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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Topics of This Lecture

• Recap: General EM

• Bayesian Estimation Revisited
 Conjugate priors

 Probability distributions

• Bayesian Mixture Models
 Towards a full Bayesian treatment

 Dirichlet priors

 Finite mixtures

 Infinite mixtures

• Approximate Inference for Bayesian Mixture Models
 Gibbs Sampler

4
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 16 – Latent Variable Models III

Recap: General EM Algorithm

• Algorithm
1. Choose an initial setting for the parameters 

2. E-step: Evaluate 

3. M-step: Evaluate           given by

where 

4. While not converged, let                        and return to step 2.
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Recap: The EM Algorithm in General

• Decomposition
 Introduce a distribution 𝑞(𝐙) over the latent variables. For any choice 

of 𝑞(𝐙), the following decomposition holds 

 where

 𝐾𝐿 𝑞 ∥ 𝑝 is the Kullback-Leibler divergence between the distribution 

𝑞 𝐙 and the posterior distribution 𝑝 𝐙|𝐗, 𝛉 .

 ℒ 𝑞, 𝛉 is a functional of the distribution 𝑞 𝐙 and a function of the 

parameters 𝛉. Since KL ≥ 0, ℒ 𝑞, 𝛉 is a lower bound on log 𝑝 𝐗 𝜃 .

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝

ℒ 𝑞, 𝛉 = 

𝐙

𝑞 𝐙 log
𝑝 𝐗, 𝐙|𝛉

𝑞(𝐙)

𝐾𝐿 𝑞 ∥ 𝑝 = −

𝐙

𝑞 𝒁 log
𝑝 𝐙|𝐗, 𝛉

𝑞 𝐙
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Recap: Analysis of EM

• Decomposition

• Interpretation
 ℒ 𝑞, 𝛉 is a lower bound on log 𝑝 𝐗 𝛉 .

 The approximation comes from the fact that we use an approximative

distribution 𝑞 𝒁 = 𝑝 𝐙|𝐗, 𝛉𝑜𝑙𝑑 Instead of the (unknown) real posterior.

 The KL divergence measures the difference between the approximative

distribution 𝑞 𝒁 and the real posterior 𝑝 𝐙|𝐗, 𝛉 . 

 In every EM iteration, we try to make this difference smaller.

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝

http://www.vision.rwth-aachen.de/
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Recap: Analysis of EM

• Visualization in the space

of parameters

• The EM algorithm alternately 
 Computes a lower bound on the log-likelihood for the current 

parameters values 

 And then maximizes this bound to obtain the new parameter values.
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Topics of This Lecture

• Recap: General EM

• Bayesian Estimation Revisited
 Conjugate priors

 Probability distributions

• Bayesian Mixture Models
 Towards a full Bayesian treatment

 Dirichlet priors

 Finite mixtures

 Infinite mixtures

• Approximate Inference for Bayesian Mixture Models
 Gibbs Sampler
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Motivation

• Recall: Bayesian estimation

 So far, we have only done this for Gaussian distributions, where the 

integrals could be solved analytically.

 Now, let’s also examine other distributions…

Image created with Tagxedo.com
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Conjugate Priors

• Problem: How to evaluate the integrals?
 We will see that if likelihood and prior have the same functional form 

c¢f(x), then the analysis will be greatly simplified and the integrals will 
be solvable in closed form.

 Such an algebraically convenient choice is called a conjugate prior. 
Whenever possible, we should use it.

 To do this, we need to know for each probability distribution what is its 
conjugate prior.  Topic of this lecture.

• What to do when we cannot use the conjugate prior?
 Use approximate inference methods. 
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The Multinomial Distribution

• Multinomial Distribution
 Joint distribution over m1,…,mK conditioned on ¹ and N

with the normalization coefficient

 Properties

Slide adapted from C. Bishop
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Bayesian Multinomial

• Conjugate prior for the Multinomial

 Introduce a family of prior distributions for the parameters {¹k} of the 

Multinomial.

 The conjugate prior is given by

with the constraints



3

13
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 16 – Latent Variable Models III

The Dirichlet Distribution

• Dirichlet Distribution
 Multivariate generalization of the Beta distribution

• Properties
 Conjugate prior for the Multinomial.

