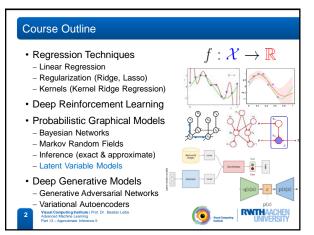
Advanced Machine Learning Summer 2019

Part 15 – Latent Variable Models II 06.06.2019

Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

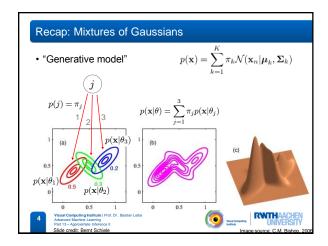


Topics of This Lecture

- Recap: Mixtures of Gaussians and General EM
- Mixtures of Gaussians
- General EM
- · Mixtures of Gaussians revisited
- General EM derivation
- · The EM algorithm in general
- Generalized EM
- Relation to Variational inference

dvanced Machine Learning art 13 – Approximate Inference II

RWTHAACHEN



Recap: GMMs as Latent Variable Models

- ullet Write GMMs in terms of latent variables ${f z}$
- Marginal distribution of x

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} | \mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- · Advantage of this formulation
 - We have represented the marginal distribution in terms of latent variables z.
 - Since $p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$, there is a corresponding latent variable \mathbf{z}_n for each data point \mathbf{x}_n .
 - We are now able to work with the joint distribution $p(\mathbf{x}, \mathbf{z})$ instead of the marginal distribution $p(\mathbf{x})$.
 - ⇒ This will lead to significant simplifications...

Visual Computing Institute | Prof. Dr . Bastian L Advanced Machine Learning

RWTHAACHEN UNIVERSITY

Recap: Sampling from a Gaussian Mixture • MoG Sampling - We can use ancestral sampling to generate random samples from a Gaussian mixture model. 1. Generate a value $\hat{\mathbf{z}}$ from the marginal distribution $p(\mathbf{z})$. 2. Generate a value $\hat{\mathbf{x}}$ from the conditional distribution $p(\mathbf{z}|\hat{\mathbf{z}})$. Samples from the pioint $p(\mathbf{x}, \mathbf{z})$ samples from the marginal $p(\mathbf{x})$ responsibilities $p(\mathbf{z}|\hat{\mathbf{z}})$.

Recap: Gaussian Mixtures Revisited

- · Applying the latent variable view of EM
 - Goal is to maximize the log-likelihood using the observed data ${f X}$

$$\log p(\mathbf{X}|\pmb{\theta}) = \log \left\{ \sum_{\mathbf{Z}} p(\mathbf{X},\mathbf{Z}|\pmb{\theta}) \right\} \xrightarrow[\mu]{}$$
 – Corresponding graphical model:

- Suppose we are additionally given the values
- of the latent variables ${f Z}$. - The corresponding graphical model for the complete data now looks like this:
- ⇒ Straightforward to marginalize...

Recap: Alternative View of EM

- In practice, however,...
- We are not given the complete data set $\{X,Z\}$, but only the incomplete data ${\bf X}.$ All we can compute about ${\bf Z}$ is the posterior distribution $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$.
- Since we cannot use the complete-data log-likelihood, we consider instead its expected value under the posterior distribution of the latent variables:

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

- This corresponds to the E-step of the EM algorithm.
- In the subsequent M-step, we then maximize the expectation to obtain the revised parameter set θ^{new} .

$$oldsymbol{ heta}^{\mathrm{new}} = rg\max_{oldsymbol{ heta}} \ \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{\mathrm{old}})$$

RWTHAACHEN IINIVERSITY

Recap: General EM Algorithm

- · Algorithm
 - 1. Choose an initial setting for the parameters $\, heta^{
 m old} \,$
 - 2. E-step: Evaluate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$
 - 3. M-step: Evaluate $oldsymbol{ heta}^{\mathrm{new}}$ given by

$$\boldsymbol{\theta}^{\mathrm{new}} = \underset{\boldsymbol{\theta}}{\mathrm{arg \, max}} \ \mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\mathrm{old}})$$

where

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

4. While not converged, let $\theta^{\mathrm{old}} \leftarrow \theta^{\mathrm{new}}$ and return to step 2.

Recap: MAP-EM

- · Modification for MAP
- The EM algorithm can be adapted to find MAP solutions for models for which a prior $p(\boldsymbol{\theta})$ is defined over the parameters.
- Only changes needed:
- 2. E-step: Evaluate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\mathrm{old}})$
- 3. M-step: Evaluate $oldsymbol{ heta}^{\mathrm{new}}$ given by

$$m{ heta}^{ ext{new}} = rg \max_{m{ heta}} \ \mathcal{Q}(m{ heta}, m{ heta}^{ ext{old}}) + \log p(m{ heta})$$

⇒ Suitable choices for the prior will remove the ML singularities!

