# Advanced Machine Learning Summer 2019

# Part 15 – Latent Variable Models II 06.06.2019

Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group <a href="http://www.vision.rwth-aachen.de">http://www.vision.rwth-aachen.de</a>



# **Course Outline**

- Regression Techniques
  - Linear Regression
  - Regularization (Ridge, Lasso)
  - Kernels (Kernel Ridge Regression)
- Deep Reinforcement Learning
- Probabilistic Graphical Models
  - Bayesian Networks
  - Markov Random Fields
  - Inference (exact & approximate)
  - Latent Variable Models
- Deep Generative Models
  - Generative Adversarial Networks
  - Variational Autoencoders

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 13 – Approximate Inference II



# **Topics of This Lecture**

- Recap: Mixtures of Gaussians and General EM
  - Mixtures of Gaussians
  - General EM
- Mixtures of Gaussians revisited
  - General EM derivation
- The EM algorithm in general
  - Generalized EM
  - Relation to Variational inference





#### **Recap: Mixtures of Gaussians**



# Recap: GMMs as Latent Variable Models

- Write GMMs in terms of latent variables  $\mathbf{z}$ 
  - Marginal distribution of  ${\bf x}$

$$p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z}) = \sum_{\mathbf{z}} p(\mathbf{z}) p(\mathbf{x} | \mathbf{z}) = \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x} | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$

- Advantage of this formulation
  - We have represented the marginal distribution in terms of latent variables z.
  - Since  $p(\mathbf{x}) = \sum_{\mathbf{z}} p(\mathbf{x}, \mathbf{z})$ , there is a corresponding latent variable  $\mathbf{z}_n$  for each data point  $\mathbf{x}_n$ .
  - We are now able to work with the joint distribution  $p(\mathbf{x}, \mathbf{z})$  instead of the marginal distribution  $p(\mathbf{x})$ .
  - $\Rightarrow$  This will lead to significant simplifications...





#### Recap: Sampling from a Gaussian Mixture

- MoG Sampling
  - We can use ancestral sampling to generate random samples from a Gaussian mixture model.
    - 1. Generate a value  $\hat{\mathbf{z}}$  from the marginal distribution  $p(\mathbf{z})$ .
    - 2. Generate a value  $\hat{\mathbf{x}}$  from the conditional distribution  $p(\mathbf{x}|\hat{\mathbf{z}})$ .



Image source: C.M. Bishop, 2006

# **Recap: Gaussian Mixtures Revisited**

- Applying the latent variable view of EM
  - Goal is to maximize the log-likelihood using the observed data  ${\bf X}$

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \log \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\} \xrightarrow{\pi} \left\{ \sum_{\mathbf{X}_n} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\}$$

– Corresponding graphical model:

- Suppose we are additionally given the values of the latent variables  ${f Z}$ .
- The corresponding graphical model for the complete data now looks like this:
- $\Rightarrow$  Straightforward to marginalize...

7



 $\Sigma$ 





Image source: C.M. Bishop, 2006

### Recap: Alternative View of EM

- In practice, however,...
  - We are not given the complete data set { $\mathbf{X}, \mathbf{Z}$ }, but only the incomplete data  $\mathbf{X}$ . All we can compute about  $\mathbf{Z}$  is the posterior distribution  $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$ .
  - Since we cannot use the complete-data log-likelihood, we consider instead its expected value under the posterior distribution of the latent variables:

$$Q(\theta, \theta^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z}|\mathbf{X}, \theta^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\theta)$$

- This corresponds to the E-step of the EM algorithm.
- In the subsequent M-step, we then maximize the expectation to obtain the revised parameter set  $\theta^{new}$ .

$$oldsymbol{ heta}^{ ext{new}} = rg\max_{oldsymbol{ heta}} ~ \mathcal{Q}(oldsymbol{ heta},oldsymbol{ heta}^{ ext{old}})$$





# **Recap: General EM Algorithm**

- Algorithm
  - 1. Choose an initial setting for the parameters  $\theta^{\rm old}$
  - 2. E-step: Evaluate  $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$
  - 3. M-step: Evaluate  $\boldsymbol{\theta}^{\mathrm{new}}$  given by

$$oldsymbol{ heta}^{ ext{new}} = rg\max_{oldsymbol{ heta}} \, \mathcal{Q}(oldsymbol{ heta},oldsymbol{ heta}^{ ext{old}})$$

where

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \sum_{\mathbf{Z}} p(\mathbf{Z} | \mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\theta})$$

4. While not converged, let  $\boldsymbol{\theta}^{\mathrm{old}} \leftarrow \boldsymbol{\theta}^{\mathrm{new}}$  and return to step 2.





