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Course Outline

* Regression Techniques
— Linear Regression
— Regqularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabillistic Graphical Models
— Bayesian Networks
— Markov Random Fields
— Inference (exact & approximate)
— Latent Variable Models

* Deep Generative Models
— Generative Adversarial Networks
— Variational Autoencoders
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Topics of This Lecture

* Recap: MCMC
— Gibbs Sampling

« Recap: Mixtures of Gaussians
— Mixtures of Gaussians
— ML estimation
— EM algorithm for MoGs

* An alternative view of EM
— Latent variables
— General EM
— Mixtures of Gaussians revisited
— Mixtures of Bernoulli distributions

 The EM algorithm in general
— Generalized EM
— Relation to Variational inference
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Recap: MCMC - Markov Chain Monte Carlo

* Overview
— Allows to sample from a large class of distributions.
— Scales well with the dimensionality of the sample space.

* |dea
— We maintain a record of the current state z(™

— The proposal distribution depends on the current state: g(z|z(")
— The sequence of samples forms a Markov chain z, z@, ...

« Approach

— At each time step, we generate a candidate
sample from the proposal distribution and
accept the sample according to a criterion. ,

— Different variants of MCMC for different

criteria. '
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Recap: Markov Chains — Properties

* |nvariant distribution

— A distribution is said to be invariant (or stationary) w.r.t. a Markov chain
If each step in the chain leaves that distribution invariant.

— Transition probabilities:
T (z<m>, z<m+1>) —p (z<m+1> |z<m>)

— For homogeneous Markov chain, distribution p*(z) is invariant if:

p*(z) =) T(2,2)p"(2)

* Detalled balance

— Sufficient (but not necessary) condition to ensure that a distribution is
Invariant:

p*(2)T(z,2') = p*(2)T (2, 2)
— A Markov chain which respects detailed balance is reversible.
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Recap: MCMC — Metropolis Algorithm

« Metropolis algorithm [Metropolis et al., 1953]
— Proposal distribution is symmetric: ¢(z4|zg) = q(zB|z4)
— The new candidate sample z" is accepted with probability
v (r . p(z")
A(z*,2')) = min (1, m)
— New candidate samples always accepted if (z*) > p(z(™)
— The algorithm sometimes accepts a state with lower probability.

» Metropolis-Hastings algorithm
— Generalization: Proposal distribution not necessarily symmetric.
— The new candidate sample z" is accepted with probability
A(z”, z(T)) — min (1 ﬁ(z*)%(Z(T”Z*) )

' p(z7))qr(2*]2(7)
— where k labels the members of the set of considered transitions.
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Recap: Gibbs Sampling

* Approach
— MCMC-algorithm that is simple and widely applicable.
— May be seen as a special case of Metropolis-Hastings.

* ldea
— Sample variable-wise: replace z, by a value drawn from the
distribution p(z;|z,,).
= This means we update one coordinate at a time.

— Repeat procedure either by cycling through all variables or by
choosing the next variable.
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Recap: Gibbs Sampling

* Properties

— The factor that determines the acceptance probability in the Metropolis-
Hastings is determined by

p(z*)qx(z|z*) _ p(ZZ‘Z’\(k)P(ZJ\kk)P(Zl:‘Z)\kk)
p(z)qe(z*|z)  p(zk|z\i)P(2\1)P(2k| 20 1)
— (we have used q,(z*|z) = p(z";Jzy) and p(z) = p(zlzy,) p(z)-

A(z*,z) = =1

— l.e. we get an algorithm which always accepts!

= If you can compute (and sample from) the conditionals, you can apply
Gibbs sampling.

= The algorithm is completely parameter free.

— Can also be applied to subsets of variables.
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Discussion

* Gibbs sampling benefits from few free choices and
convenient features of conditional distributions:
— Conditionals with a few discrete settings can be explicitly normalized:
P(Ti; Xj4) This sum is small
Plx;|Xi2i) = —
(@il Zm; p(@;, Xj2i) and easy.

— Continuous conditionals are often only univariate.
= Amenable to standard sampling methods.

— In case of graphical models, the conditional distributions depend only
on the variables in the corresponding Markov blankets.
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Gibbs Sampling

« Example
— 20 iterations of Gibbs sampling on a bivariate Gaussian.

/

— Note: strong correlations can slow down Gibbs sampling.
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How Should We Run MCMC?

