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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders



3
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 13 – Approximate Inference II

Topics of This Lecture

• Recap: MCMC
 Gibbs Sampling

• Recap: Mixtures of Gaussians
 Mixtures of Gaussians
 ML estimation
 EM algorithm for MoGs

• An alternative view of EM
 Latent variables
 General EM
 Mixtures of Gaussians revisited
 Mixtures of Bernoulli distributions

• The EM algorithm in general
 Generalized EM
 Relation to Variational inference
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• Overview
 Allows to sample from a large class of distributions.

 Scales well with the dimensionality of the sample space.

• Idea

 We maintain a record of the current state z(¿)

 The proposal distribution depends on the current state: q(z|z(¿)) 

 The sequence of samples forms a Markov chain z(1), z(2),…

• Approach
 At each time step, we generate a candidate 

sample from the proposal distribution and 

accept the sample according to a criterion.

 Different variants of MCMC for different

criteria.

Slide adapted from Bernt Schiele Image source: C.M. Bishop, 2006

Recap: MCMC – Markov Chain Monte Carlo
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Recap: Markov Chains – Properties

• Invariant distribution
 A distribution is said to be invariant (or stationary) w.r.t. a Markov chain 

if each step in the chain leaves that distribution invariant.

 Transition probabilities:

 For homogeneous Markov chain, distribution p*(z) is invariant if:

• Detailed balance
 Sufficient (but not necessary) condition to ensure that a distribution is 

invariant:

 A Markov chain which respects detailed balance is reversible.

T
³
z(m);z(m+1)

´
= p

³
z(m+1)jz(m)

´

p?(z) =
X

z0

T (z0; z)p?(z0)

p?(z)T (z;z0) = p?(z0)T (z0;z)

Slide credit: Bernt Schiele
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Recap: MCMC – Metropolis Algorithm

• Metropolis algorithm [Metropolis et al., 1953]

 Proposal distribution is symmetric: 

 The new candidate sample z* is accepted with probability

 New candidate samples always accepted if                        .

 The algorithm sometimes accepts a state with lower probability.

• Metropolis-Hastings algorithm
 Generalization: Proposal distribution not necessarily symmetric.

 The new candidate sample z* is accepted with probability

 where k labels the members of the set of considered transitions.

q(zAjzB) = q(zBjzA)

A(z?; z(¿)) = min

µ
1;

~p(z?)

~p(z(¿))

¶

~p(z?) ¸ ~p(z(¿))

Slide adapted from Bernt Schiele

A(z?; z(¿)) = min

µ
1;

~p(z?)qk(z
(¿)jz?)

~p(z(¿))qk(z?jz(¿))

¶
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Recap: Gibbs Sampling

• Approach
 MCMC-algorithm that is simple and widely applicable.

 May be seen as a special case of Metropolis-Hastings.

• Idea

 Sample variable-wise: replace zi by a value drawn from the 

distribution p(zi|z\i).

 This means we update one coordinate at a time.

 Repeat procedure either by cycling through all variables or by 

choosing the next variable.

Slide credit: Bernt Schiele
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Recap: Gibbs Sampling

• Properties
 The factor that determines the acceptance probability in the Metropolis-

Hastings is determined by

 (we have used qk(z*|z) = p(z*
k|z\k) and p(z) = p(zk|z\k) p(z\k)).

 I.e. we get an algorithm which always accepts!

 If you can compute (and sample from) the conditionals, you can apply 

Gibbs sampling.

 The algorithm is completely parameter free.

 Can also be applied to subsets of variables.

A(z?; z) =
p(z?)qk(zjz?)
p(z)qk(z?jz)

=
p(z?kjz?nk)p(z?nk)p(z?kjz?nk)
p(zkjznk)p(znk)p(zkjznk)

= 1

Slide credit: Zoubin Ghahramani
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Discussion

• Gibbs sampling benefits from few free choices and 

convenient features of conditional distributions:
 Conditionals with a few discrete settings can be explicitly normalized:

 Continuous conditionals are often only univariate.

 Amenable to standard sampling methods.

 In case of graphical models, the conditional distributions depend only 

on the variables in the corresponding Markov blankets.

This sum is small

and easy.

Slide adapted from Iain Murray
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Gibbs Sampling

• Example
 20 iterations of Gibbs sampling on a bivariate Gaussian.

 Note: strong correlations can slow down Gibbs sampling.

Slide credit: Zoubin Ghahramani
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How Should We Run MCMC?

• Arbitrary initialization means starting iterations are bad
 Discard a “burn-in” period.

• How do we know if we have run for long enough?
 You don’t. That’s the problem.

• The samples are not independent
 Solution 1: Keep only every Mth sample (“thinning”).

