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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Topics of This Lecture

• Recap: Mixtures of Gaussians and General EM
 Mixtures of Gaussians

 General EM

• Mixtures of Gaussians revisited
 General EM derivation

• The EM algorithm in general
 Generalized EM

 Relation to Variational inference
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Recap: Mixtures of Gaussians

• “Generative model”

p(xjµ) =

3X

j=1

¼jp(xjµj)
p(j) = ¼j

j

1
2

3

p(xjµ1)
p(xjµ2)

p(xjµ3)

Image source: C.M. Bishop, 2006Slide credit: Bernt Schiele
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• Write GMMs in terms of latent variables z

 Marginal distribution of x

• Advantage of this formulation
 We have represented the marginal distribution in terms of 

latent variables z.

 Since p(x) = z p(x, z), there is a corresponding latent variable zn
for each data point xn.

 We are now able to work with the joint distribution p(x, z) instead of 

the marginal distribution p(x).

 This will lead to significant simplifications…

Recap: GMMs as Latent Variable Models
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• MoG Sampling
 We can use ancestral sampling to generate random samples from a 

Gaussian mixture model.

1. Generate a value      from the marginal distribution p(z).

2. Generate a value      from the conditional distribution           .

Samples from the

joint p(x, z)
Samples from the

marginal p(x)
Evaluating the

responsibilities (znk)

Image source: C.M. Bishop, 2006

Recap: Sampling from a Gaussian Mixture
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Recap: Gaussian Mixtures Revisited

• Applying the latent variable view of EM

 Goal is to maximize the log-likelihood using the observed data X

 Corresponding graphical model:

 Suppose we are additionally given the values

of the latent variables Z.

 The corresponding graphical model for the

complete data now looks like this:

 Straightforward to marginalize…

Image source: C.M. Bishop, 2006
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Recap: Alternative View of EM

• In practice, however,…

 We are not given the complete data set {X,Z}, but only the 

incomplete data X. All we can compute about Z is the posterior 

distribution    .

 Since we cannot use the complete-data log-likelihood, we consider 

instead its expected value under the posterior distribution of the 

latent variables:

 This corresponds to the E-step of the EM algorithm.

 In the subsequent M-step, we then maximize the expectation to obtain 

the revised parameter set µnew.
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Recap: General EM Algorithm

• Algorithm
1. Choose an initial setting for the parameters 

2. E-step: Evaluate 

3. M-step: Evaluate           given by

where 

4. While not converged, let                      and return to step 2.
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Recap: MAP-EM

• Modification for MAP
 The EM algorithm can be adapted to find MAP solutions for models for 

which a prior    is defined over the parameters.

 Only changes needed:

2. E-step: Evaluate 

3. M-step: Evaluate           given by

 Suitable choices for the prior will remove the ML singularities!
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Recap: Monte Carlo EM

• EM procedure
 M-step: Maximize expectation of complete-data log-likelihood

 For more complex models, we may not be able to compute this 
analytically anymore…

• Idea
 Use sampling to approximate this integral by a finite sum over samples 

{Z(l)} drawn from the current estimate of the posterior

 This procedure is called the Monte Carlo EM algorithm. 
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Gaussian Mixtures Revisited

• Applying the latent variable view of EM

 Goal is to maximize the log-likelihood using the observed data X

 Corresponding graphical model:

 Suppose we are additionally given the values

of the latent variables Z.

 The corresponding graphical model for the

complete data now looks like this:

Image source: C.M. Bishop, 2006
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Topics of This Lecture

• Recap: Mixtures of Gaussians and General EM
 Mixtures of Gaussians

 General EM

• Mixtures of Gaussians revisited
 General EM derivation

• The EM algorithm in general
 Generalized EM

 Relation to Variational inference
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Gaussian Mixtures Revisited

• Maximize the likelihood

 For the complete-data set {X,Z}, the likelihood has the form

 Taking the logarithm, we obtain 

 Compared to the incomplete-data case, the order of the sum and 

logarithm has been interchanged.

 Much simpler solution to the ML problem.

