# **Advanced Machine Learning Summer 2019**

Part 14 – Latent Variable Models 29.05.2019

Prof. Dr. Bastian Leibe

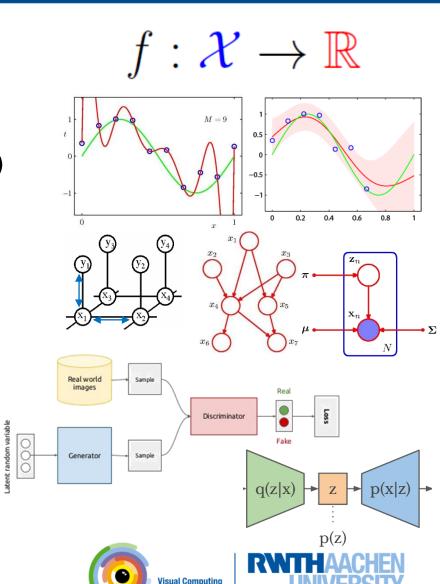
RWTH Aachen University, Computer Vision Group <a href="http://www.vision.rwth-aachen.de">http://www.vision.rwth-aachen.de</a>





## Course Outline

- Regression Techniques
  - Linear Regression
  - Regularization (Ridge, Lasso)
  - Kernels (Kernel Ridge Regression)
- Deep Reinforcement Learning
- Probabilistic Graphical Models
  - Bayesian Networks
  - Markov Random Fields
  - Inference (exact & approximate)
  - Latent Variable Models
- Deep Generative Models
  - Generative Adversarial Networks
  - Variational Autoencoders



# **Topics of This Lecture**

- Recap: MCMC
  - Gibbs Sampling
- Recap: Mixtures of Gaussians
  - Mixtures of Gaussians
  - ML estimation
  - EM algorithm for MoGs
- An alternative view of EM
  - Latent variables
  - General EM
  - Mixtures of Gaussians revisited
  - Mixtures of Bernoulli distributions
- The EM algorithm in general
  - Generalized EM
  - Relation to Variational inference





# Recap: MCMC – Markov Chain Monte Carlo

#### Overview

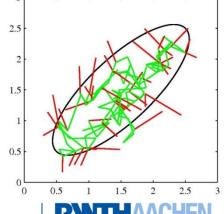
- Allows to sample from a large class of distributions.
- Scales well with the dimensionality of the sample space.

#### Idea

- We maintain a record of the current state  $\mathbf{z}^{(\tau)}$
- The proposal distribution depends on the current state:  $q(\mathbf{z}|\mathbf{z}^{(\tau)})$
- The sequence of samples forms a Markov chain  $\mathbf{z}^{(1)}$ ,  $\mathbf{z}^{(2)}$ ....

# Approach

- At each time step, we generate a candidate sample from the proposal distribution and accept the sample according to a criterion.
- Different variants of MCMC for different criteria.





# Recap: Markov Chains – Properties

#### Invariant distribution

- A distribution is said to be invariant (or stationary) w.r.t. a Markov chain if each step in the chain leaves that distribution invariant.
- Transition probabilities:

$$T\left(\mathbf{z}^{(m)}, \mathbf{z}^{(m+1)}\right) = p\left(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)}\right)$$

- For homogeneous Markov chain, distribution  $p^*(\mathbf{z})$  is invariant if:

$$p^{\star}(\mathbf{z}) = \sum_{\mathbf{z}'} T(\mathbf{z}', \mathbf{z}) p^{\star}(\mathbf{z}')$$

#### Detailed balance

 Sufficient (but not necessary) condition to ensure that a distribution is invariant:

$$p^{\star}(\mathbf{z})T(\mathbf{z},\mathbf{z}') = p^{\star}(\mathbf{z}')T(\mathbf{z}',\mathbf{z})$$

A Markov chain which respects detailed balance is reversible.





