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Topics of This Lecture

» Recap: Mixtures of Gaussians and General EM
— Mixtures of Gaussians
— General EM

 Mixtures of Gaussians revisited
— General EM derivation

* The EM algorithm in general
— Generalized EM
— Relation to Variational inference
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Recap: GMMs as Latent Variable Models

* Write GMMs in terms of latent variables z
— Marginal distribution of x 5

K
p(x) = plx,z) =3 p(z)p(x]z) =¥ mN (x|, B
z z k=1 *
» Advantage of this formulation

— We have represented the marginal distribution in terms of
latent variables z.

- Since p(x) = X, p(x, z), there is a corresponding latent variable z,
for each data point x,,.

— We are now able to work with the joint distribution p(x, z) instead of
the marginal distribution p(x).

= This will lead to significant simplifications...
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Course Outline

* Regression Techniques
— Linear Regression
— Regularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabilistic Graphical Models
— Bayesian Networks
— Markov Random Fields
— Inference (exact & approximate)
— Latent Variable Models
+ Deep Generative Models
— Generative Adversarial Networks
— Variational Autoencoders
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Recap: Mixtures of Gaussians

p(x) = Z ﬂk-N((x'll “‘"}c' Ek)

k=1

» “Generative model”

3
p(xl6) = > mp(x16))
j=1
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Recap: Sampling from a Gaussian Mixture

* MoG Sampling
— We can use ancestral sampling to generate random samples from a
Gaussian mixture model. 2
1. Generate avalue z from the marginal distribution p(z).
2. Generate a value X from the conditional distribution p(x|Z).

Samples from the
joint p(x, z) marginal p(x)

Samples from the Evaluating the
responsibilities y(z,,)
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Recap: Gaussian Mixtures Revisited

* Applying the latent variable view of EM
— Goal is to maximize the log-likelihood using the observed data X

log p(X|6) =1og{2p(x,2|e)} .
Z
— Corresponding graphical model: R

— Suppose we are additionally given the values
of the latent variables Z. X

— The corresponding graphical model for the
complete data now looks like this:
= Straightforward to marginalize...
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Recap: General EM Algorithm

* Algorithm
1. Choose an initial setting for the parameters '
2. E-step: Evaluate p(Z|X, ")

W

3. M-step: Evaluate '

ejmt‘w — argmg.x Q(G. Gnhl)

given by

where
Q(0,6°") = 3" p(ZIX,6°) log p(X, Z[9)
3

4. While not converged, let g1 .— "“* and return to step 2.
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Recap: Monte Carlo EM

* EM procedure
— M-step: Maximize expectation of complete-data log-likelihood

Q6,67 = j p(ZIX, 07 log p(X. Z10)dZ

— For more complex models, we may not be able to compute this
analytically anymore...

* ldea
— Use sampling to approximate this integral by a finite sum over samples
{Z "} drawn from the current estimate of the posterior
L
1
8,6 ~ =% logp(X,Z"|0
Q(0.0°") ~ 3 loga( )

— This procedure is called the Monte Carlo EM algorithm.
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Recap: Alternative View of EM

« In practice, however,...

— We are not given the complete data set {X,Z}, but only the
incomplete data X. All we can compute about Z is the posterior
distribution p{Z X, #).

— Since we cannot use the complete-data log-likelihood, we consider
instead its expected value under the posterior distribution of the
latent variables:

Q(0,6°") = 3" p(ZIX,6°) log p(X, Z[9)
3
— This corresponds to the E-step of the EM algorithm.

