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Course Outline

* Regression Techniques
— Linear Regression
— Regqularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabillistic Graphical Models
— Bayesian Networks
— Markov Random Fields
— Inference (exact & approximate)
— Latent Variable Models

* Deep Generative Models
— Generative Adversarial Networks
— Variational Autoencoders
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Topics of This Lecture

* Recap: Mixtures of Gaussians and General EM
— Mixtures of Gaussians
— General EM

 Mixtures of Gaussians revisited
— General EM derivation

« The EM algorithm in general
— Generalized EM
— Relation to Variational inference
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Recap: Mixtures of Gaussians

K
* “Generative model” p(x) = > meN (xnl bty i)
k=1
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Recap: GMMs as Latent Variable Models

 Write GMMs In terms of latent variables z
— Marginal distribution of x z

K
= Zp(x z) Zp p(x|z) = ZWkN(X“J'kaEk)
zZ k=1

« Advantage of this formulation

— We have represented the marginal distribution in terms of
latent variables z.

— Since p(x) = 2., p(x, z), there is a corresponding latent variable z,
for each data point x,..

— We are now able to work with the joint distribution p(x, z) instead of
the marginal distribution p(x).

= This will lead to significant simplifications...
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Recap: Sampling from a Gaussian Mixture

« MoG Sampling
— We can use ancestral sampling to generate random samples from a
Gaussian mixture model. z
1. Generate a value z from the marginal distribution p(z).

2. Generate a value X from the conditional distribution p(x|z).

Samples from the Samples from the Evaluating the
joint p(x, z) marginal p(x) responsibilities y(z,,)
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Recap: Gaussian Mixtures Revisited

* Applying the latent variable view of EM
— Goal is to maximize the log-likelihood using the observed data X

log p(X[8) 10g{zp(X,ZG)} ]

— Corresponding graphical model: "
— Suppose we are additionally given the values CR
of the latent variables Z. ™ —

— The corresponding graphical model for the

complete data now looks like this: . o .
— Straightforward to marginalize... P
~—
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Recap: Alternative View of EM

* In practice, however,...

— We are not given the complete data set {X,Z}, but only the
incomplete data X. All we can compute about Z is the posterior
distribution p(Z|X, 8).

— Since we cannot use the complete-data log-likelihood, we consider

Instead its expected value under the posterior distribution of the
latent variables:

Q(6,6°) = ¥ p(Z|X,0°) logp(X, Z|6)
Z
— This corresponds to the E-step of the EM algorithm.

— In the subsequent M-step, we then maximize the expectation to obtain
the revised parameter set g2V,

0" = arg max Q(0,0°)
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Recap: General EM Algorithm

 Algorithm
1. Choose an initial setting for the parameters §°'¢

2. E-step: Evaluate p(Z|X,0°9)

Bl’leW

3. M-step: Evaluate
0" = arg mgx Q(0,0°%)

given by

where
Q(6,6°) = " p(Z|X,0°) logp(X, Z|6)
Z

4. While not converged, let @°!4 . g€ and return to step 2.
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Recap: MAP-EM

 Modification for MAP

— The EM algorithm can be adapted to find MAP solutions for models for
which a prior p(8) is defined over the parameters.

— Only changes needed:

2. E-step: Evaluate p(Z|X,0°9)

Bnew

3. M-step: Evaluate

0" = arg max Q(0,6°)+1log p(8)

— Suitable choices for the prior will remove the ML singularities!

given by
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Recap: Monte Carlo EM

 EM procedure
— M-step: Maximize expectation of complete-data log-likelihood

Q(6,6°) = jp(ZIX, 6°%) log p(X, Z|6)dZ

— For more complex models, we may not be able to compute this
analytically anymore...