# Recap: MCMC - Metropolis Algorithm

### Metropolis algorithm

[Metropolis et al., 1953]

- Proposal distribution is symmetric:  $q(\mathbf{z}_A|\mathbf{z}_B) = q(\mathbf{z}_B|\mathbf{z}_A)$
- The new candidate sample  $\mathbf{z}^*$  is accepted with probability

$$A(\mathbf{z}^{\star}, \mathbf{z}^{(\tau)}) = \min\left(1, \frac{\tilde{p}(\mathbf{z}^{\star})}{\tilde{p}(\mathbf{z}^{(\tau)})}\right)$$

- $\Rightarrow$  New candidate samples always accepted if  $\tilde{p}(\mathbf{z}^*) \geq \tilde{p}(\mathbf{z}^{(\tau)})$
- The algorithm sometimes accepts a state with lower probability.
- Metropolis-Hastings algorithm
  - Generalization: Proposal distribution not necessarily symmetric.
  - The new candidate sample z<sup>\*</sup> is accepted with probability

$$A(\mathbf{z}^{\star}, \mathbf{z}^{(\tau)}) = \min\left(1, \frac{\tilde{p}(\mathbf{z}^{\star})q_k(\mathbf{z}^{(\tau)}|\mathbf{z}^{\star})}{\tilde{p}(\mathbf{z}^{(\tau)})q_k(\mathbf{z}^{\star}|\mathbf{z}^{(\tau)})}\right)$$

where k labels the members of the set of considered transitions.





# Recap: Gibbs Sampling

### Approach

- MCMC-algorithm that is simple and widely applicable.
- May be seen as a special case of Metropolis-Hastings.

#### Idea

- Sample variable-wise: replace  $\mathbf{z}_i$  by a value drawn from the distribution  $p(z_i|\mathbf{z}_{\setminus i})$ .
  - This means we update one coordinate at a time.
- Repeat procedure either by cycling through all variables or by choosing the next variable.





# Recap: Gibbs Sampling

### Properties

 The factor that determines the acceptance probability in the Metropolis-Hastings is determined by

$$A(\mathbf{z}^{\star}, \mathbf{z}) = \frac{p(\mathbf{z}^{\star})q_k(\mathbf{z}|\mathbf{z}^{\star})}{p(\mathbf{z})q_k(\mathbf{z}^{\star}|\mathbf{z})} = \frac{p(z_k^{\star}|\mathbf{z}_{\setminus k}^{\star})p(\mathbf{z}_{\setminus k}^{\star})p(z_k^{\star}|\mathbf{z}_{\setminus k}^{\star})}{p(z_k|\mathbf{z}_{\setminus k})p(z_k|\mathbf{z}_{\setminus k})} = 1$$

- (we have used  $q_k(\mathbf{z}^*|\mathbf{z}) = p(z_k^*|\mathbf{z}_{\setminus k})$  and  $p(\mathbf{z}) = p(z_k|\mathbf{z}_{\setminus k})$   $p(\mathbf{z}_{\setminus k})$ ).
- I.e. we get an algorithm which always accepts!
- ⇒ If you can compute (and sample from) the conditionals, you can apply Gibbs sampling.
- ⇒ The algorithm is completely parameter free.
- $\Rightarrow$  Can also be applied to subsets of variables.



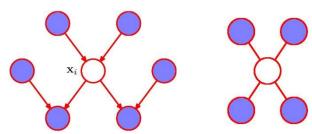


### Discussion

- Gibbs sampling benefits from few free choices and convenient features of conditional distributions:
  - Conditionals with a few discrete settings can be explicitly normalized:

$$p(x_i|\mathbf{x}_{j\neq i}) = \frac{p(x_i,\mathbf{x}_{j\neq i})}{\sum_{x_i'} p(x_i',\mathbf{x}_{j\neq i})} \longleftarrow \text{This sum is small and easy.}$$

- Continuous conditionals are often only univariate.
- ⇒ Amenable to standard sampling methods.
- In case of graphical models, the conditional distributions depend only on the variables in the corresponding Markov blankets.