— In the subsequent M-step, we then maximize the expectation to obtain
the revised parameter set 6"V,

v — argmgx Q(G.G“m)

Visual Computing Institute| Prof. Dr . Bastian Leibe
Advanced Machine Learing () -
Part 13 - Approximate Inference I i

Recap: MAP-EM

» Modification for MAP
— The EM algorithm can be adapted to find MAP solutions for models for
which a prior p(#) is defined over the parameters.
— Only changes needed:

2. E-step: Evaluate p(Z|X, M)
3. M-step: Evaluate 8" given by

""" = arg mé\x (e, B"H)Jr logp(@)

= Suitable choices for the prior will remove the ML singularities!
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Gaussian Mixtures Revisited

« Applying the latent variable view of EM
— Goal is to maximize the log-likelihood using the observed data X

log p(X|8) = log {ZP(X: Zlﬂ)}

z
— Corresponding graphical model:

— Suppose we are additionally given the values .
of the latent variables Z. T
— The corresponding graphical model for the .
complete data now looks like this: s 'Y s
N
RWTH
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Topics of This Lecture

 Mixtures of Gaussians revisited
— General EM derivation
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Gaussian Mixtures Revisited

* Maximization w.r.t. mixing coefficients
— More complex, since the 7, are coupled by the summation constraint
K

>om=1
J=1
— Solve with a Lagrange multiplier

K
logp(X, E|p, B, ) + A (Z The 1)

k=1

— Solution (after a longer derivation):
N
1
”
= The complete-data log-likelihood can be maximized trivially in
closed form.
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Gaussian Mixtures Revisited

« Continuing the estimation
— The expected value of the complete-data log-likelihood is therefore

N K
Egllog p(X, Z|p, 3, m)] = Y Y vzuk {log m + log N (x|, Te)}
n=1k=1
* Putting everything together
— Start by choosing some initial values for p°'¢, £°4 and !,
— Use these to evaluate the responsibilities (the E-Step).
— Keep the responsibilities fixed and maximize the above for u"¢¥, "%,
and **" (the M-Step).
— This leads to the familiar closed-form solutions for u™¢¥, £"¢" and
nTlEWl
= This is precisely the EM algorithm for Gaussian mixtures as
derived before. But we can now also apply it to other distributions.
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Gaussian Mixtures Revisited

* Maximize the likelihood
— For the complete-data set {X,Z}, the likelihood has the form

N K
p(X, Z|p, 2, 7) = H H N (g B ) ™"

n=1k=1
— Taking the logarithm, we obtain
N K
logp(X, 2|, T, m) = 3 2k {log M + log N (x, 11y i)}
n=1k=1

— Compared to the incomplete-data case, the order of the sum and
logarithm has been interchanged.

= Much simpler solution to the ML problem.

— Maximization w.r.t. a mean or covariance is exactly as for a single
Gaussian, except that it involves only the subset of data points that are
“assigned” to that component (z,,, = 1). (
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Gaussian Mixtures Revisited

« In practice, we don’t have values for the latent variables

— Consider the expectation w.r.t. the posterior distribution of the latent
variables instead.
— The posterior distribution takes the form
N K
P(Z[X, . B, 70) oc [] T sV (g, i)™
n=1k=1
and factorizes over n, so that the {z,} are independent under the
posterior.
— Expected value of indicator variable z,; under the posterior.

... 2k (TN (Xn| gy, Zi))
3., [N (el 25)] ™

_ N B0

S N (b, )
(9 =

Elent] =
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Topics of This Lectu

« The EM algorithm in general
— Generalized EM
— Relation to Variational inference




The EM Algorithm in General

+ General formulation
— Given a probabilistic model with observed variables X, hidden variables

Z and parameters 6.
— Our goal is to maximize the likelihood given by

P(XIO) = ) p(X,2]6)
Z

— However, a direct optimization of p(X|0) is often difficult. Optimization
of the complete-data log-likelihood p(X,Z|9) is significantly easier.

