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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Topics of This Lecture

• Recap: Mixtures of Gaussians and General EM
 Mixtures of Gaussians

 General EM

• Mixtures of Gaussians revisited
 General EM derivation

• The EM algorithm in general
 Generalized EM

 Relation to Variational inference
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Recap: Mixtures of Gaussians

• “Generative model”

p(xjµ) =

3X

j=1

¼jp(xjµj)
p(j) = ¼j

j

1
2

3

p(xjµ1)
p(xjµ2)

p(xjµ3)

Image source: C.M. Bishop, 2006Slide credit: Bernt Schiele
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• Write GMMs in terms of latent variables z

 Marginal distribution of x

• Advantage of this formulation
 We have represented the marginal distribution in terms of 

latent variables z.

 Since p(x) = z p(x, z), there is a corresponding latent variable zn
for each data point xn.

 We are now able to work with the joint distribution p(x, z) instead of 

the marginal distribution p(x).

 This will lead to significant simplifications…

Recap: GMMs as Latent Variable Models
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• MoG Sampling
 We can use ancestral sampling to generate random samples from a 

Gaussian mixture model.

1. Generate a value      from the marginal distribution p(z).

2. Generate a value      from the conditional distribution           .

Samples from the

joint p(x, z)
Samples from the

marginal p(x)
Evaluating the

responsibilities (znk)

Image source: C.M. Bishop, 2006

Recap: Sampling from a Gaussian Mixture
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Recap: Gaussian Mixtures Revisited

• Applying the latent variable view of EM

 Goal is to maximize the log-likelihood using the observed data X

 Corresponding graphical model:

 Suppose we are additionally given the values

of the latent variables Z.

 The corresponding graphical model for the

complete data now looks like this:

 Straightforward to marginalize…

Image source: C.M. Bishop, 2006
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Recap: Alternative View of EM

• In practice, however,…

 We are not given the complete data set {X,Z}, but only the 

incomplete data X. All we can compute about Z is the posterior 

distribution    .

 Since we cannot use the complete-data log-likelihood, we consider 

instead its expected value under the posterior distribution of the 

latent variables:

 This corresponds to the E-step of the EM algorithm.

 In the subsequent M-step, we then maximize the expectation to obtain 

the revised parameter set µnew.
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Recap: General EM Algorithm

• Algorithm
1. Choose an initial setting for the parameters 

2. E-step: Evaluate 

3. M-step: Evaluate           given by

where 

4. While not converged, let                      and return to step 2.
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Recap: MAP-EM

• Modification for MAP
 The EM algorithm can be adapted to find MAP solutions for models for 

which a prior    is defined over the parameters.

 Only changes needed:

2. E-step: Evaluate 

3. M-step: Evaluate           given by

 Suitable choices for the prior will remove the ML singularities!
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Recap: Monte Carlo EM

• EM procedure
 M-step: Maximize expectation of complete-data log-likelihood

 For more complex models, we may not be able to compute this 
analytically anymore…

• Idea
 Use sampling to approximate this integral by a finite sum over samples 

{Z(l)} drawn from the current estimate of the posterior

 This procedure is called the Monte Carlo EM algorithm. 
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Gaussian Mixtures Revisited

• Applying the latent variable view of EM

 Goal is to maximize the log-likelihood using the observed data X

 Corresponding graphical model:

 Suppose we are additionally given the values

of the latent variables Z.

 The corresponding graphical model for the

complete data now looks like this:

Image source: C.M. Bishop, 2006
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Topics of This Lecture

• Recap: Mixtures of Gaussians and General EM
 Mixtures of Gaussians

 General EM

• Mixtures of Gaussians revisited
 General EM derivation

• The EM algorithm in general
 Generalized EM

 Relation to Variational inference
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Gaussian Mixtures Revisited

• Maximize the likelihood

 For the complete-data set {X,Z}, the likelihood has the form

 Taking the logarithm, we obtain 

 Compared to the incomplete-data case, the order of the sum and 

logarithm has been interchanged.

 Much simpler solution to the ML problem.