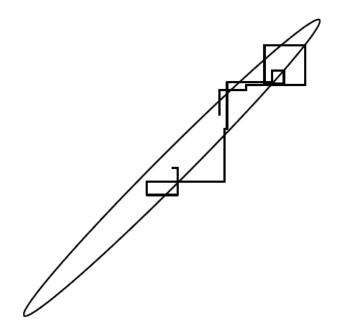






# Gibbs Sampling

- Example
  - 20 iterations of Gibbs sampling on a bivariate Gaussian.



Note: strong correlations can slow down Gibbs sampling.





# How Should We Run MCMC?

- Arbitrary initialization means starting iterations are bad
  - Discard a "burn-in" period.
- How do we know if we have run for long enough?
  - You don't. That's the problem.
- The samples are not independent
  - Solution 1: Keep only every M<sup>th</sup> sample ("thinning").
  - Solution 2: Keep all samples and use the simple Monte Carlo estimator on MCMC samples
    - It is consistent and unbiased if the chain has "burned in".
  - $\Rightarrow$  Use thinning only if computing  $f(\mathbf{x}^{(s)})$  is expensive.
- For opinion on thinning, multiple runs, burn in, etc.
  - Charles J. Geyer, <u>Practical Markov chain Monte Carlo</u>, Statistical Science. 7(4):473{483, 1992. (<a href="http://www.jstor.org/stable/2246094">http://www.jstor.org/stable/2246094</a>)





# Summary: Approximate Inference

- Exact Bayesian Inference often intractable.
- Rejection and Importance Sampling
  - Generate independent samples.
  - Impractical in high-dimensional state spaces.
- Markov Chain Monte Carlo (MCMC)
  - Simple & effective (even though typically computationally expensive).
  - Scales well with the dimensionality of the state space.
  - Issues of convergence have to be considered carefully.
- Gibbs Sampling
  - Used extensively in practice.
  - Parameter free
  - Requires sampling conditional distributions.





# **Topics of This Lecture**

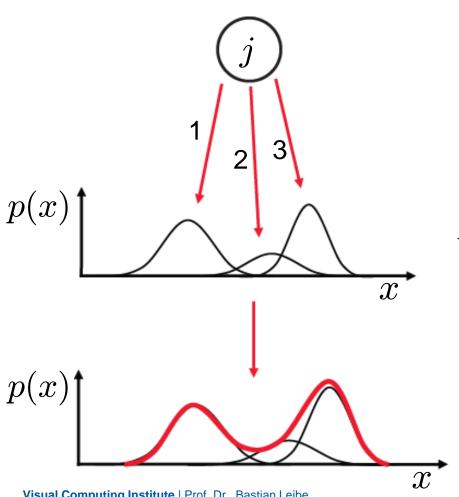
- Recap: MCMCGibbs Sampling
- Recap: Mixtures of Gaussians
  - Mixtures of Gaussians
  - ML estimation
  - EM algorithm for MoGs
- An alternative view of EM
  - Latent variables
  - General EM
  - Mixtures of Gaussians revisited
  - Mixtures of Bernoulli distributions
- The EM algorithm in general
  - Generalized EM
  - Relation to Variational inference





# Recap: Mixture of Gaussians (MoG)

"Generative model"



$$p(j) = \pi_j$$
 "Weight" of mixture component

 $p(x|\theta_j)$ 

Mixture component

Mixture density

$$p(x|\theta) = \sum_{j=1}^{M} p(x|\theta_j)p(j)$$





# Recap: Mixture of Multivariate Gaussians

Multivariate Gaussians

$$p(\mathbf{x}|\theta) = \sum_{j=1}^{M} p(\mathbf{x}|\theta_j) p(j)$$

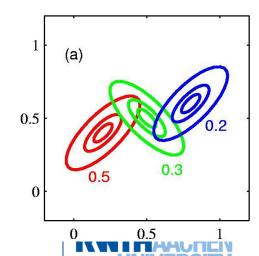
$$p(\mathbf{x}|\theta_j) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}_j|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_j)^{\mathrm{T}} \mathbf{\Sigma}_j^{-1} (\mathbf{x} - \boldsymbol{\mu}_j)\right\}$$