 Solution 2: Keep all samples and use the simple Monte Carlo 
estimator on MCMC samples
 It is consistent and unbiased if the chain has “burned in”.

 Use thinning only if computing f(x(s)) is expensive.

• For opinion on thinning, multiple runs, burn in, etc.
 Charles J. Geyer, Practical Markov chain Monte Carlo, Statistical Science. 7(4):473{483, 

1992. (http://www.jstor.org/stable/2246094)

Slide adapted from Iain Murray

http://www.jstor.org/stable/2246094
http://www.jstor.org/stable/2246094
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Summary: Approximate Inference

• Exact Bayesian Inference often intractable.

• Rejection and Importance Sampling
 Generate independent samples.

 Impractical in high-dimensional state spaces.

• Markov Chain Monte Carlo (MCMC)
 Simple & effective (even though typically computationally expensive).

 Scales well with the dimensionality of the state space.

 Issues of convergence have to be considered carefully.

• Gibbs Sampling
 Used extensively in practice.

 Parameter free

 Requires sampling conditional distributions.
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Topics of This Lecture

• Recap: MCMC
 Gibbs Sampling

• Recap: Mixtures of Gaussians
 Mixtures of Gaussians
 ML estimation
 EM algorithm for MoGs

• An alternative view of EM
 Latent variables
 General EM
 Mixtures of Gaussians revisited
 Mixtures of Bernoulli distributions

• The EM algorithm in general
 Generalized EM
 Relation to Variational inference
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Recap: Mixture of Gaussians (MoG)

• “Generative model”

x

x

j

p(x)

p(x)

1
2 3

p(j) = ¼j

p(xjµj)

p(xjµ) =

MX

j=1

p(xjµj)p(j)

“Weight” of mixture

component

Mixture

component

Mixture density

Slide credit: Bernt Schiele
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Recap: Mixture of Multivariate Gaussians

• Multivariate Gaussians

 Mixture weights / mixture coefficients:

with                     and

 Parameters:

p(xjµ) =

MX

j=1

p(xjµj)p(j)

p(xjµj) =
1

(2¼)D=2j§jj1=2
exp

½
¡1

2
(x¡¹j)T§¡1

j (x¡¹j)
¾

p(j) = ¼j

MX

j=1

¼j = 10 · ¼j · 1

µ = (¼1;¹1;§1; : : : ; ¼M;¹M;§M)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006
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Recap: Mixtures of Gaussians

• “Generative model”

p(xjµ) =

3X

j=1

¼jp(xjµj)
p(j) = ¼j

j

1
2

3

p(xjµ1)
p(xjµ2)

p(xjµ3)

Image source: C.M. Bishop, 2006Slide credit: Bernt Schiele
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E = ¡ lnL(µ) = ¡
NX

n=1

ln p(xnjµ)

• Maximum Likelihood

 Minimize 

 We can already see that this will be difficult, since

ln p(Xj¼;¹;§) =

NX

n=1

ln

(
KX

k=1

¼kN (xnj¹k;§k)
)

This will cause problems!

Slide adapted from Bernt Schiele

Recap: ML for Mixtures of Gaussians
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• Minimization:

• We thus obtain

) ¹j =

PN

n=1 °j(xn)xnPN

n=1 °j(xn)

@E

@¹j
= ¡

NX

n=1

@
@¹

j

p(xnjµj)
PK

k=1 p(xnjµk)

= ¡
NX

n=1

Ã
§¡1(xn ¡ ¹j)

p(xnjµj)PK

k=1 p(xnjµk)

!

= ¡§¡1
NX

n=1

(xn ¡ ¹j)
¼jN (xnj¹j ;§j)PK

k=1 ¼kN (xnj¹k;§k)

!
= 0

@E

@¹j
= ¡

NX

n=1

@
@¹

j

p(xnjµj)
PK

k=1 p(xnjµk)

= ¡
NX

n=1

Ã
§¡1(xn ¡ ¹j)

p(xnjµj)PK

k=1 p(xnjµk)

!

= ¡ §¡1
PK

k=1 p(xnjµk)

NX

n=1

(xn ¡ ¹j)p(xnjµj)
!
= 0

@E

@¹j
= ¡

NX

n=1

@
@¹

j

p(xnjµj)
PK

k=1 p(xnjµk)

= ¡
NX

n=1

Ã
§¡1(xn ¡ ¹j)

p(xnjµj)PK

k=1 p(xnjµk)

!

= ¡ §¡1
PK

k=1 p(xnjµk)

NX

n=1

(xn ¡ ¹j)p(xnjµj)
!
= 0

@

@¹j
N (xnj¹k;§k) =

§¡1(xn ¡¹j)N (xnj¹k;§k)

= °j(xn)

“responsibility” of
component j for xn

Recap: ML for Mixtures of Gaussians
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• But…

• I.e. there is no direct analytical solution!