 Arbitrary initialization means starting iterations are bad
— Discard a “burn-in” period.

 How do we know If we have run for long enough?
— You don’t. That's the problem.

« The samples are not independent
— Solution 1: Keep only every M sample (“thinning”).
— Solution 2: Keep all samples and use the simple Monte Carlo
estimator on MCMC samples

= |t is consistent and unbiased if the chain has “burned in”.
= Use thinning only if computing f(x(®)) is expensive.

 For opinion on thinning, multiple runs, burn in, etc.

— Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science. 7(4):473{483,
1992. (http://www.jstor.org/stable/2246094)
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Summary: Approximate Inference

« Exact Bayesian Inference often intractable.

* Rejection and Importance Sampling
— Generate independent samples.
— Impractical in high-dimensional state spaces.

« Markov Chain Monte Carlo (MCMC)
— Simple & effective (even though typically computationally expensive).
— Scales well with the dimensionality of the state space.
— Issues of convergence have to be considered carefully.

* Gibbs Sampling
— Used extensively in practice.
— Parameter free
— Requires sampling conditional distributions.

Visual Computing Institute | Prof. Dr . Bastian Leibe
15 Advanced Machine Learning o Visual Camputing
Part 13 — Approximate Inference Il Institute




Topics of This Lecture

« Recap: Mixtures of Gaussians
— Mixtures of Gaussians

— ML estimation
— EM algorithm for MoGs

Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning
Part 13 — Approximate Inference Il

®




Recap: Mixture of Gaussians (MoG)

» “Generative model’
N “Weight” of mixture
@ p(j) =7, component

1
2 3\
. Mixture
p(z) ‘ M p(x|9j) component
m -

\ Mixture density
M

p(z)] /% p(z]0) = Zp(xwg')P(j)
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Recap: Mixture of Multivariate Gaussians

 Multivariate Gaussians

p(x|0) = Zp x|0;)p

p<x\e->=(%)D/j‘zﬂmexp{ S0 1) T2 )

— Mixture weights / mixture coefficients:
M

p(j) =m; with 0- ;- 1 and E ;=1 1.
— Parameters: 05
0 = (7-‘-17‘1’17217 R 77TM7I*LM72M)
0
s Computing e | ol Or . Gasn b ('9 T
Part 13 — Approximate Inference Il Institute
Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006




Recap: Mixtures of Gaussians

* “Generative model” p(x) = > meN (xnl bty i)

1 0 0.5 1

0 0.5
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Recap: ML for Mixtures of Gaussians

 Maximum Likelihood N
-Minimize = —InL(f) = — Y Inp(x,|0)
n=1

— We can already see that this will be difficult, since

N
Inp(X|m, 1, 2) =) Ind Y e (x|, i)
n=1

This will cause problems!
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Recap: ML for Mixtures of Gaussians

* Minimization: 9

(Xn|/~"k72k:)
N L X 9 aﬂj
oF _ _ o (Xnl5) 5 (60— 41y e, 3)
K
al“l'j n=1 Zk 1p(Xn‘9k)
Zk 1P Xn|8k
_ —;z/ Z anlu],D.
TN (Xp |y,
« We uius vutaun . nl
_73 Xn
X, )X “responsibility” of
= MK = Zn 175 )Xo component j for x,

>t 75 (%n)
Visual C n=1 /YJ n
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Recap: ML for Mixtures of Gaussians

wxn)

* |.e. there is no direct analytical solution!

OF

a— — f(ﬂ-lap’lazla"'aﬂ-Map’MazM)
H;

— Complex gradient function (non-linear mutual dependencies)

— Optimization of one Gaussian depends on all other Gaussians!

— It is possible to apply iterative numerical optimization here,
but the EM algorithm provides a simpler alternative.
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Recap: EM Algorithm

« Expectation-Maximization (EM) Algorithm
— E-Step: softly assign samples to mixture components
TN (x|, 25
Vi (Xn) ¢ —x— Xl 23 Vi=1,....,K, n=1,...,N
Zk;:1 WkN(Xn‘/*"ka Ek)
— M-Step: re-estimate the parameters (separately for each mixture
component) based on the soft assignments

~ N
cnew | AVj 0 .
TV WJ Nj < Zvj (x,,) = soft #samples labeled j
: N n=1
ﬂ;lew o= Z 8 (Xn)xn
NJ n=1
) 1 Y
R 2 D (%) (e — ) (s — 5
J n=1
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Outlook for Today

 Criticism
— This is all very nice, but in the ML lecture, the EM algorithm
miraculously fell out of thin air.
— Why do we actually solve it this way?