Recap: Monte Carlo EM

- EM procedure
- M-step: Maximize expectation of complete-data log-likelihood

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \int p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) d\mathbf{Z}$$

- For more complex models, we may not be able to compute this analytically anymore...
- Idea
- Use sampling to approximate this integral by a finite sum over samples $\{\mathbf{Z}^{(l)}\}$ drawn from the current estimate of the posterior

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) \sim \frac{1}{L} \sum_{l=1}^{L} \log p(\mathbf{X}, \mathbf{Z}^{(l)} | \boldsymbol{\theta})$$

- This procedure is called the Monte Carlo EM algorithm.

RWTHAACHEN UNIVERSITY

Gaussian Mixtures Revisited

- · Applying the latent variable view of EM
- Goal is to maximize the log-likelihood using the observed data ${f X}$

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \log \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}^{\pi}$$

- Corresponding graphical model:
- Suppose we are additionally given the values of the latent variables Z.
- The corresponding graphical model for the complete data now looks like this:

Topics of This Lecture

- · Recap: Mixtures of Gaussians and General EM
- Mixtures of Gaussians
- General EM
- · Mixtures of Gaussians revisited
- General EM derivation
- · The EM algorithm in general

 - Relation to Variational inference

RWTHAACHEN IINIVERSITY

Gaussian Mixtures Revisited

- · Maximize the likelihood
- For the complete-data set $\{X,\!Z\},$ the likelihood has the form

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}}$$

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}}$$
 – Taking the logarithm, we obtain
$$\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$
 – Compared to the incomplete data case, the order of the sum and

- Compared to the incomplete-data case, the order of the sum and logarithm has been interchanged.
- \Rightarrow Much simpler solution to the ML problem.
- Maximization w.r.t. a mean or covariance is exactly as for a single Gaussian, except that it involves only the subset of data points that are "assigned" to that component $(z_{nk} = 1)$.

Gaussian Mixtures Revisited

- · Maximization w.r.t. mixing coefficients
- More complex, since the π_k are coupled by the summation constraint $\sum_{j=1}^K \pi_j = 1$ Solve with a Lagrange multiplier

$$\sum_{j=1}^{K} \pi_j = 1$$

- Solve with a Lagrange multiplier
$$\log p(\mathbf{X},\mathbf{Z}|\boldsymbol{\mu},\boldsymbol{\Sigma},\boldsymbol{\pi}) + \lambda \left(\sum_{k=1}^K \pi_k - 1\right)$$
 - Solution (after a longer derivation):
$$\pi_k = \frac{1}{N} \sum_{n=1}^N z_{nk}$$
 \Rightarrow The complete-data log-likelihood can be maximized

$$\pi_k = \frac{1}{N} \sum_{n=1}^{N} z_{nk}$$

 \Rightarrow The complete-data log-likelihood can be maximized trivially in closed form.

Gaussian Mixtures Revisited

- · In practice, we don't have values for the latent variables
- Consider the expectation w.r.t. the posterior distribution of the latent variables instead
- The posterior distribution takes the form

$$p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} [\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)]^{z_{nk}}$$

and factorizes over n, so that the $\{\mathbf{z}_n\}$ are independent under the posterior.

– Expected value of indicator variable z_{nk} under the posterior.

$$\begin{split} \mathbb{E}[z_{nk}] &= \frac{\sum_{z_{nk}} z_{nk} \left[\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\right]^{z_{nk}}}{\sum_{z_{nj}} \left[\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)\right]^{z_{nj}}} \\ &= \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^K \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} = \gamma(z_{nk}) \end{split}$$
 Institute | Pot. Dr. Battin Lebe

Gaussian Mixtures Revisited

- · Continuing the estimation
- The expected value of the complete-data log-likelihood is therefore

$$\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma z_{nk} \left\{ \log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

- · Putting everything together
 - Start by choosing some initial values for $\pmb{\mu}^{old}$, $\pmb{\Sigma}^{old}$, and $\pmb{\pi}^{old}$.
- Use these to evaluate the responsibilities (the E-Step).
- Keep the responsibilities fixed and maximize the above for $\pmb{\mu}^{new}$, $\pmb{\Sigma}^{new}$, and π^{new} (the M-Step).
- This leads to the familiar closed-form solutions for μ^{new} , Σ^{new} , and
- ⇒ This is precisely the EM algorithm for Gaussian mixtures as derived before. But we can now also apply it to other distributions.