 Maximization w.r.t. a mean or covariance is exactly as for a single 

Gaussian, except that it involves only the subset of data points that are 

“assigned” to that component 𝑧𝑛𝑘 = 1 .
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Gaussian Mixtures Revisited

• Maximization w.r.t. mixing coefficients

 More complex, since the ¼k are coupled by the summation constraint

 Solve with a Lagrange multiplier

 Solution (after a longer derivation):

 The complete-data log-likelihood can be maximized trivially in 

closed form.
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Gaussian Mixtures Revisited

• In practice, we don’t have values for the latent variables
 Consider the expectation w.r.t. the posterior distribution of the latent 

variables instead.

 The posterior distribution takes the form

and factorizes over n, so that the {zn} are independent under the 

posterior.

 Expected value of indicator variable znk under the posterior.

E[znk] =

P
znk

znk [¼kN (xnj¹k;§k)]
znk

P
znj

£
¼jN (xnj¹j ;§j)

¤znj

=
¼kN (xnj¹k;§k)PK

j=1 ¼jN (xnj¹j ;§j)
= °(znk)
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Gaussian Mixtures Revisited

• Continuing the estimation
 The expected value of the complete-data log-likelihood is therefore

• Putting everything together

 Start by choosing some initial values for 𝝁𝑜𝑙𝑑, 𝚺𝑜𝑙𝑑, and 𝝅𝑜𝑙𝑑.

 Use these to evaluate the responsibilities (the E-Step).

 Keep the responsibilities fixed and maximize the above for 𝝁𝑛𝑒𝑤, 𝚺𝑛𝑒𝑤, 

and 𝝅𝑛𝑒𝑤 (the M-Step).

 This leads to the familiar closed-form solutions for 𝝁𝑛𝑒𝑤, 𝚺𝑛𝑒𝑤, and 

𝝅𝑛𝑒𝑤.

 This is precisely the EM algorithm for Gaussian mixtures as 

derived before. But we can now also apply it to other distributions.

EZ[log p(X;Zj¹;§;¼)] =

NX

n=1

KX

k=1

°znk flog¼k + logN (xnj¹k;§k)g
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Topics of This Lecture

• Recap: Mixtures of Gaussians and General EM
 Mixtures of Gaussians

 General EM

• Mixtures of Gaussians revisited
 General EM derivation

• The EM algorithm in general
 Generalized EM

 Relation to Variational inference
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The EM Algorithm in General

• General formulation
 Given a probabilistic model with observed variables 𝐗, hidden variables 

𝐙 and parameters 𝛉.

 Our goal is to maximize the likelihood given by

 However, a direct optimization of 𝑝(𝐗|𝛉) is often difficult. Optimization 

of the complete-data log-likelihood 𝑝(𝐗, 𝐙|𝛉) is significantly easier.

𝑝 𝐗 𝜃 =

𝐙

𝑝(𝐗, 𝐙|𝛉)
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The EM Algorithm in General

• Decomposition
 Introduce a distribution 𝑞(𝐙) over the latent variables. For any choice 

of 𝑞(𝐙), the following decomposition holds 

 where

 (Proof on extra slide set)

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝

ℒ 𝑞, 𝛉 =

𝐙

𝑞 𝐙 log
𝑝 𝐗, 𝐙|𝛉

𝑞(𝐙)

𝐾𝐿 𝑞 ∥ 𝑝 = −

𝐙

𝑞 𝒁 log
𝑝 𝐙|𝐗, 𝛉

𝑞 𝐙
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Analysis of this Result

• Decomposition
 For any choice of 𝑞(𝐙), the following decomposition holds

• Notes (1)
 ℒ 𝑞, 𝛉 is a functional of the distribution 𝑞 𝐙 and a function of the 

parameters 𝛉.

 A functional is an operator that takes as input a function and outputs 

again a function.

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝

ℒ 𝑞, 𝛉 =

𝐙

𝑞 𝐙 log
𝑝 𝐗, 𝐙|𝛉

𝑞(𝐙)

𝐾𝐿 𝑞 ∥ 𝑝 = −

𝐙

𝑞 𝒁 log
𝑝 𝐙|𝐗, 𝛉

𝑞 𝐙
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Analysis of this Result

• Decomposition
 For any choice of 𝑞(𝐙), the following decomposition holds

• Notes (2)
 𝐾𝐿 𝑞 ∥ 𝑝 is the Kullback-Leibler divergence between the distribution 

𝑞 𝐙 and the posterior distribution 𝑝 𝐙|𝐗, 𝛉 .