* |dea

— Use sampling to approximate this integral by a finite sum over samples
{Z 1} drawn from the current estimate of the posterior

Q(0,0°) ~ Zlogp (X,z"10)

— This procedure is called the Monte Carlo EM algorithm.
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Gaussian Mixtures Revisited

* Applying the latent variable view of EM
— Goal is to maximize the log-likelihood using the observed data X

log p(X[8) 10g{zp(X,Z¢9)} ]

Xn
— Corresponding graphical model: p —— >
W i
— Suppose we are additionally given the values (B ‘
of the latent variables Z. ol
— The corresponding graphical model for the
. . Xn
complete data now looks like this: i 5
W i
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Topics of This Lecture

 Mixtures of Gaussians revisited
— General EM derivation
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Gaussian Mixtures Revisited

* Maximize the likelihood
— For the complete-data set {X Z} the likelihood has the form

p(X,Z|p, =, ™) H sznk (X | o1, T )
n=1 k=1

— Taking the logarithm, we obtain

logp(X, Z|p, Z,7) = > Yz {log mp, + log N (x| Zie) }
n=1k=1
— Compared to the incomplete-data case, the order of the sum and
logarithm has been interchanged.

= Much simpler solution to the ML problem.
— Maximization w.r.t. a mean or covariance is exactly as for a single

Gaussian, except that it involves only the subset of data points that are
“assigned” to that component (z,,;, = 1).
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Gaussian Mixtures Revisited

« Maximization w.r.t. mixing coefficients
— More complex, since the 7, are coupled by the summation constraint
K

Z?Tj:].

j=1
— Solve with a Lagrange multiplier

K
logp(X, Z|p, 3, 7) + A Zﬂ'k —1
k=1
— Solution (after a longer derivation):

1 N
T — N Zznk
n—=1

= The complete-data log-likelihood can be maximized trivially in
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Gaussian Mixtures Revisited

* |In practice, we don’t have values for the latent variables
— Consider the expectation w.r.t. the posterior distribution of the latent
variables instead.

— The posterior distribution takes the form
N K

p(Z|X,p,, 2777) X H H [ﬂ-kN(Xn“"’kv Sk)]znk
n=1 k=1
and factorizes over n, so that the {z,} are independent under the
posterior.
— Expected value of indicator variable z,, under the posterior.

> s Znk TN (Xn |1y, g)] ™

K [an] — Zni
nj
. [N (xnlpy, 55)]
T‘-kN(Xn‘/'Lk:? 276)
— K — V(Z’nk)
Yoo N (x|, 25)
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Gaussian Mixtures Revisited

« Continuing the estimation
— The expected value of the complete-data log-likelihood is therefore

N K
Ezllogp(X,Z|p, Z, )] = > > vznk {logm + log N (x5 |y, T ) }
n=1 k=1

 Putting everything together
— Start by choosing some initial values for u°'¢, x°4 and m°!¢.
— Use these to evaluate the responsibilities (the E-Step).
— Keep the responsibilities fixed and maximize the above for u"e%, "€V,

and "% (the M-Step).

— This leads to the familiar closed-form solutions for u™¢%, £ and

new
w .

= This is precisely the EM algorithm for Gaussian mixtures as

derived before. But we can now also apply it to other distributions.
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Topics of This Lecture

* The EM algorithm in general
— Generalized EM
— Relation to Variational inference
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The EM Algorithm in General

 General formulation

— Given a probabilistic model with observed variables X, hidden variables
Z and parameters 0.

— Our goal is to maximize the likelihood given by
p(XI0) = ) p(X.Z|6)
Z

— However, a direct optimization of p(X|0) is often difficult. Optimization
of the complete-data log-likelihood p(X, Z|0) is significantly easier.
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The EM Algorithm in General

« Decomposition

— Introduce a distribution q(Z) over the latent variables. For any choice
of q(Z), the following decomposition holds

logp(X|0) = L(q,0) + KL(q Il p)

— where
p(X,Z|0)
£(4,0) = ) @) 1og{
- q(Z)
p(Z]X,0)
KL@Ip) ==-) (Z)lo{

qllp 4 q 8l 4@

— (Proof on extra slide set)
o e o Basan e d O PR




Analysis of this Result

« Decomposition
— For any choice of q(Z), the following decomposition holds

logp(X|0) = L(q,0) + KL(q |l p)