 Complex gradient function (non-linear mutual dependencies)

 Optimization of one Gaussian depends on all other Gaussians!

 It is possible to apply iterative numerical optimization here, 

but the EM algorithm provides a simpler alternative.

¹j =

PN

n=1 °j(xn)xnPN

n=1 °j(xn)
°j(xn) =

¼jN (xnj¹j;§j)PN

k=1 ¼kN (xnj¹k;§k)

Recap: ML for Mixtures of Gaussians
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Recap: EM Algorithm

• Expectation-Maximization (EM) Algorithm
 E-Step: softly assign samples to mixture components

 M-Step: re-estimate the parameters (separately for each mixture 

component) based on the soft assignments

8j = 1; : : : ;K; n = 1; : : : ;N

¼̂newj Ã N̂j

N

¹̂
new
j Ã 1

N̂j

NX

n=1

°j(xn)xn

§̂new
j Ã 1

N̂j

NX

n=1

°j(xn)(xn ¡ ¹̂newj )(xn ¡ ¹̂newj )T

N̂j Ã
NX

n=1

°j(xn) = soft #samples labeled j

°j(xn) Ã
¼jN (xnj¹j ;§j)PN

k=1 ¼kN (xnj¹k;§k)

Slide adapted from Bernt Schiele
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Outlook for Today

• Criticism
 This is all very nice, but in the ML lecture, the EM algorithm 

miraculously fell out of thin air.

 Why do we actually solve it this way?

• This lecture
 We will take a more general view on EM

 Different interpretation in terms of latent variables

 Detailed derivation

 This will allow us to derive EM algorithms also for other cases.
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Topics of This Lecture

• Recap: MCMC
 Gibbs Sampling

• Recap: Mixtures of Gaussians
 Mixtures of Gaussians
 ML estimation
 EM algorithm for MoGs

• An alternative view of EM
 Latent variables
 General EM
 Mixtures of Gaussians revisited
 Mixtures of Bernoulli distributions

• The EM algorithm in general
 Generalized EM
 Relation to Variational inference
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• Mixture of Gaussians
 Can be written as linear superposition of Gaussians in the form

• Let’s write this in a different form…

 Introduce a K-dimensional binary random variable z with 

a 1-of-K coding, i.e., zk = 1 and all other elements are zero.

 Define the joint distribution over x and z as

 This corresponds to the following graphical model:

Image source: C.M. Bishop, 2006

Gaussian Mixtures as Latent Variable Model
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• Marginal distribution over z

 Specified in terms of the mixing coefficients ¼k, such that

where                       and .

 Since z uses a 1-of-K representation, we can also write this as

 Similarly, we can write for the conditional distribution

0 · ¼j · 1

Gaussian Mixtures as Latent Variable Models
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• Marginal distribution of x

 Summing the joint distribution over all possible states of z

• What have we gained by this?
 The resulting formula looks still the same after all…

 We have represented the marginal distribution in terms of 

latent variables z.

 Since p(x) = z p(x, z), there is a corresponding latent variable zn
for each data point xn.

 We are now able to work with the joint distribution p(x, z) instead of 

the marginal distribution p(x).

 This will lead to significant simplifications…

Gaussian Mixtures as Latent Variable Models
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• Conditional probability of z given x:

 Use again the “responsibility” notation 𝛾(𝑧𝑘)

 We can view ¼k as the prior probability of 𝑧𝑘 = 1 and 𝛾(𝑧𝑘) as the 

corresponding posterior once we have observed x.

Gaussian Mixtures as Latent Variable Models
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• MoG Sampling
 We can use ancestral sampling to generate random samples from a 

Gaussian mixture model.

1. Generate a value      from the marginal distribution p(z).

2. Generate a value      from the conditional distribution           .

Samples from the

joint p(x, z)
Samples from the

marginal p(x)
Evaluating the

responsibilities (znk)

Image source: C.M. Bishop, 2006

Sidenote: Sampling from a Gaussian Mixture
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Alternative View of EM

• Complementary view of the EM algorithm
 The goal of EM is to find ML solutions for models having latent 

variables.

 Notation

 Set of all data                 X = [x1,…,xN]T

 Set of all latent variables Z = [z1,…,zN]T

 Set of all model parameters µ

 Log-likelihood function

 Key observation: summation inside logarithm  difficult.
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Alternative View of EM

• Now, suppose we were told for each observation in X the 

corresponding value of the latent variable Z…

 Call {X,Z} the complete data set and 

refer to the actual observed data X as incomplete.

 The likelihood for the complete data set now takes the form

 Straightforward to marginalize…

Image source: C.M. Bishop, 2006
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Alternative View of EM

• In practice, however,…

 We are not given the complete data set {X,Z}, but only the 

incomplete data X.