### Recap: MAP-EM

- Modification for MAP
  - The EM algorithm can be adapted to find MAP solutions for models for which a prior  $p(\theta)$  is defined over the parameters.
  - Only changes needed:
    - 2. E-step: Evaluate  $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}})$
    - 3. M-step: Evaluate  $\boldsymbol{\theta}^{\mathrm{new}}$  given by

$$oldsymbol{ heta}^{ ext{new}} = rg\max_{oldsymbol{ heta}} \, \mathcal{Q}(oldsymbol{ heta},oldsymbol{ heta}^{ ext{old}}) + \log p(oldsymbol{ heta})$$

 $\Rightarrow$  Suitable choices for the prior will remove the ML singularities!





### Recap: Monte Carlo EM

- EM procedure
  - M-step: Maximize expectation of complete-data log-likelihood

$$Q(\theta, \theta^{\text{old}}) = \int p(\mathbf{Z} | \mathbf{X}, \theta^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z} | \theta) d\mathbf{Z}$$

- For more complex models, we may not be able to compute this analytically anymore...
- Idea

11

– Use sampling to approximate this integral by a finite sum over samples  $\{\mathbf{Z}^{(l)}\}\$  drawn from the current estimate of the posterior

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) \sim \frac{1}{L} \sum_{l=1}^{L} \log p(\mathbf{X}, \mathbf{Z}^{(l)} | \boldsymbol{\theta})$$

- This procedure is called the Monte Carlo EM algorithm.





- Applying the latent variable view of EM
  - Goal is to maximize the log-likelihood using the observed data  ${f X}$

$$\log p(\mathbf{X}|\boldsymbol{\theta}) = \log \left\{ \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) \right\} \xrightarrow{\pi} \left\{ \begin{array}{c} \mathbf{x}_{n} \\ \mathbf{x}_{n} \end{array} \right\}$$

– Corresponding graphical model:

- Suppose we are additionally given the values of the latent variables  $\mathbf{Z}$ .
- The corresponding graphical model for the complete data now looks like this:



N

5



# **Topics of This Lecture**

- Recap: Mixtures of Gaussians and General EM
  - Mixtures of Gaussians
  - General EM
- Mixtures of Gaussians revisited
  - General EM derivation
- The EM algorithm in general
  - Generalized EM
  - Relation to Variational inference





- Maximize the likelihood
  - For the complete-data set  $\{\mathbf{X},\!\mathbf{Z}\},$  the likelihood has the form

$$p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \pi_k^{z_{nk}} \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)^{z_{nk}}$$

- Taking the logarithm, we obtain

$$\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) = \sum_{n=1}^{N} \sum_{k=1}^{K} z_{nk} \left\{ \log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right\}$$

- Compared to the incomplete-data case, the order of the sum and logarithm has been interchanged.
- $\Rightarrow$  Much simpler solution to the ML problem.
- Maximization w.r.t. a mean or covariance is exactly as for a single Gaussian, except that it involves only the subset of data points that are "assigned" to that component ( $z_{nk} = 1$ ).





- Maximization w.r.t. mixing coefficients
  - More complex, since the  $\pi_k$  are coupled by the summation constraint

$$\sum_{j=1}^{n} \pi_j = 1$$

- Solve with a Lagrange multiplier

$$\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) + \lambda \left( \sum_{k=1}^{K} \pi_k - 1 \right)$$

/ TZ

- Solution (after a longer derivation):

$$\pi_k = \frac{1}{N} \sum_{n=1}^N z_{nk}$$

 $\Rightarrow$  The complete-data log-likelihood can be maximized trivially in closed form.

15



`



- In practice, we don't have values for the latent variables
  - Consider the expectation w.r.t. the posterior distribution of the latent variables instead.
  - The posterior distribution takes the form

$$p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi}) \propto \prod_{n=1}^{N} \prod_{k=1}^{K} \left[ \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k) \right]^{z_{nk}}$$

and factorizes over n, so that the  $\{\mathbf{z}_n\}$  are independent under the posterior.