 The Dirichlet distribution over K variables

is confined to a K-1 dimensional simplex.

 Expectations:

Image source: C. Bishop, 2006

E[¹k] =
®k

®0

var[¹k] =
®k(®0 ¡ ®k)

®2
0(®0 + 1)

cov[¹j¹k] = ¡ ®j®k

®2
0(®0 + 1)

with

Slide adapted from C. Bishop
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• One-dimensional case

 Mean ¹

 Variance ¾2

• Multi-dimensional case

 Mean ¹

 Covariance 𝚺

N (xj¹; ¾2) =
1p
2¼¾

exp

½
¡(x¡ ¹)2

2¾2

¾

N(xj¹;§) =
1

(2¼)D=2j§j1=2 exp

½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾

Image source: C.M. Bishop, 2006

Recap: The Gaussian Distribution
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• Univariate conjugate priors

 ¾2 known, ¹ unknown: p(¹) Gaussian

 ¹ is known, ¸ unknown: p(¸) Gamma

 both ¹ and ¸ unknown: p(¹,¸) Gaussian-Gamma

Slide adapted from C. Bishop

Bayesian Inference for the Gaussian
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Bayesian Inference for the Gaussian

• Multivariate conjugate priors

 ¹ unknown, ¤ known: p(¹) Gaussian.

 ¤ unknown, ¹ known: p(¤) Wishart,

 ¤ and ¹ unknown: p(¹,¤) Gaussian-Wishart,

Slide adapted from C. Bishop
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Topics of This Lecture

• Recap: General EM

• Bayesian Estimation Revisited
 Conjugate priors

 Probability distributions

• Bayesian Mixture Models
 Towards a full Bayesian treatment

 Dirichlet priors

 Finite mixtures

 Infinite mixtures

• Approximate Inference for Bayesian Mixture Models
 Gibbs Sampler
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Towards a Full Bayesian Treatment…

• Mixture models

 We have discussed mixture distributions with K components

 So far, we have derived the ML estimates  EM

 Introduced a prior p(µ) over parameters  MAP-EM

 One question remains open: how to set K ?

 Let’s also set a prior on the number of components…
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Bayesian Mixture Models

• Let’s be Bayesian about mixture models
 Place priors over our parameters

 Again, introduce variable zn as indicator

which component data point xn belongs to.

 This is similar to the graphical model we’ve

used before, but now the ¼ and µk = (¹k,𝚺𝑘)
are also treated as random variables.

 What would be suitable priors for them?

Slide inspired by Yee Whye Teh
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Bayesian Mixture Models

• Let’s be Bayesian about mixture models
 Place priors over our parameters

 Again, introduce variable zn as indicator

which component data point xn belongs to.

 Introduce conjugate priors over parameters

Slide inspired by Yee Whye Teh

“Normal – Inverse Wishart”
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Bayesian Mixture Models

• Full Bayesian Treatment
 Given a dataset, we are interested in the cluster assignments

where the likelihood is obtained by marginalizing over the parameters µ

• The posterior over assignments is intractable! 
 Denominator requires summing over all possible partitions of the data 

into K groups!

 Need efficient approximate inference methods to solve this...
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Bayesian Mixture Models

• Let’s examine this model more closely 
 Role of Dirichlet priors?

 How can we perform efficient inference?

 What happens when K goes to infinity?

• This will lead us to an interesting class of models…
 Dirichlet Processes

 Possible to express infinite mixture distributions with their help

 Clustering that automatically adapts the number of clusters to the data 

and dynamically creates new clusters on-the-fly.
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Slide credit: Zoubin Gharamani

Samples drawn 

from DP mixture

 More structure

appears as more

points are drawn

Sneak Preview: Dirichlet Process MoG
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Recap: The Dirichlet Distribution

• Dirichlet Distribution
 Conjugate prior for the Categorical and the Multinomial distrib.