 Our knowledge of the latent variable values in Z is given only by the 

posterior distribution    .

 Since we cannot use the complete-data log-likelihood, we consider 

instead its expected value under the posterior distribution of the 

latent variables:

 This corresponds to the E-step of the EM algorithm.

 In the subsequent M-step, we then maximize the expectation to obtain 

the revised parameter set µnew.
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General EM Algorithm

• Algorithm
1. Choose an initial setting for the parameters 

2. E-step: Evaluate 

3. M-step: Evaluate           given by

where 

4. While not converged, let                      and return to step 2.
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Remark: MAP-EM

• Modification for MAP
 The EM algorithm can be adapted to find MAP solutions for models for 

which a prior    is defined over the parameters.

 Only changes needed:

2. E-step: Evaluate 

3. M-step: Evaluate           given by

 Suitable choices for the prior will remove the ML singularities!
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Remark: Monte Carlo EM

• EM procedure
 M-step: Maximize expectation of complete-data log-likelihood

 For more complex models, we may not be able to compute this 
analytically anymore…

• Idea
 Use sampling to approximate this integral by a finite sum over samples 

{Z(l)} drawn from the current estimate of the posterior

 This procedure is called the Monte Carlo EM algorithm. 
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Gaussian Mixtures Revisited

• Applying the latent variable view of EM

 Goal is to maximize the log-likelihood using the observed data X

 Corresponding graphical model:

 Suppose we are additionally given the values

of the latent variables Z.

 The corresponding graphical model for the

complete data now looks like this:

Image source: C.M. Bishop, 2006
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Gaussian Mixtures Revisited

• Maximize the likelihood

 For the complete-data set {X,Z}, the likelihood has the form

 Taking the logarithm, we obtain 

 Compared to the incomplete-data case, the order of the sum and 

logarithm has been interchanged.

 Much simpler solution to the ML problem.

 Maximization w.r.t. a mean or covariance is exactly as for a single 

Gaussian, except that it involves only the subset of data points that are 

“assigned” to that component 𝑧𝑛𝑘 = 1 .



39
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 13 – Approximate Inference II

Gaussian Mixtures Revisited

• Maximization w.r.t. mixing coefficients

 More complex, since the ¼k are coupled by the summation constraint

 Solve with a Lagrange multiplier

 Solution (after a longer derivation):

 The complete-data log-likelihood can be maximized trivially in 

closed form.
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Gaussian Mixtures Revisited

• In practice, we don’t have values for the latent variables
 Consider the expectation w.r.t. the posterior distribution of the latent 

variables instead.

 The posterior distribution takes the form

and factorizes over n, so that the {zn} are independent under the 

posterior.

 Expected value of indicator variable znk under the posterior.

E[znk] =

P
znk

znk [¼kN (xnj¹k;§k)]
znk

P
znj

£
¼jN (xnj¹j ;§j)

¤znj

=
¼kN (xnj¹k;§k)PK

j=1 ¼jN (xnj¹j ;§j)
= °(znk)
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Gaussian Mixtures Revisited

• Continuing the estimation
 The expected value of the complete-data log-likelihood is therefore

• Putting everything together

 Start by choosing some initial values for 𝝁𝑜𝑙𝑑, 𝚺𝑜𝑙𝑑, and 𝝅𝑜𝑙𝑑.

 Use these to evaluate the responsibilities (the E-Step).

 Keep the responsibilities fixed and maximize the above for 𝝁𝑛𝑒𝑤, 𝚺𝑛𝑒𝑤, 

and 𝝅𝑛𝑒𝑤 (the M-Step).

 This leads to the familiar closed-form solutions for 𝝁𝑛𝑒𝑤, 𝚺𝑛𝑒𝑤, and 

𝝅𝑛𝑒𝑤.

 This is precisely the EM algorithm for Gaussian mixtures as 

derived before. But we can now also apply it to other distributions.

EZ[log p(X;Zj¹;§;¼)] =

NX

n=1

KX

k=1

°znk flog¼k + logN (xnj¹k;§k)g
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References and Further Reading

• More information about EM and MoG estimation is available 

in Chapter 9 of Bishop’s book (recommendable to read).

• Additional information
 A.P. Dempster, N.M. Laird, D.B. Rubin, „Maximum-Likelihood from incomplete 

data via EM algorithm”, In J. Royal Statistical Society, Series B. Vol 39, 1977

 J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application to 

Parameter Estimation for Gaussian Mixture and Hidden Markov Models“, TR-

97-021, ICSI, U.C. Berkeley, CA,USA

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006

http://www.mmp.rwth-aachen.de/teaching/ml/dempster-em-jrss77.pdf
http://www.mmp.rwth-aachen.de/teaching/ml/bilmes-emgentletutorial-tr97.pdf