– Expected value of indicator variable  $z_{nk}$  under the posterior.

$$\mathbb{E}[z_{nk}] = \frac{\sum_{z_{nk}} z_{nk} \left[\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\right]^{z_{nk}}}{\sum_{z_{nj}} \left[\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)\right]^{z_{nj}}}$$
$$= \frac{\pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)}{\sum_{j=1}^{K} \pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)} = \gamma(z_{nk})$$



Visual Computing

- Continuing the estimation
  - The expected value of the complete-data log-likelihood is therefore

$$\mathbb{E}_{\mathbf{Z}}[\log p(\mathbf{X}, \mathbf{Z} | \boldsymbol{\mu}, \boldsymbol{\Sigma}, \boldsymbol{\pi})] = \sum_{n=1}^{N} \sum_{k=1}^{K} \gamma z_{nk} \{\log \pi_k + \log \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)\}$$

- Putting everything together
  - Start by choosing some initial values for  $\mu^{old}$ ,  $\Sigma^{old}$ , and  $\pi^{old}$ .
  - Use these to evaluate the responsibilities (the E-Step).
  - Keep the responsibilities fixed and maximize the above for  $\mu^{new}$ ,  $\Sigma^{new}$ , and  $\pi^{new}$  (the M-Step).
  - This leads to the familiar closed-form solutions for  $\mu^{new}$ ,  $\Sigma^{new}$ , and  $\pi^{new}$ .
  - ⇒ This is precisely the EM algorithm for Gaussian mixtures as derived before. But we can now also apply it to other distributions.

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 13 – Approximate Inference II





# **Topics of This Lecture**

- Recap: Mixtures of Gaussians and General EM
  - Mixtures of Gaussians
  - General EM
- Mixtures of Gaussians revisited
  - General EM derivation
- The EM algorithm in general
  - Generalized EM
  - Relation to Variational inference





# The EM Algorithm in General

- General formulation
  - Given a probabilistic model with observed variables X, hidden variables Z and parameters  $\theta$ .
  - Our goal is to maximize the likelihood given by

$$p(\mathbf{X}|\theta) = \sum_{\mathbf{Z}} p(\mathbf{X}, \mathbf{Z}|\theta)$$

- However, a direct optimization of  $p(\mathbf{X}|\mathbf{\theta})$  is often difficult. Optimization of the complete-data log-likelihood  $p(\mathbf{X}, \mathbf{Z}|\mathbf{\theta})$  is significantly easier.





# The EM Algorithm in General

- Decomposition
  - Introduce a distribution  $q(\mathbf{Z})$  over the latent variables. For any choice of  $q(\mathbf{Z})$ , the following decomposition holds

$$\log p(\mathbf{X}|\theta) = \mathcal{L}(q, \mathbf{\theta}) + KL(q \parallel p)$$

- where

22

$$\mathcal{L}(q, \mathbf{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z} | \mathbf{\theta})}{q(\mathbf{Z})} \right\}$$

$$KL(q \parallel p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z} \mid \mathbf{X}, \mathbf{\theta})}{q(\mathbf{Z})} \right\}$$

- (Proof on extra slide set)

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 13 – Approximate Inference II





# Analysis of this Result

- Decomposition
  - For any choice of  $q(\mathbf{Z})$ , the following decomposition holds

$$\log p(\mathbf{X}|\theta) = \mathcal{L}(q, \theta) + KL(q \parallel p)$$

$$\mathcal{L}(q, \mathbf{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z} | \mathbf{\theta})}{q(\mathbf{Z})} \right\}$$
$$KL(q \parallel p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z} | \mathbf{X}, \mathbf{\theta})}{q(\mathbf{Z})} \right\}$$

• Notes (1)

- $-\mathcal{L}(q, \theta)$  is a functional of the distribution  $q(\mathbf{Z})$  and a function of the parameters  $\theta$ .
- A functional is an operator that takes as input a function and outputs again a function.



# Analysis of this Result

- Decomposition
  - For any choice of  $q(\mathbf{Z})$ , the following decomposition holds

$$\log p(\mathbf{X}|\theta) = \mathcal{L}(q, \theta) + KL(q \parallel p)$$

$$\mathcal{L}(q, \mathbf{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z} | \mathbf{\theta})}{q(\mathbf{Z})} \right\}$$
$$KL(q \parallel p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z} | \mathbf{X}, \mathbf{\theta})}{q(\mathbf{Z})} \right\}$$

• Notes (2)

26

- $KL(q \parallel p)$  is the Kullback-Leibler divergence between the distribution  $q(\mathbf{Z})$  and the posterior distribution  $p(\mathbf{Z}|\mathbf{X}, \mathbf{\theta})$ .
- The KL divergence satisfies  $KL(q \parallel p) \ge 0$  with = 0 iff  $q(\mathbf{Z}) = p(\mathbf{Z} \mid \mathbf{X}, \mathbf{\theta})$ .