 The KL divergence satisfies 𝐾𝐿 𝑞 ∥ 𝑝 ≥ 0 with = 0 iff 𝑞 𝒁 = 𝑝 𝐙|𝐗, 𝛉 .

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝

ℒ 𝑞, 𝛉 =

𝐙

𝑞 𝐙 log
𝑝 𝐗, 𝐙|𝛉

𝑞(𝐙)

𝐾𝐿 𝑞 ∥ 𝑝 = −

𝐙

𝑞 𝒁 log
𝑝 𝐙|𝐗, 𝛉

𝑞 𝐙
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Analysis of this Result

• Decomposition
 For any choice of 𝑞(𝐙), the following decomposition holds

• Notes (3)
 It therefore follows that ℒ 𝑞, 𝛉 ≤ log 𝑝 𝐗 𝜃 .

 In other words: ℒ 𝑞, 𝛉 is a lower bound on log 𝑝 𝐗 𝜃 .

 We can now use this result in order to analyze how EM works…

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝

ℒ 𝑞, 𝛉 =

𝐙

𝑞 𝐙 log
𝑝 𝐗, 𝐙|𝛉

𝑞(𝐙)

𝐾𝐿 𝑞 ∥ 𝑝 = −

𝐙

𝑞 𝒁 log
𝑝 𝐙|𝐗, 𝛉

𝑞 𝐙



29
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 13 – Approximate Inference II

Analysis of EM

• Decomposition

• Interpretation
 ℒ 𝑞, 𝛉 is a lower bound on log 𝑝 𝐗 𝛉 .

 The approximation comes from the fact that we use an approximative

distribution 𝑞 𝒁 = 𝑝 𝐙|𝐗, 𝛉𝑜𝑙𝑑 Instead of the (unknown) real posterior.

 The KL divergence measures the difference between the approximative

distribution 𝑞 𝒁 and the real posterior 𝑝 𝐙|𝐗, 𝛉 . 

 In every EM iteration, we try to make this difference smaller.

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝
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Analysis of EM

• Decomposition

• E-Step

 Suppose the current value of the parameter vector is 𝛉𝑜𝑙𝑑.

 The E-step maximizes the lower bound ℒ 𝑞, 𝛉 w.r.t. 𝑞 𝒁 while holding 

𝛉𝑜𝑙𝑑 fixed.

 The solution to this maximization problem of log 𝑝 𝐗 𝛉𝑜𝑙𝑑 will occur 

when the KL divergence vanishes, i.e. when 𝑞 𝒁 = 𝑝 𝐙|𝐗, 𝛉𝑜𝑙𝑑 .

 In this case, the lower bound equals the log-likelihood.

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝
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Analysis of EM

• Decomposition

• M-Step
 In the M-step, the distribution 𝑞 𝒁 is held fixed and the lower bound 

ℒ 𝑞, 𝛉 is maximized w.r.t. 𝛉 to give some new value 𝛉𝑛𝑒𝑤.

 This causes the lower bound ℒ to increase (unless it is already at 

maximum), which will cause the log-likelihood to increase.

 Because 𝑞 𝒁 is determined using the old parameter values, it will not 

equal the posterior distribution 𝑝 𝐙|𝐗, 𝛉𝑛𝑒𝑤 and there will be a non-zero 

KL divergence.

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝
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Analysis of EM

• Visualization in the space

of parameters

• The EM algorithm alternately 
 Computes a lower bound on the log-likelihood for the current 

parameters values 

 And then maximizes this bound to obtain the new parameter values.
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97-021, ICSI, U.C. Berkeley, CA,USA

Christopher M. Bishop

Pattern Recognition and Machine Learning

Springer, 2006

http://www.mmp.rwth-aachen.de/teaching/ml/dempster-em-jrss77.pdf
http://www.mmp.rwth-aachen.de/teaching/ml/bilmes-emgentletutorial-tr97.pdf

