source: C\, Bishop, 200«
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Recap: ML for Mixtures of Gaussians

* Maximum Likelihood N
- Minimize  E = —InL(f) = — Zmp(xnw)
n=1

— We can already see that this will be difficult, since

N
h’lp(X|ﬂ', M, E) = Z In 4 7 kN(anuka Ek)}
n=1

This will cause problems!
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Recap: Mixture of Gaussians (MoG)

 “Generative model”

N “Weight” of mixture
p(j) =m; component

1
2l 3
p([p) 0 Mixture
2 ;‘ f p(z(6;) component
T
I Mixture density
p(z) < N
p(x(0) = > p(=10;)p(5)
j=1
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Recap: Mixtures of Gaussians

K
« “Generative model” Px) =3 mN (% )
O] k=1

3
p(x[0) = > mip(x]0;)
i=1

plxlfy) 1
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Recap: ML for Mixtures of Gaussians

« Minimization: 9 _
5 N 9 (Xn‘e') WN(X«L\M;C,EH =
E K, J £ k0 — )N Gl 5
- K
On; 71 21 P(XnOk)

-y (El(xnu»)i”("""%) )

ZkK=1 P(%n|0k)
N
= 7¥71 Z(Xn - P’j)
n=1

TN (Xalpy, 2;
* We tnhus optain

=
o

- N (x|,

—1 Tk
= (Xn)

N “ T
S v (xn)x responsibility” of
= ;= Smel JTRER component j for x,,
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Recap: ML for Mixtures of Gaussians

* But...

ZLV:I Xn
N
> on=1 7 (Xn)

K =

— Complex gradient function (non-linear mutual dependencies)
— Optimization of one Gaussian depends on all other Gaussians!
— It is possible to apply iterative numerical optimization here,

but the EM algorithm provides a simpler alternative.
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Outlook for Today

« Criticism
— This is all very nice, but in the ML lecture, the EM algorithm
miraculously fell out of thin air.
— Why do we actually solve it this way?

* This lecture
— We will take a more general view on EM
= Different interpretation in terms of latent variables
= Detailed derivation
— This will allow us to derive EM algorithms also for other cases.
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Gaussian Mixtures as Latent Variable Model

 Mixture of Gaussians
— Can be written as linear superposition of Gaussians in the form

p(x) = meN (x|, By)

* Let’s write this in a different form...
— Introduce a K-dimensional binary random variable z with
a 1-of-K coding, i.e., z;, = 1 and all other elements are zero.

— Define the joint distribution over x and z as
p(x,2) = p(x|z)p(z)

— This corresponds to the following graphical model: x

Recap: EM Algorithm

» Expectation-Maximization (EM) Algorithm
— E-Step: softly assign samples to mixture components
- ”JN(XHva ;)
e TN (% s Zie)
— M-Step: re-estimate the parameters (separately for each mixture
component) based on the soft assignments

7 (%n) Vi=1,....,K, n=1,...,N

N N
N N
AV L N; « Z'yj(xn) = soft #samples labeled j
v,
7 e — Z 75 (Xn)Xn
N7 n=1
2 1 N -
X A Z'YJ (3¢n) (%0 — “?ew)(xn - N;}ew)T
Jn=1

lmage source C M. _Bishop, 200¢
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Topics of This Lectu

« An alternative view of EM
— Latent variables
— General EM
— Mixtures of Gaussians revisited
— Mixtures of Bernoulli distributions
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Gaussian Mixtures as Latent Variable Models

« Marginal distribution over z
— Specified in terms of the mixing coefficients m;, such that

plax =1) =my,
K
where 0+ ;- 1 and Z?TJ:]-
i=1
— Since z uses a 1-of-K representation, we can also write this as
K
pla) = || =
k=1
— Similarly, we can write for the conditional distribution

p(xlz) = T N (xclpey, Z)

k=1
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Gaussian Mixtures as Latent Variable Models

» Marginal distribution of x
— Summing the joint distribution over all possible states of z
K

p(x) = plx,z) =3 p(z)p(x]z) =¥ mN (x|, B
z z k=1
* What have we gained by this?
— The resulting formula looks still the same after all...
= We have represented the marginal distribution in terms of
latent variables z.
- Since p(x) = X, p(x, z), there is a corresponding latent variable z,
for each data point x,,.
— We are now able to work with the joint distribution p(x, z) instead of
the marginal distribution p(x).
= This will lead to significant simplifications...
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Sidenote: Sampling from a Gaussian Mixture

* MoG Sampling
— We can use ancestral sampling to generate random samples from a
Gaussian mixture model. s
1. Generate avalue z from the marginal distribution p(z).
2. Generate a value X from the conditional distribution p{x/Z].

Samples from the Evaluating the
responsibilities y(z,;)

Samples from the
joint p(x, z) marginal p(x)

05 05 05

4

0 0 0

0.5
nwin
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Alternative View of EM

» Now, suppose we were told for each observation in X the

corresponding value of the latent variable Z...
- Call {X,Z} the complete data set and ’ n ) N ’

refer to the actual observed data X as incomplete.

— The likelihood for the complete data set now takes the form
logp(X, Z|8)
= Straightforward to marginalize...

Gaussian Mixtures as Latent Variable Models

« Conditional probability of z given x:
— Use again the “responsibility” notation y(z,)
plze = 1)p(x|zx = 1)
~K
L_j:lp(zj =1)p(x|z; =1)
TN (x| g i)
~K
L.iZl "TJ'N(K 1)
— We can view m, as the prior probability of z, = 1 and y(z,) as the
corresponding posterior once we have observed x.