# Analysis of this Result

- Decomposition
  - For any choice of  $q(\mathbf{Z})$ , the following decomposition holds

$$\log p(\mathbf{X}|\theta) = \mathcal{L}(q, \theta) + KL(q \parallel p)$$

$$\mathcal{L}(q, \mathbf{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z} | \mathbf{\theta})}{q(\mathbf{Z})} \right\}$$
$$KL(q \parallel p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z} | \mathbf{X}, \mathbf{\theta})}{q(\mathbf{Z})} \right\}$$

• Notes (3)

- It therefore follows that  $\mathcal{L}(q, \theta) \leq \log p(\mathbf{X}|\theta)$ .
- In other words:  $\mathcal{L}(q, \theta)$  is a lower bound on  $\log p(\mathbf{X}|\theta)$ .
- We can now use this result in order to analyze how EM works...





Decomposition

$$\log p(\mathbf{X}|\theta) = \mathcal{L}(q, \boldsymbol{\theta}) + KL(q \parallel p)$$



Interpretation

- $-\mathcal{L}(q, \theta)$  is a lower bound on  $\log p(\mathbf{X}|\theta)$ .
- The approximation comes from the fact that we use an approximative distribution  $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \mathbf{\theta}^{old})$  Instead of the (unknown) real posterior.
- The KL divergence measures the difference between the approximative distribution  $q(\mathbf{Z})$  and the real posterior  $p(\mathbf{Z}|\mathbf{X}, \mathbf{\theta})$ .
- In every EM iteration, we try to make this difference smaller.





Decomposition

$$\log p(\mathbf{X}|\theta) = \mathcal{L}(q, \theta) + KL(q \parallel p)$$



• E-Step

- Suppose the current value of the parameter vector is  $\theta^{old}$ .
- The E-step maximizes the lower bound  $\mathcal{L}(q, \theta)$  w.r.t.  $q(\mathbf{Z})$  while holding  $\theta^{old}$  fixed.
- The solution to this maximization problem of  $\log p(\mathbf{X}|\mathbf{\theta}^{old})$  will occur when the KL divergence vanishes, i.e. when  $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \mathbf{\theta}^{old})$ .
- In this case, the lower bound equals the log-likelihood.





Decomposition

 $\log p(\mathbf{X}|\theta) = \mathcal{L}(q, \mathbf{\theta}) + KL(q \parallel p)$ 



• M-Step

- In the M-step, the distribution  $q(\mathbf{Z})$  is held fixed and the lower bound  $\mathcal{L}(q, \mathbf{\theta})$  is maximized w.r.t.  $\mathbf{\theta}$  to give some new value  $\mathbf{\theta}^{new}$ .
- This causes the lower bound  $\mathcal{L}$  to increase (unless it is already at maximum), which will cause the log-likelihood to increase.
- Because  $q(\mathbf{Z})$  is determined using the old parameter values, it will not equal the posterior distribution  $p(\mathbf{Z}|\mathbf{X}, \mathbf{\theta}^{new})$  and there will be a non-zero KL divergence.





 Visualization in the space of parameters



- The EM algorithm alternately
  - Computes a lower bound on the log-likelihood for the current parameters values
  - And then maximizes this bound to obtain the new parameter values.





# **References and Further Reading**

• More information about EM and MoG estimation is available in Chapter 9 of Bishop's book (recommendable to read).

Christopher M. Bishop Pattern Recognition and Machine Learning Springer, 2006



- Additional information
  - A.P. Dempster, N.M. Laird, D.B. Rubin, <u>Maximum-Likelihood from incomplete</u> data via EM algorithm", In J. Royal Statistical Society, Series B. Vol 39, 1977
  - J.A. Bilmes, "<u>A Gentle Tutorial of the EM Algorithm and its Application to</u> <u>Parameter Estimation for Gaussian Mixture and Hidden Markov Models</u>", TR-97-021, ICSI, U.C. Berkeley, CA,USA