 Symmetric version (with concentration parameter ®)

 Properties (symmetric version)

Image source: C. Bishop, 2006

E[¹k] =
®k

®0

var[¹k] =
®k(®0 ¡ ®k)

®2
0(®0 + 1)

cov[¹j¹k] = ¡ ®j®k

®2
0(®0 + 1)

with

=
1

K

=
K ¡ 1

K2(® + 1)

= ¡ 1

K2(® + 1)
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Dirichlet Samples

• Effect of concentration parameter ®

 Controls sparsity of the resulting samples

Slide credit: Erik Sudderth Image source: Erik Sudderth
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Mixture Model with Dirichlet Priors

• Finite mixture of K components

 The distribution of latent variables zn given ¼ is multinomial

 Assume mixing proportions have a given symmetric conjugate Dirichlet

prior

Slide adapted from Zoubin Gharamani Image source: Zoubin Gharamani
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Mixture Model with Dirichlet Priors

• Integrating out the mixing proportions ¼:

 This is again a Dirichlet distribution (reason for conjugate priors)

Completed Dirichlet form  integrates to 1
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Mixture Models with Dirichlet Priors

• Integrating out the mixing proportions ¼ (cont’d)

• Conditional probabilities

 Let’s examine the conditional of zn given all other variables

where z-n denotes all indizes except n.

Slide adapted from Zoubin Gharamani
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Mixture Models with Dirichlet Priors

• Conditional probabilities
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Mixture Models with Dirichlet Priors

• Conditional probabilities



6

31
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 16 – Latent Variable Models III

Finite Dirichlet Mixture Models

• Conditional probabilities: Finite K

• This is a very interesting result. Why?
 We directly get a numerical probability, no distribution.

 The probability of joining a cluster mainly depends on the number of 
existing entries in a cluster.

 The more populous a class is, the more likely it is to be joined!

 In addition, we have a base probability of also joining as-yet empty 
clusters.

 This result can be directly used in Gibbs Sampling…
(see later derivation)

Slide adapted from Zoubin Gharamani

32
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 16 – Latent Variable Models III

Infinite Dirichlet Mixture Models

• Conditional probabilities: Finite K

• Conditional probabilities: Infinite K

 Taking the limit as K !1 yields the conditionals

 Left-over mass ® countably infinite number of indicator settings

Slide adapted from Zoubin Gharamani

if k represented

if all k not represented
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Discussion

• Infinite Mixture Models
 What we have just seen is a first example of a Dirichlet Process.

 DPs allow us to work with models that have an infinite number of 
components.

 This will raise a number of issues
 How to represent infinitely many parameters?

 How to deal with permutations of the class labels?

 How to control the effective size of the model?

 How to perform efficient inference?

 More background needed here!

 DPs are a very interesting class of models, but would take us too far 
here. 

 If you’re interested in learning more about them, take a look at the 
Advanced ML slides from Winter 2012.
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Topics of This Lecture

• Recap: General EM

• Bayesian Estimation Revisited
 Conjugate priors

 Probability distributions

• Bayesian Mixture Models
 Towards a full Bayesian treatment

 Dirichlet priors

 Finite mixtures

 Infinite mixtures

• Approximate Inference for Bayesian Mixture Models
 Gibbs Sampler
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Gibbs Sampling for Finite Mixtures

• We need approximate inference here
 Gibbs Sampling: Conditionals are simple to compute

Slide adapted from Yee Whye Teh Image source: Yee Whye Teh
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Recap: Gibbs Sampling

• Approach
 MCMC-algorithm that is simple and widely applicable.

 May be seen as a special case of Metropolis-Hastings.

• Idea
 Sample variable-wise: replace zi by a value drawn from the distribution 

p(zi|z\i).
 This means we update one coordinate at a time.

 Repeat procedure either by cycling through all variables or by choosing 
the next variable.

• Properties
 The algorithm always accepts!

 Completely parameter free.

 Can also be applied to subsets of variables.

Slide adapted from Bernt Schiele
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• Standard finite mixture sampler

 Given mixture weights ¼(t-1) and cluster parameters 

from the previous iteration, sample new parameters as follows

1. Independently assign each point xn to one of the K clusters by 

sampling the variables zn from the multinomial distributions

2. Sample new mixture weights from the Dirichlet distribution

3. For each of the K clusters, independently sample new parameters 

from the conditional of the assigned observations

Slide adapted from Erik Sudderth

Gibbs Sampling for Finite Mixtures
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Standard Sampler: 2 Iterations

Slide credit: Erik Sudderth Image source: Erik Sudderth
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Standard Sampler: 10 Iterations

Image source: Erik SudderthSlide credit: Erik Sudderth
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Standard Sampler: 10 Iterations

Image source: Erik SudderthSlide credit: Erik Sudderth
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• We need approximate inference here
 Gibbs Sampling: Conditionals are simple to compute

• However, this will be rather inefficient…
 In each iteration, algorithm can only change

the assignment for individual data points.