 Maximization w.r.t. a mean or covariance is exactly as for a single 

Gaussian, except that it involves only the subset of data points that are 

“assigned” to that component 𝑧𝑛𝑘 = 1 .
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Gaussian Mixtures Revisited

• Maximization w.r.t. mixing coefficients

 More complex, since the ¼k are coupled by the summation constraint

 Solve with a Lagrange multiplier

 Solution (after a longer derivation):

 The complete-data log-likelihood can be maximized trivially in 

closed form.
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Gaussian Mixtures Revisited

• In practice, we don’t have values for the latent variables
 Consider the expectation w.r.t. the posterior distribution of the latent 

variables instead.

 The posterior distribution takes the form

and factorizes over n, so that the {zn} are independent under the 

posterior.

 Expected value of indicator variable znk under the posterior.

E[znk] =

P
znk

znk [¼kN (xnj¹k;§k)]
znk

P
znj

£
¼jN (xnj¹j ;§j)

¤znj

=
¼kN (xnj¹k;§k)PK

j=1 ¼jN (xnj¹j ;§j)
= °(znk)
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Gaussian Mixtures Revisited

• Continuing the estimation
 The expected value of the complete-data log-likelihood is therefore

• Putting everything together

 Start by choosing some initial values for 𝝁𝑜𝑙𝑑, 𝚺𝑜𝑙𝑑, and 𝝅𝑜𝑙𝑑.

 Use these to evaluate the responsibilities (the E-Step).

 Keep the responsibilities fixed and maximize the above for 𝝁𝑛𝑒𝑤, 𝚺𝑛𝑒𝑤, 

and 𝝅𝑛𝑒𝑤 (the M-Step).

 This leads to the familiar closed-form solutions for 𝝁𝑛𝑒𝑤, 𝚺𝑛𝑒𝑤, and 

𝝅𝑛𝑒𝑤.

 This is precisely the EM algorithm for Gaussian mixtures as 

derived before. But we can now also apply it to other distributions.

EZ[log p(X;Zj¹;§;¼)] =

NX

n=1

KX

k=1

°znk flog¼k + logN (xnj¹k;§k)g
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Topics of This Lecture

• Recap: Mixtures of Gaussians and General EM
 Mixtures of Gaussians

 General EM

• Mixtures of Gaussians revisited
 General EM derivation

• The EM algorithm in general
 Generalized EM

 Relation to Variational inference
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The EM Algorithm in General

• General formulation
 Given a probabilistic model with observed variables 𝐗, hidden variables 

𝐙 and parameters 𝛉.

 Our goal is to maximize the likelihood given by

 However, a direct optimization of 𝑝(𝐗|𝛉) is often difficult. Optimization 

of the complete-data log-likelihood 𝑝(𝐗, 𝐙|𝛉) is significantly easier.

𝑝 𝐗 𝜃 =෍

𝐙

𝑝(𝐗, 𝐙|𝛉)
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The EM Algorithm in General

• Decomposition
 Introduce a distribution 𝑞(𝐙) over the latent variables. For any choice 

of 𝑞(𝐙), the following decomposition holds 

 where

 (Proof on extra slide set)

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝

ℒ 𝑞, 𝛉 =෍

𝐙

𝑞 𝐙 log
𝑝 𝐗, 𝐙|𝛉

𝑞(𝐙)

𝐾𝐿 𝑞 ∥ 𝑝 = −෍

𝐙

𝑞 𝒁 log
𝑝 𝐙|𝐗, 𝛉

𝑞 𝐙
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Analysis of this Result

• Decomposition
 For any choice of 𝑞(𝐙), the following decomposition holds

• Notes (1)
 ℒ 𝑞, 𝛉 is a functional of the distribution 𝑞 𝐙 and a function of the 

parameters 𝛉.

 A functional is an operator that takes as input a function and outputs 

again a function.

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝

ℒ 𝑞, 𝛉 =෍

𝐙

𝑞 𝐙 log
𝑝 𝐗, 𝐙|𝛉

𝑞(𝐙)

𝐾𝐿 𝑞 ∥ 𝑝 = −෍

𝐙

𝑞 𝒁 log
𝑝 𝐙|𝐗, 𝛉

𝑞 𝐙
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Analysis of this Result

• Decomposition
 For any choice of 𝑞(𝐙), the following decomposition holds

• Notes (2)
 𝐾𝐿 𝑞 ∥ 𝑝 is the Kullback-Leibler divergence between the distribution 

𝑞 𝐙 and the posterior distribution 𝑝 𝐙|𝐗, 𝛉 .