* This lecture

— We will take a more general view on EM
= Different interpretation in terms of latent variables
= Detailed derivation

— This will allow us to derive EM algorithms also for other cases.
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Topics of This Lecture

* An alternative view of EM
— Latent variables
— General EM
— Mixtures of Gaussians revisited
— Mixtures of Bernoulli distributions
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Gaussian Mixtures as Latent Variable Model

« Mixture of Gaussians
— Can be written as linear superposition of Gaussians in the form

K
p(x) = > meN (x|py, )

* Let’s write this in a different form...

— Introduce a K-dimensional binary random variable z with
a 1-of-K coding, i.e., z;,, = 1 and all other elements are zero.

— Define the joint distribution over x and z as z
p(x,2) = p(x|z)p(z)
— This corresponds to the following graphical model: <
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Gaussian Mixtures as Latent Variable Models

« Marginal distribution over z
— Specified in terms of the mixing coefficients 7, such that

p(zk = 1) = Tk
K
where 0+ ;- 1 and ij —
j=1
— Since z uses a 1-of- K representation, we can also write this as
K
p(z) = | [ ="
k=1

— Similarly, we can write for the conditional distribution

p(x|z) = HN X| s Big )

k=1
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Gaussian Mixtures as Latent Variable Models

« Marginal distribution of x
— Summing the joint distribution over all possible states of z

p(x) =) p(x,2) =) p(2)p(x|z) = Y mN(x|py, Zp)

 What have we gained by this?
— The resulting formula looks still the same after all...
= We have represented the marginal distribution in terms of
latent variables z.

— Since p(x) = 2., p(x, z), there is a corresponding latent variable z
for each data point x,,.

— We are now able to work with the joint distribution p(x, z) instead of
the marginal distribution p(x).

= This will lead to significant simplifications...
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Gaussian Mixtures as Latent Variable Models

« Conditional probability of z given x:
— Use again the “responsibility” notation y(z,)

p(zr = 1)p(x|z = 1)

ZE ) = 2l = llx) = 176
v(zk) = p( x) K p(z; = Lp(xlz; = 1)

TN (x| p, k)
2;21 WjN(X‘Nja 35)

— We can view 7, as the prior probability of z, = 1 and y(z,) as the

corresponding posterior once we have observed x.
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Sidenote: Sampling from a Gaussian Mixture

« MoG Sampling
— We can use ancestral sampling to generate random samples from a
Gaussian mixture model. z
1. Generate a value z from the marginal distribution p(z).

2. Generate a value X from the conditional distribution p(x|z).

Samples from the Samples from the Evaluating the
joint p(x, z) marginal p(x) responsibilities y(z,,)

0.5 0.5} 0.5}
o
&
0 Of Of
A 1 . 0 0.5 1 ;- 0 0.5 1
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Alternative View of EM

« Complementary view of the EM algorithm
— The goal of EM is to find ML solutions for models having latent

variables.

— Notation
= Set of all data X = [x,,...,x5]
= Set of all latent variables Z = [zla-"va]T
- Set of all model parameters 6

— Log-likelihood function

logp(X|6) =1log{ Y " p(X,Z|6)
Z

— Key observation: summation inside logarithm = difficult.
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Alternative View of EM

* Now, suppose we were told for each observation in X the
corresponding value of the latent variable Z...
— Call {X,Z} the complete data set and !

refer to the actual observed data X as incomplete. 1

— The likelihood for the complete data set now takes the form

logp(X,Z|0)
= Straightforward to marginalize...
Visual Computing Institute | Prof. Dr . Bastian Leib I)
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Alternative View of EM

* In practice, however,...

— We are not given the complete data set {X,Z}, but only the
incomplete data X.