 There are often groups of data points that are 

associated with high probability to the same

component.  Unlikely that group is moved.

 Better performance by collapsed Gibbs sampling

which integrates out the parameters ¼, ¹, 𝚺.

Slide adapted from Yee Whye Teh Image source: Yee Whye Teh

Gibbs Sampling for Finite Mixtures
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Collapsed Finite Bayesian Mixture

• More efficient algorithm
 Conjugate priors allow analytic integration of some parameters

 Resulting sampler operates on reduced space of cluster assignments 

(implicitly considers all possible cluster shapes)

• Procedure
 The model implies the factorization

 Derive 

Slide adapted from Erik Sudderth Image source: Yee Whye Teh
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• Integrating out the mixing proportions ¼

• Conditional probabilities

 Examine the conditional of zn given all other variables z-n

 The more populous a class is, the more likely it is to be joined!

Slide adapted from Zoubin Gharamani

Recap: Mixture Models with Dirichlet Priors
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Collapsed Finite Bayesian Mixture

• More efficient algorithm
 Conjugate priors allow analytic integration of some parameters

 Resulting sampler operates on reduced space of cluster assignments 

(implicitly considers all possible cluster shapes)

• Procedure
 The model implies the factorization

 Derive 

 Conjugate prior, Normal - Inverse Wishart

Slide adapted from Erik Sudderth Image source: Yee Whye Teh
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• Algorithm

1. Sample a random permutation ¿ (¢) of the integers {1,…,N}.

2. Set z = z(t-1). For each i 2 {¿(1),…,¿(N)}, sequentially resample 

zi as follows

a) For each of the K clusters, determine the predictive likelihood 

(this can be computed from cached sufficient statistics)

b) Sample a new assignment zn from the multinomial distribution

c) Update cached sufficient statistics to reflect assignment znk.

3. Set z(t) = z. Optionally, mixture parameters may be sampled via 

steps 2-3 of the standard finite mixture sampler.

Slide adapted from Erik Sudderth

Collapsed (Rao-Blackwellized) Finite Mixture Sampler
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Standard vs. Collapsed Samplers

 Collapsed sampler converges much more quickly.
 Theorem (Rao-Blackwell)

“Analytical marginalization of some variables from a joint distribution 

always reduces the variance of later estimates.”

Slide credit: Erik Sudderth Image source: Erik Sudderth
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Discussion

• Collapsed Gibbs sampling
 Integrates out the parameters ¼, ¹, 𝚺.

• Properties
 Can change all assignments in each iteration.

 Able to move entire groups between clusters.

 Faster convergence, less likely to get stuck.

Image source: Yee Whye Teh
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References and Further Reading

• Unfortunately, there are currently no good introductory 
textbooks on the Dirichlet Process. We therefore recommend 
a number of tutorial papers on their different aspects. 

 One of the best available general introductions
 E.B. Sudderth, “Graphical Models for Visual Object Recognition and 

Tracking“, PhD thesis, Chapter 2, Section 2.5, 2006.

 A gentle introductory tutorial (recommended 1st read)
 S.J. Gershman, D.M. Blei, „A Tutorial on Bayesian Nonparametric Methods”, 

In Journal of Mathematical Psychology, Vol. 56, 2012.

 Good overview of MCMC methods for DPMMs
 R. Neal, Markov Chain Sampling Methods for Dirichlet Process Mixture 

Models. Journal of Computational and Graphical Statistics, Vol. 9(2), p. 249-
265, 2000. 

http://www.cs.brown.edu/~sudderth/papers/sudderthPhD.pdf
http://www.princeton.edu/~sjgershm/GershmanBlei12.pdf
http://www.stat.purdue.edu/~rdutta/24.PDF