2aw) = plaw = 1x) =
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Alternative View of EM

* Complementary view of the EM algorithm
— The goal of EM is to find ML solutions for models having latent

variables.

— Notation
= Setof all data X = [x,,...xp]T
+ Set of all latent variables Z = [z,,....z\]"
= Set of all model parameters 6

— Log-likelihood function
log p(X|6) = log {Zp(x, zm)}
z
— Key observation: summation inside logarithm = difficult.
RWTH
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Alternative View of EM

« In practice, however,...

— We are not given the complete data set {X,Z}, but only the
incomplete data X.

— Our knowledge of the latent variable values in Z is given only by the
posterior distribution p(Z X, &).

— Since we cannot use the complete-data log-likelihood, we consider
instead its expected value under the posterior distribution of the
latent variables:

Q6,67 = p(Z[X, 0°") log p(X, Z|8)
z

— This corresponds to the E-step of the EM algorithm.

— In the subsequent M-step, we then maximize the expectation to obtain
the revised parameter set 6.

85 — arg max Q(G.G"l")
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General EM Algorithm

* Algorithm
1. Choose an initial setting for the parameters !

2. E-step: Evaluate p(Z|X, 0"
3. M-step: Evaluate 8" given by
6" = argmax Q(6,6"'")
where o
Q(0,0°") = p(Z|X,07) log p(X, Z|6)
Z

4. While not converged, let g1 . "“* and return to step 2.
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R rk: te Carlo EM

* EM procedure
— M-step: Maximize expectation of complete-data log-likelihood

Q(0,6™) = j 2(Z/X,07) logp(X. Z/0)dZ
— For more complex models, we may not be able to compute this
analytically anymore...
* |dea

— Use sampling to approximate this integral by a finite sum over samples
{Z "} drawn from the current estimate of the posterior

L
1
8,6 ~ =% logp(X,Z"|0
Q(0,07") ~ 7 3o )
— This procedure is called the Monte Carlo EM algorithm.
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Gaussian Mixtures Revisited

» Maximize the likelihood
— For the complete-data set {X,Z}, the likelihood has the form

N K
p(X,Zp, B, 7)) = H H TN (s B )™

n=1 k=1
— Taking the logarithm, we obtain

N K
logp(X, Z|p, B, m) = 3 Y " 2k {logm + log N (x| 2. T )}
n=1k=1

— Compared to the incomplete-data case, the order of the sum and
logarithm has been interchanged.

= Much simpler solution to the ML problem.

— Maximization w.r.t. a mean or covariance is exactly as for a single
Gaussian, except that it involves only the subset of data points that are
“assigned” to that component (z,, = 1).
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Remark: MAP-EM

» Modification for MAP
— The EM algorithm can be adapted to find MAP solutions for models for
which a prior p(#) is defined over the parameters.
— Only changes needed:

2. E-step: Evaluate p(Z|X,#°)
3. M-step: Evaluate 8" given by

""" = arg mé\x (e, B"H)Jr logp(@)

= Suitable choices for the prior will remove the ML singularities!
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Gaussian Mixtures Revisited

» Applying the latent variable view of EM
— Goal is to maximize the log-likelihood using the observed data X

log p(X|8) = log {ZP(X: Zlﬂ)}
Z

— Corresponding graphical model:

— Suppose we are additionally given the values
of the latent variables Z.

— The corresponding graphical model for the
complete data now looks like this:
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Gaussian Mixtures Revisited

« Maximization w.r.t. mixing coefficients
— More complex, since the m;, are coupled by the summation constraint
K

=1
i=1
— Solve with a Lagrange multiplier
K
log p(X, Z|pe, B, ) + A (Zﬂ 1)

k=1
— Solution (after a longer derivation):

1K
m= D
"
= The complete-data log-likelihood can be maximized trivially in

closed form.
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Gaussian Mixtures Revisited

* In practice, we don’t have values for the latent variables
— Consider the expectation w.r.t. the posterior distribution of the latent
variables instead.
— The posterior distribution takes the form
N K
p(ZX. p, Zomw) oc [] [ [N (xnlseg Zp)]™*
n=1 k=1
and factorizes over n, so that the {z,} are independent under the
posterior.
— Expected value of indicator variable z,, under the posterior.
D 2k [T N (X |y, B)]
3., [N (ealpe;, 35)] 7
TN (X | 1, Zie)

= =k ="7(z)
ZKzl "]N(x‘nl“'/jv 3

J
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Gaussian Mixtures Revisited

» Continuing the estimation
— The expected value of the complete-data log-likelihood is therefore

N K
Ezllogp(X, Z|p, 3, m)] = > Y vz {log i + log N (%12, Tk)}
n=1k=1
« Putting everything together
— Start by choosing some initial values for u°'¢, £°'¢, and m°<,
— Use these to evaluate the responsibilities (the E-Step).
— Keep the responsibilities fixed and maximize the above for u™¢%, £"e%,
and m"¢" (the M-Step).
— This leads to the familiar closed-form solutions for ™%, £"¢%  and
new.
= This is precisely the EM algorithm for Gaussian mixtures as
derived before. But we can now also apply it to other distributions.

References and Further Reading

* More information about EM and MoG estimation is available

in Chapter 9 of Bishop’s book (recommendable to read).
oo

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

« Additional information
— A.P. Dempster, N.M. Laird, D.B. Rubin, ,Maximum-Likelihood from incomplete
data via EM algorithm”, In J. Royal Statistical Society, Series B. Vol 39, 1977
— J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application to
Parameter Estimation for Gaussian Mixture and Hidden Markov Models®, TR-
97-021, ICSI, U.C. Berkeley, CA,USA
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