— Our knowledge of the latent variable values in Z is given only by the
posterior distribution p(Z|X, 0).
— Since we cannot use the complete-data log-likelihood, we consider

iInstead its expected value under the posterior distribution of the
latent variables:

Q(6,6°) = p(Z|X,0°) logp(X, Z|6)
Z

— This corresponds to the E-step of the EM algorithm.
— In the subsequent M-step, we then maximize the expectation to obtain

the revised parameter set 6"V,
0" = arg max Q(0,0°)
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General EM Algorithm

* Algorithm

1. Choose an initial setting for the parameters 9°'d

2. E-step: Evaluate p(Z|X,0°9)

Bl’leW

3. M-step: Evaluate
0" = arg mgx Q(0,0°%)

given by

where
Q(6,6°) = " p(Z|X,0°) logp(X, Z|6)
Z

4. While not converged, let @°!4 . g€ and return to step 2.
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Remark: MAP-EM

 Modification for MAP

— The EM algorithm can be adapted to find MAP solutions for models for
which a prior p(8) is defined over the parameters.

— Only changes needed:

2. E-step: Evaluate p(Z|X,0°9)

Bnew

3. M-step: Evaluate

0" = arg max Q(0,6°)+1log p(8)

— Suitable choices for the prior will remove the ML singularities!

given by
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Remark: Monte Carlo EM

 EM procedure
— M-step: Maximize expectation of complete-data log-likelihood

Q(6,6°) = jp(ZIX, 6°%) log p(X, Z|6)dZ

— For more complex models, we may not be able to compute this
analytically anymore...

* |dea

— Use sampling to approximate this integral by a finite sum over samples
{Z 1} drawn from the current estimate of the posterior

Q(0,0°) ~ Zlogp (X,z"10)

— This procedure is called the Monte Carlo EM algorithm.
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Gaussian Mixtures Revisited

* Applying the latent variable view of EM
— Goal is to maximize the log-likelihood using the observed data X

log p(X[8) 10g{zp(X,Z¢9)} ™ —

— Corresponding graphical model: "

— Suppose we are additionally given the values
of the latent variables Z.

— The corresponding graphical model for the
complete data now looks like this:
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Gaussian Mixtures Revisited

* Maximize the likelihood
— For the complete-data set {X Z} the likelihood has the form

p(X,Z|p, =, ™) H sznk (X | o1, T )
n=1 k=1

— Taking the logarithm, we obtain

logp(X, Z|p, Z,7) = > Yz {log mp, + log N (x| Zie) }
n=1k=1
— Compared to the incomplete-data case, the order of the sum and
logarithm has been interchanged.

= Much simpler solution to the ML problem.
— Maximization w.r.t. a mean or covariance is exactly as for a single

Gaussian, except that it involves only the subset of data points that are
“assigned” to that component (z,,;, = 1).
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Gaussian Mixtures Revisited

« Maximization w.r.t. mixing coefficients
— More complex, since the 7, are coupled by the summation constraint
K

Z?Tj:].

j=1
— Solve with a Lagrange multiplier

K
logp(X, Z|p, 3, 7) + A Zﬂ'k —1
k=1
— Solution (after a longer derivation):

1 N
T — N Zznk
n—=1

= The complete-data log-likelihood can be maximized trivially in
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Gaussian Mixtures Revisited

* |In practice, we don’t have values for the latent variables
— Consider the expectation w.r.t. the posterior distribution of the latent
variables instead.

— The posterior distribution takes the form
N K

p(Z|X,p,, 2777) X H H [ﬂ-kN(Xn“"’kv Sk)]znk
n=1 k=1
and factorizes over n, so that the {z,} are independent under the
posterior.
— Expected value of indicator variable z,, under the posterior.

> s Znk TN (Xn |1y, g)] ™

K [an] — Zni
nj
. [N (xnlpy, 55)]
T‘-kN(Xn‘/'Lk:? 276)
— K — V(Z’nk)
Yoo N (x|, 25)
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Gaussian Mixtures Revisited

« Continuing the estimation
— The expected value of the complete-data log-likelihood is therefore

N K
Ezllogp(X,Z|p, Z, )] = > > vznk {logm + log N (x5 |y, T ) }
n=1 k=1

 Putting everything together
— Start by choosing some initial values for u°'¢, £°4 and m°'¢.
— Use these to evaluate the responsibilities (the E-Step).
— Keep the responsibilities fixed and maximize the above for u™e%, "€V,

and % (the M-Step).

— This leads to the familiar closed-form solutions for u™¢%, £ and

new
w .

= This is precisely the EM algorithm for Gaussian mixtures as

derived before. But we can now also apply it to other distributions.
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References and Further Reading

« More information about EM and MoG estimation is available
in Chapter 9 of Bishop’s book (recommendable to read)

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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97-021, ICSI, U.C. Berkeley, CA,USA
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