– Mixture weights / mixture coefficients:

$$p(j) = \pi_j$$
 with  $0 \cdot \pi_j \cdot 1$  and  $\sum_{j=1}^M \pi_j = 1$ 

– Parameters:

$$\theta = (\pi_1, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \pi_M, \boldsymbol{\mu}_M, \boldsymbol{\Sigma}_M)$$

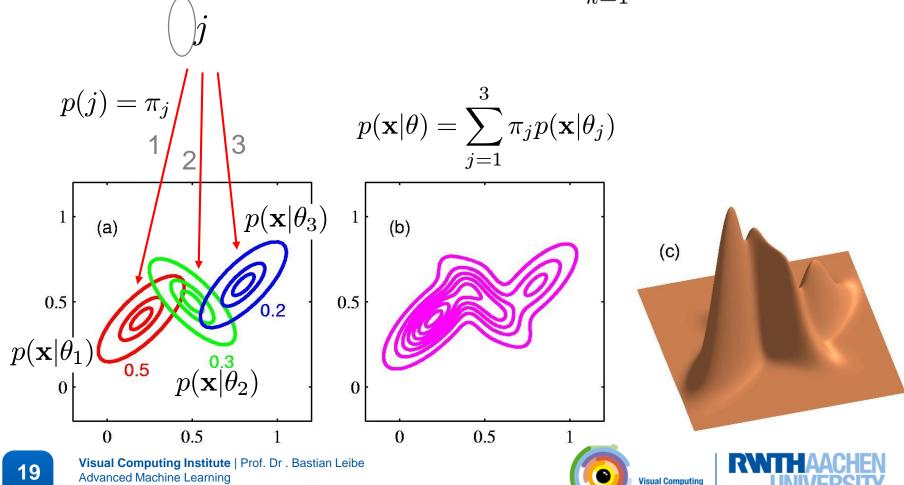




# Recap: Mixtures of Gaussians

"Generative model"

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$



Part 13 - Approximate Inference II

Slide credit: Bernt Schiele

# Recap: ML for Mixtures of Gaussians

Maximum Likelihood

– Minimize 
$$E = -\ln L(\theta) = -\sum_{n=1}^{N} \ln p(\mathbf{x}_n|\theta)$$

- We can already see that this will be difficult, since

$$\ln p(\mathbf{X}|m{\pi},m{\mu},m{\Sigma}) = \sum_{n=1}^N \ln \left\{ \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n|m{\mu}_k,m{\Sigma}_k) 
ight\}$$

This will cause problems!





# Recap: ML for Mixtures of Gaussians

Minimization:

$$\frac{\partial E}{\partial \boldsymbol{\mu}_j} = -\sum_{n=1}^N \frac{\frac{\partial}{\partial \boldsymbol{\mu}_j} p(\mathbf{x}_n | \theta_j)}{\sum_{k=1}^K p(\mathbf{x}_n | \theta_k)}$$

$$egin{aligned} & rac{\partial}{\partial oldsymbol{\mu}_j} \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k) = \ & oldsymbol{\Sigma}^{-1}(\mathbf{x}_n - oldsymbol{\mu}_j) \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k) \end{aligned}$$

$$= -\sum_{n=1}^{N} \left( \mathbf{\Sigma}^{-1} (\mathbf{x}_n - \boldsymbol{\mu}_j) \frac{p(\mathbf{x}_n | \theta_j)}{\sum_{k=1}^{K} p(\mathbf{x}_n | \theta_k)} \right)$$

$$= -\mathbf{Z}^{-1} \sum_{n=1}^{N} (\mathbf{x}_n - \boldsymbol{\mu}_j)$$

$$\frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \stackrel{!}{=} 0$$

We mus obtain

$$m{\phi} m{\mu}_j = rac{\sum_{n=1}^N \gamma_j(\mathbf{x}_n) \mathbf{x}_n}{\sum_{n=1}^N \gamma_j(\mathbf{x}_n)}$$