Topics of This Lecture

- · Recap: Mixtures of Gaussians and General EM
- Mixtures of Gaussians
- General EM
- · Mixtures of Gaussians revisited
- General EM derivation
- · The EM algorithm in general
- Generalized EM
- Relation to Variational inference

RWTHAACHET UNIVERSITY

The EM Algorithm in General

- General formulation
 - Given a probabilistic model with observed variables X, hidden variables Z and parameters θ.
 - Our goal is to maximize the likelihood given by

$$p(\mathbf{X}|\boldsymbol{\theta}) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta})$$

- However, a direct optimization of $p(\mathbf{X}|\mathbf{\theta})$ is often difficult. Optimization of the complete-data log-likelihood $p(\mathbf{X}, \mathbf{Z}|\mathbf{\theta})$ is significantly easier.

The EM Algorithm in General

- Decomposition
- Introduce a distribution $q(\mathbf{Z})$ over the latent variables. For any choice of $q(\mathbf{Z})$, the following decomposition holds

$$\log p(\mathbf{X}|\theta) = \mathcal{L}(q, \mathbf{\theta}) + KL(q \parallel p)$$

- where

$$\mathcal{L}(q, \mathbf{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z} | \mathbf{\theta})}{q(\mathbf{Z})} \right\}$$

$$\mathit{KL}(q \parallel p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z} | \mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} \right\}$$

- (Proof on extra slide set)

Analysis of this Result

- · Decomposition
- For any choice of $q(\mathbf{Z})$, the following decomposition holds

$$\log p(\mathbf{X}|\theta) = \mathcal{L}(q, \mathbf{\theta}) + KL(q \parallel p)$$

$$\mathcal{L}(q, \mathbf{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z} | \mathbf{\theta})}{q(\mathbf{Z})} \right\}$$

$$KL(q \parallel p) = -\sum_{\mathbf{z}} q(\mathbf{z}) \log \left\{ \frac{p(\mathbf{z} \mid \mathbf{X}, \mathbf{\theta})}{q(\mathbf{z})} \right\}$$

- Notes (1)
 - $-\mathcal{L}(q, \mathbf{\theta})$ is a functional of the distribution $q(\mathbf{Z})$ and a function of the
- A functional is an operator that takes as input a function and outputs again a function.

Analysis of this Result

- Decomposition
- For any choice of $q(\mathbf{Z})$, the following decomposition holds

$$\log p(\mathbf{X}|\theta) = \mathcal{L}(q, \mathbf{\theta}) + KL(q \parallel p)$$

$$\mathcal{L}(q, \mathbf{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z} | \mathbf{\theta})}{q(\mathbf{Z})} \right\}$$

$$\mathit{KL}(q \parallel p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z} | \mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} \right\}$$

- Notes (2)
 - $-KL(q \parallel p)$ is the Kullback-Leibler divergence between the distribution $q(\mathbf{Z})$ and the posterior distribution $p(\mathbf{Z}|\mathbf{X}, \mathbf{\theta})$.
 - The KL divergence satisfies $KL(q \parallel p) \ge 0$ with = 0 iff $q(\mathbf{Z}) = p(\mathbf{Z} \mid \mathbf{X}, \mathbf{\theta})$.

Analysis of this Result

- · Decomposition
- For any choice of $q(\mathbf{Z})$, the following decomposition holds

$$\log p(\mathbf{X}|\theta) \, = \mathcal{L}(q, \mathbf{\theta}) + KL(q \parallel p)$$

$$\mathcal{L}(q, \mathbf{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z} | \mathbf{\theta})}{q(\mathbf{Z})} \right\}$$

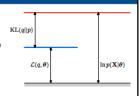
$$KL(q \parallel p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z}|\mathbf{X}, \mathbf{\theta})}{q(\mathbf{Z})} \right\}$$

- Notes (3)
- It therefore follows that $\mathcal{L}(q, \mathbf{\theta}) \leq \log p(\mathbf{X}|\theta)$.
- In other words: $\mathcal{L}(q, \theta)$ is a lower bound on $\log p(\mathbf{X}|\theta)$.
- We can now use this result in order to analyze how EM works...

Analysis of EM

Decomposition

$$\log p(\mathbf{X}|\theta) = \mathcal{L}(q, \mathbf{\theta}) + KL(q \parallel p)$$



- Interpretation
- $-\mathcal{L}(q, \mathbf{\theta})$ is a lower bound on $\log p(\mathbf{X}|\mathbf{\theta})$.
- The approximation comes from the fact that we use an approximative distribution $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{old})$ Instead of the (unknown) real posterior.
- The KL divergence measures the difference between the approximative distribution $q(\mathbf{Z})$ and the real posterior $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$.
- In every EM iteration, we try to make this difference smaller.

RWTHAACHEN