 The KL divergence satisfies 𝐾𝐿 𝑞 ∥ 𝑝 ≥ 0 with = 0 iff 𝑞 𝒁 = 𝑝 𝐙|𝐗, 𝛉 .

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝

ℒ 𝑞, 𝛉 =෍

𝐙

𝑞 𝐙 log
𝑝 𝐗, 𝐙|𝛉

𝑞(𝐙)

𝐾𝐿 𝑞 ∥ 𝑝 = −෍

𝐙

𝑞 𝒁 log
𝑝 𝐙|𝐗, 𝛉

𝑞 𝐙
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Analysis of this Result

• Decomposition
 For any choice of 𝑞(𝐙), the following decomposition holds

• Notes (3)
 It therefore follows that ℒ 𝑞, 𝛉 ≤ log 𝑝 𝐗 𝜃 .

 In other words: ℒ 𝑞, 𝛉 is a lower bound on log 𝑝 𝐗 𝜃 .

 We can now use this result in order to analyze how EM works…

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝

ℒ 𝑞, 𝛉 =෍

𝐙

𝑞 𝐙 log
𝑝 𝐗, 𝐙|𝛉

𝑞(𝐙)

𝐾𝐿 𝑞 ∥ 𝑝 = −෍

𝐙

𝑞 𝒁 log
𝑝 𝐙|𝐗, 𝛉

𝑞 𝐙
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Analysis of EM

• Decomposition

• Interpretation
 ℒ 𝑞, 𝛉 is a lower bound on log 𝑝 𝐗 𝛉 .

 The approximation comes from the fact that we use an approximative

distribution 𝑞 𝒁 = 𝑝 𝐙|𝐗, 𝛉𝑜𝑙𝑑 Instead of the (unknown) real posterior.

 The KL divergence measures the difference between the approximative

distribution 𝑞 𝒁 and the real posterior 𝑝 𝐙|𝐗, 𝛉 . 

 In every EM iteration, we try to make this difference smaller.

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝
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Analysis of EM

• Decomposition

• E-Step

 Suppose the current value of the parameter vector is 𝛉𝑜𝑙𝑑.

 The E-step maximizes the lower bound ℒ 𝑞, 𝛉 w.r.t. 𝑞 𝒁 while holding 

𝛉𝑜𝑙𝑑 fixed.

 The solution to this maximization problem of log 𝑝 𝐗 𝛉𝑜𝑙𝑑 will occur 

when the KL divergence vanishes, i.e. when 𝑞 𝒁 = 𝑝 𝐙|𝐗, 𝛉𝑜𝑙𝑑 .

 In this case, the lower bound equals the log-likelihood.

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝
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Analysis of EM

• Decomposition

• M-Step
 In the M-step, the distribution 𝑞 𝒁 is held fixed and the lower bound 

ℒ 𝑞, 𝛉 is maximized w.r.t. 𝛉 to give some new value 𝛉𝑛𝑒𝑤.

 This causes the lower bound ℒ to increase (unless it is already at 

maximum), which will cause the log-likelihood to increase.

 Because 𝑞 𝒁 is determined using the old parameter values, it will not 

equal the posterior distribution 𝑝 𝐙|𝐗, 𝛉𝑛𝑒𝑤 and there will be a non-zero 

KL divergence.

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝
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Analysis of EM

• Visualization in the space

of parameters

• The EM algorithm alternately 
 Computes a lower bound on the log-likelihood for the current 

parameters values 

 And then maximizes this bound to obtain the new parameter values.
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References and Further Reading

• More information about EM and MoG estimation is available 

in Chapter 9 of Bishop’s book (recommendable to read).

• Additional information
 A.P. Dempster, N.M. Laird, D.B. Rubin, „Maximum-Likelihood from incomplete 

data via EM algorithm”, In J. Royal Statistical Society, Series B. Vol 39, 1977

 J.A. Bilmes, “A Gentle Tutorial of the EM Algorithm and its Application to 

Parameter Estimation for Gaussian Mixture and Hidden Markov Models“, TR-

97-021, ICSI, U.C. Berkeley, CA,USA

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006

http://www.mmp.rwth-aachen.de/teaching/ml/dempster-em-jrss77.pdf
http://www.mmp.rwth-aachen.de/teaching/ml/bilmes-emgentletutorial-tr97.pdf