 $=\gamma_j(\mathbf{x}_n)$ 

"responsibility" of component j for  $\mathbf{x}_n$ 





# Recap: ML for Mixtures of Gaussians

• But...

$$\boldsymbol{\mu}_j = \frac{\sum_{n=1}^N (\gamma_j(\mathbf{x}_n) \mathbf{x}_n)}{\sum_{n=1}^N \gamma_j(\mathbf{x}_n)} \quad \gamma_j(\mathbf{x}_n) = \frac{\pi_j \mathcal{N}(\mathbf{x}_n(\boldsymbol{\mu}_j) \boldsymbol{\Sigma}_j)}{\sum_{k=1}^N \pi_k \mathcal{N}(\mathbf{x}_n(\boldsymbol{\mu}_k), \boldsymbol{\Sigma}_k)}$$

I.e. there is no direct analytical solution!

$$\frac{\partial E}{\partial \boldsymbol{\mu}_j} = f\left(\pi_1, \boldsymbol{\mu}_1, \boldsymbol{\Sigma}_1, \dots, \pi_M, \boldsymbol{\mu}_M, \boldsymbol{\Sigma}_M\right)$$

- Complex gradient function (non-linear mutual dependencies)
- Optimization of one Gaussian depends on all other Gaussians!
- It is possible to apply iterative numerical optimization here, but the EM algorithm provides a simpler alternative.





# Recap: EM Algorithm

- Expectation-Maximization (EM) Algorithm
  - E-Step: softly assign samples to mixture components

$$\gamma_j(\mathbf{x}_n) \leftarrow \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^N \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}$$
  $\forall j = 1, \dots, K, \quad n = 1, \dots, N$ 

 M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments

$$\begin{split} \hat{\pi}_{j}^{\text{new}} \leftarrow \frac{\hat{N}_{j}}{N} & \qquad \hat{N}_{j} \leftarrow \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) = \text{soft \#samples labeled } j \\ \hat{\boldsymbol{\mu}}_{j}^{\text{new}} \leftarrow \frac{1}{\hat{N}_{j}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) \mathbf{x}_{n} \\ \hat{\boldsymbol{\Sigma}}_{j}^{\text{new}} \leftarrow \frac{1}{\hat{N}_{i}} \sum_{n=1}^{N} \gamma_{j}(\mathbf{x}_{n}) (\mathbf{x}_{n} - \hat{\boldsymbol{\mu}}_{j}^{\text{new}}) (\mathbf{x}_{n} - \hat{\boldsymbol{\mu}}_{j}^{\text{new}})^{\text{T}} \end{split}$$





# **Outlook for Today**

#### Criticism

- This is all very nice, but in the ML lecture, the EM algorithm miraculously fell out of thin air.
- Why do we actually solve it this way?

#### This lecture

- We will take a more general view on EM
  - Different interpretation in terms of latent variables
  - Detailed derivation
- This will allow us to derive EM algorithms also for other cases.





# **Topics of This Lecture**

- Recap: MCMC
  - Gibbs Sampling
- Recap: Mixtures of Gaussians
  - Mixtures of Gaussians
  - ML estimation
  - EM algorithm for MoGs
- An alternative view of EM
  - Latent variables
  - General EM
  - Mixtures of Gaussians revisited
  - Mixtures of Bernoulli distributions
- The EM algorithm in general
  - Generalized EM
  - Relation to Variational inference





### Gaussian Mixtures as Latent Variable Model

- Mixture of Gaussians
  - Can be written as linear superposition of Gaussians in the form

$$p(\mathbf{x}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Let's write this in a different form...
  - Introduce a K-dimensional binary random variable  ${\bf z}$  with a 1-of-K coding, i.e.,  $z_k={\bf 1}$  and all other elements are zero.
  - Define the joint distribution over x and z as

$$p(\mathbf{x}, \mathbf{z}) = p(\mathbf{x}|\mathbf{z})p(\mathbf{z})$$

– This corresponds to the following graphical model:





## Gaussian Mixtures as Latent Variable Models

- Marginal distribution over z
  - Specified in terms of the mixing coefficients  $\pi_k$ , such that

$$p(z_k = 1) = \pi_k$$

where 
$$0 \cdot \ \pi_j \cdot \ 1$$
 and  $\sum_{j=1}^K \pi_j = 1.$ 

- Since  ${\bf z}$  uses a 1-of-K representation, we can also write this as

$$p(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}$$

- Similarly, we can write for the conditional distribution

$$p(\mathbf{x}|\mathbf{z}) = \prod_{k=1}^{K} \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_k}$$





### Gaussian Mixtures as Latent Variable Models

- Marginal distribution of x
  - Summing the joint distribution over all possible states of z

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} | \mathbf{z}) = \sum_{k=1}^{N} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- What have we gained by this?
  - The resulting formula looks still the same after all...
  - ⇒ We have represented the marginal distribution in terms of latent variables **z**.
  - Since  $p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$ , there is a corresponding latent variable  $\mathbf{z}_n$  for each data point  $\mathbf{x}_n$ .
  - We are now able to work with the joint distribution  $p(\mathbf{x}, \mathbf{z})$  instead of the marginal distribution  $p(\mathbf{x})$ .
  - ⇒ This will lead to significant simplifications...





# Gaussian Mixtures as Latent Variable Models

- Conditional probability of z given x:
  - Use again the "responsibility" notation  $\gamma(z_k)$

$$\gamma(z_k) \equiv p(z_k = 1|\mathbf{x}) = \frac{p(z_k = 1)p(\mathbf{x}|z_k = 1)}{\sum_{j=1}^{K} p(z_j = 1)p(\mathbf{x}|z_j = 1)}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}|\boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}$$

– We can view  $\pi_k$  as the prior probability of  $z_k=1$  and  $\gamma(z_k)$  as the corresponding posterior once we have observed  $\mathbf{x}$ .

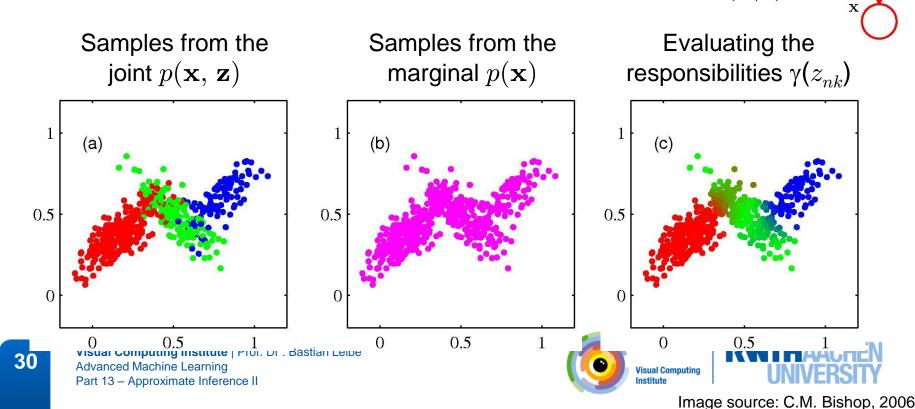




# Sidenote: Sampling from a Gaussian Mixture

### MoG Sampling

- We can use ancestral sampling to generate random samples from a Gaussian mixture model.
  - 1. Generate a value  $\hat{\mathbf{z}}$  from the marginal distribution  $p(\mathbf{z})$ .
  - 2. Generate a value  $\hat{\mathbf{x}}$  from the conditional distribution  $p(\mathbf{x}|\hat{\mathbf{z}})$ .