_ r(X,Z]0)
_ p(Z]X,0)
KL(q lIp) = —Z q(Z) 108{ 2(2) }

* Notes (1)
— L(q, 0) is a functional of the distribution g(Z) and a function of the
parameters 0.
— A functional is an operator that takes as input a function and outputs

again a function.
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Analysis of this Result

« Decomposition
— For any choice of q(Z), the following decomposition holds

logp(X|0) = L(q,0) + KL(q |l p)

_ r(X,Z]0)
3 p(Z[X,0)
KL(q lIp) = —Z‘ q(Z) log{ (D) }

* Notes (2)
— KL(q |l p) is the Kullback-Leibler divergence between the distribution
q(Z) and the posterior distribution p(Z|X, 0).
— The KL divergence satisfies KL(q || p) = 0 with = 0 iff g(Z) = p(Z|X, 0).
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Analysis of this Result

« Decomposition
— For any choice of q(Z), the following decomposition holds

logp(X|0) = L(q,0) + KL(q |l p)

_ r(X,Z]0)
3 p(Z[X,0)
KL(q lIp) = —Z‘ q(Z) log{ (D) }

* Notes (3)
— It therefore follows that L(g, 8) < log p(X|6).
— In other words: L(q, 0) is a lower bound on log p(X|8).
— We can now use this result in order to analyze how EM works...
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Analysis of EM

., - B ¥
 Decomposition
KL(qllp)
logp(X|0) = L(q,0) + KL(q Il p)
L{g.8) Inp(X|8)

* Interpretation
— L(q,0) is a lower bound on log p(X|0).
— The approximation comes from the fact that we use an approximative
distribution q(Z) = p(Z|X, 8°'4) Instead of the (unknown) real posterior.

— The KL divergence measures the difference between the approximative
distribution g(Z) and the real posterior p(Z|X, 0).

— In every EM iteration, we try to make this difference smaller.
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Analysis of EM

KL(gllp} =0 . 3 ¥

« Decomposition

logp(X|6) = L(q,8) + KL(q Il p)

L(g, &™) n p{ X |8°*)

« E-Step
— Suppose the current value of the parameter vector is 0°¢.

— The E-step maximizes the lower bound L(q, 0) w.r.t. g(Z) while holding
0°'? fixed.

— The solution to this maximization problem of log p(X|6°!4) will occur
when the KL divergence vanishes, i.e. when q(Z) = p(Z|X, 8°4).

— In this case, the lower bound equals the log-likelihood.
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Analysis of EM

« Decomposition ":LW"F}I . 1

logp(X|6) = L(q,8) + KL(q Il p)

L{g, &) Inp(X|6™)

* M-Step : :
— In the M-step, the distribution g(Z) is held fixed and the lower bound
L(q, 0) is maximized w.r.t. 0 to give some new value 0™¢%,

— This causes the lower bound £ to increase (unless it is already at
maximum), which will cause the log-likelihood to increase.

— Because q(Z) is determined using the old parameter values, it will not
equal the posterior distribution p(Z|X, 8™¢") and there will be a non-zero

KL divergence.
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Analysis of EM

* Visualization in the space
of parameters

In p(X10)

9 old 9 new

« The EM algorithm alternately

— Computes a lower bound on the log-likelihood for the current
parameters values

— And then maximizes this bound to obtain the new parameter values.
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References and Further Reading

« More information about EM and MoG estimation is available
in Chapter 9 of Bishop’s book (recommendable to read)

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006

o Additional information

— A.P. Dempster, N.M. Laird, D.B. Rubin, ,Maximum-Likelihood from incomplete
data via EM algorithm”, In J. Royal Statistical Society, Series B. Vol 39, 1977

— J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application to
Parameter Estimation for Gaussian Mixture and Hidden Markov Models®, TR-

97-021, ICSI, U.C. Berkeley, CA,USA
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