Y Comotngsue o 1 Bttt
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Analysis of this Result

» Decomposition
— For any choice of g(Z), the following decomposition holds

logp(X16) = L(q,0) + KL(q Il p)

p(X,Z|6)
L(q.e)—zq(zng{ D }
_ P(ZIX, 0)
KL(qlIp) = qulog{ D }

* Notes (1)
— L(q,0) is a functional of the distribution g(Z) and a function of the
parameters 6.
— A functional is an operator that takes as input a function and outputs
again a function.
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Analysis of this

» Decomposition
— For any choice of q(Z), the following decomposition holds

logp(X16) = L(q,0) + KL(q Il p)

_ p(X,Z|8)

£(q,0) = Z 4(2) log {—q(z) }

_ p(ZIX,0)
KL(qllp) =— EZ q(2) log{iq(z) }

* Notes (3)
— It therefore follows that £(q, 8) < logp(X|6).
— In other words: £(g, 8) is a lower bound on log p(X|6).
— We can now use this result in order to analyze how EM works...
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The EM Algorithm in General

» Decomposition

— Introduce a distribution g(Z) over the latent variables. For any choice
of q(Z), the following decomposition holds

logp(X[0) = L(q,0) + KL(q Il p)

— where

0
0= Y a(@) o o o)

. P(IX,0)
KL(gllp) = Zq(znog{ @ }

— (Proof on extra slide set)
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Analysis of this Result

» Decomposition
— For any choice of ¢q(Z), the following decomposition holds

logp(X10) = L(q,8) + KL(q Il p)

p(X,Z|6)
£(q.0) = Z 4@ o g{ D
p(ZIX, 9)}
KL(q Il =- Z) 1 —_—
(qlip) ZZ: q(2) Og{ @
* Notes (2)
— KL(q |l p) is the Kullback-Leibler divergence between the distribution
q(Z) and the posterior distribution p(Z|X, 0).
— The KL divergence satisfies KL(q Il p) = 0 with = 0 iff q(Z) = p(Z|X, 6).
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Analysis of EM

« Decomposition

KL{qllp)

logp(X|16) = £L(q,0) + KL(q I p)

£(g.8) Inp(X|8}

« Interpretation
— £(q,0) is a lower bound on logp(X|8).
— The approximation comes from the fact that we use an approximative
distribution q(Z) = p(Z|X, 8°'¢) Instead of the (unknown) real posterior.
— The KL divergence measures the difference between the approximative
distribution q(Z) and the real posterior p(Z|X, 0).
— In every EM iteration, we try to make this difference smaller.
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Analysis of EM

KL(gllp) =0

» Decomposition

logp(X160) = L(q,8) + KL(q Il p)

Lig, @) Inp(X|8°)

» E-Step
— Suppose the current value of the parameter vector is 8°4,

— The E-step maximizes the lower bound £(g, 8) w.r.t. ¢(Z) while holding
0° fixed.

— The solution to this maximization problem of log p(X|6°) will occur
when the KL divergence vanishes, i.e. when q(Z) = p(Z|X, 8°'¢).
— In this case, the lower bound equals the log-likelihood.
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Analysis of EM

» Decomposition

L+ 11

logp(X|6) = L(q,0) + KL(q Il p)

£(q,6"7) 1np(X18")

* M-Step

- In the M-step, the distribution q(Z) is held fixed and the lower bound
L(q,0) is maximized w.r.t. 8 to give some new value 6™

— This causes the lower bound £ to increase (unless it is already at
maximum), which will cause the log-likelihood to increase.

— Because q(Z) is determined using the old parameter values, it will not
equal the posterior distribution p(Z|X, 8™¢*) and there will be a non-zero
KL divergence.

Analysis of EM

isualCamputing stute Prl. O Bastan L
Nt i Lo () —
B e o 1

* Visualization in the space
of parameters

ol g

» The EM algorithm alternately
— Computes a lower bound on the log-likelihood for the current
parameters values
— And then maximizes this bound to obtain the new parameter values.
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References and Further Reading

* More information about EM and MoG estimation is available

in Chapter 9 of Bishop’s book (recommendable to read).
et

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

« Additional information
— A.P. Dempster, N.M. Laird, D.B. Rubin, ,Maximum-Likelihood from incomplete
data via EM algorithm”, In J. Royal Statistical Society, Series B. Vol 39, 1977
— J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application to
Parameter Estimation for Gaussian Mixture and Hidden Markov Models®, TR-
97-021, ICSI, U.C. Berkeley, CA,USA
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