### Alternative View of EM

- Complementary view of the EM algorithm
  - The goal of EM is to find ML solutions for models having latent variables.
  - Notation

- Set of all data 
$$\mathbf{X} = [\mathbf{x}_1, ..., \mathbf{x}_N]^T$$

- Set of all latent variables  $\mathbf{Z} = [\mathbf{z}_{\scriptscriptstyle 1}, \dots, \mathbf{z}_{\scriptscriptstyle N}]^T$
- Set of all model parameters  $\theta$
- Log-likelihood function

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \log \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}$$

Key observation: summation inside logarithm ⇒ difficult.

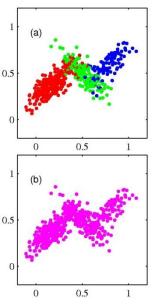




### Alternative View of EM

- Now, suppose we were told for each observation in  ${\bf X}$  the corresponding value of the latent variable  ${\bf Z}...$ 
  - Call {X,Z} the complete data set and

refer to the actual observed data X as incomplete.



- The likelihood for the complete data set now takes the form  $\log p(\mathbf{X},\mathbf{Z}|\boldsymbol{\theta})$
- ⇒ Straightforward to marginalize...





### Alternative View of EM

- In practice, however,...
  - We are not given the complete data set  $\{X,Z\}$ , but only the incomplete data X.
  - Our knowledge of the latent variable values in  ${\bf Z}$  is given only by the posterior distribution  $p({\bf Z}|{\bf X},{\boldsymbol \theta})$ .
  - Since we cannot use the complete-data log-likelihood, we consider instead its expected value under the posterior distribution of the latent variables:

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

- This corresponds to the E-step of the EM algorithm.
- In the subsequent M-step, we then maximize the expectation to obtain the revised parameter set  $\theta^{\text{new}}$ .

$$oldsymbol{ heta}^{
m new} = rg \max_{oldsymbol{ heta}} \, \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{
m old})$$





# General EM Algorithm

### Algorithm

- 1. Choose an initial setting for the parameters  $oldsymbol{ heta}^{\mathrm{old}}$
- 2. E-step: Evaluate  $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$
- 3. M-step: Evaluate  $\theta^{\text{new}}$  given by

$$oldsymbol{ heta}^{ ext{new}} = rg \max_{oldsymbol{ heta}} \; \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}})$$

where

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

4. While not converged, let  $\theta^{\mathrm{old}} \leftarrow \theta^{\mathrm{new}}$  and return to step 2.





### Remark: MAP-EM

- Modification for MAP
  - The EM algorithm can be adapted to find MAP solutions for models for which a prior  $p(\theta)$  is defined over the parameters.
  - Only changes needed:
    - 2. E-step: Evaluate  $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$
    - 3. M-step: Evaluate  $\boldsymbol{\theta}^{\text{new}}$  given by

$$m{ heta}^{ ext{new}} = rg \max_{m{ heta}} \; \mathcal{Q}(m{ heta}, m{ heta}^{ ext{old}}) + \log p(m{ heta})$$

⇒ Suitable choices for the prior will remove the ML singularities!





### Remark: Monte Carlo EM

### EM procedure

M-step: Maximize expectation of complete-data log-likelihood

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \int p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \mathrm{d}\mathbf{Z}$$
 – For more complex models, we may not be able to compute this

analytically anymore...

#### Idea

 Use sampling to approximate this integral by a finite sum over samples  $\{\mathbf{Z}^{(l)}\}\$  drawn from the current estimate of the posterior

$$\mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}}) \sim rac{1}{L} \sum_{l=1}^{L} \log p(\mathbf{X}, \mathbf{Z}^{(l)} | oldsymbol{ heta})$$

This procedure is called the Monte Carlo EM algorithm.

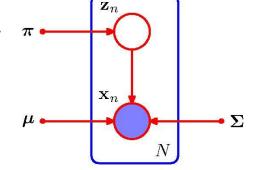




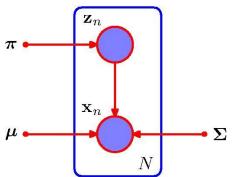
- Applying the latent variable view of EM
  - Goal is to maximize the log-likelihood using the observed data f X

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \log \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}$$

– Corresponding graphical model:



- Suppose we are additionally given the values of the latent variables Z.
- The corresponding graphical model for the complete data now looks like this:







- Maximize the likelihood
  - For the complete-data set  $\{X,Z\}$ , the likelihood has the form

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}}$$

Taking the logarithm, we obtain

$$\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

- Compared to the incomplete-data case, the order of the sum and logarithm has been interchanged.
- $\Rightarrow$  Much simpler solution to the ML problem.
- Maximization w.r.t. a mean or covariance is exactly as for a single Gaussian, except that it involves only the subset of data points that are "assigned" to that component  $(z_{nk} = 1)$ .





- Maximization w.r.t. mixing coefficients
  - More complex, since the  $\pi_k$  are coupled by the summation constraint

$$\sum_{j=1}^{K} \pi_j = 1$$

Solve with a Lagrange multiplier

$$\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) + \lambda \left( \sum_{k=1}^{K} \pi_k - 1 \right)$$

– Solution (after a longer derivation):

$$\pi_k = \frac{1}{N} \sum_{n=1}^{N} z_{nk}$$

⇒ The complete-data log-likelihood can be maximized trivially in closed form.





- In practice, we don't have values for the latent variables
  - Consider the expectation w.r.t. the posterior distribution of the latent variables instead.
  - The posterior distribution takes the form

$$p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} \left[\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\right]^{z_{nk}}$$

and factorizes over n, so that the  $\{\mathbf{z}_n\}$  are independent under the posterior.

- Expected value of indicator variable  $z_{nk}$  under the posterior.

$$egin{align*} \mathbb{E}[z_{nk}] &= rac{\sum_{z_{nk}} z_{nk} \left[\pi_k \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)
ight]^{z_{nk}}}{\sum_{z_{nj}} \left[\pi_j \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_j, oldsymbol{\Sigma}_j)
ight]^{z_{nj}}} \ &= rac{\pi_k \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_k, oldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | oldsymbol{\mu}_j, oldsymbol{\Sigma}_j)} = \gamma(z_{nk}) \ &\text{nstitute | Prof. Dr . Bastian Leibe} \end{split}$$



### Continuing the estimation

The expected value of the complete-data log-likelihood is therefore

$$\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma z_{nk} \left\{ \log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

- Putting everything together
  - Start by choosing some initial values for  $\mu^{old}$ ,  $\Sigma^{old}$ , and  $\pi^{old}$ .
  - Use these to evaluate the responsibilities (the E-Step).
  - Keep the responsibilities fixed and maximize the above for  $\mu^{new}$ ,  $\Sigma^{new}$ , and  $\pi^{new}$  (the M-Step).
  - This leads to the familiar closed-form solutions for  $\mu^{new}$ ,  $\Sigma^{new}$ , and  $\pi^{new}$ .
  - ⇒ This is precisely the EM algorithm for Gaussian mixtures as derived before. But we can now also apply it to other distributions.

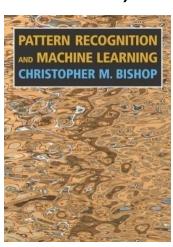




# References and Further Reading

 More information about EM and MoG estimation is available in Chapter 9 of Bishop's book (recommendable to read).

> Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006



#### Additional information

- A.P. Dempster, N.M. Laird, D.B. Rubin, <u>"Maximum-Likelihood from incomplete data via EM algorithm</u>", In J. Royal Statistical Society, Series B. Vol 39, 1977
- J.A. Bilmes, "<u>A Gentle Tutorial of the EM Algorithm and its Application to Parameter Estimation for Gaussian Mixture and Hidden Markov Models</u>", TR-97-021, ICSI, U.C. Berkeley, CA,USA



