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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Topics of This Lecture

• Recap: General EM

• Bayesian Estimation Revisited
 Conjugate priors

 Probability distributions

• Bayesian Mixture Models
 Towards a full Bayesian treatment

 Dirichlet priors

 Finite mixtures

 Infinite mixtures

• Approximate Inference for Bayesian Mixture Models
 Gibbs Sampler
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Recap: General EM Algorithm

• Algorithm
1. Choose an initial setting for the parameters 

2. E-step: Evaluate 

3. M-step: Evaluate           given by

where 

4. While not converged, let                        and return to step 2.
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Recap: The EM Algorithm in General

• Decomposition
 Introduce a distribution 𝑞(𝐙) over the latent variables. For any choice 

of 𝑞(𝐙), the following decomposition holds 

 where

 𝐾𝐿 𝑞 ∥ 𝑝 is the Kullback-Leibler divergence between the distribution 

𝑞 𝐙 and the posterior distribution 𝑝 𝐙|𝐗, 𝛉 .

 ℒ 𝑞, 𝛉 is a functional of the distribution 𝑞 𝐙 and a function of the 

parameters 𝛉. Since KL ≥ 0, ℒ 𝑞, 𝛉 is a lower bound on log 𝑝 𝐗 𝜃 .

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝

ℒ 𝑞, 𝛉 = ෍

𝐙

𝑞 𝐙 log
𝑝 𝐗, 𝐙|𝛉

𝑞(𝐙)

𝐾𝐿 𝑞 ∥ 𝑝 = −෍

𝐙

𝑞 𝒁 log
𝑝 𝐙|𝐗, 𝛉

𝑞 𝐙
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Recap: Analysis of EM

• Decomposition

• Interpretation
 ℒ 𝑞, 𝛉 is a lower bound on log 𝑝 𝐗 𝛉 .

 The approximation comes from the fact that we use an approximative

distribution 𝑞 𝒁 = 𝑝 𝐙|𝐗, 𝛉𝑜𝑙𝑑 Instead of the (unknown) real posterior.

 The KL divergence measures the difference between the approximative

distribution 𝑞 𝒁 and the real posterior 𝑝 𝐙|𝐗, 𝛉 . 

 In every EM iteration, we try to make this difference smaller.

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝

http://www.vision.rwth-aachen.de/


2

7
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 16 – Latent Variable Models III

Recap: Analysis of EM

• Visualization in the space

of parameters

• The EM algorithm alternately 
 Computes a lower bound on the log-likelihood for the current 

parameters values 

 And then maximizes this bound to obtain the new parameter values.
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Topics of This Lecture

• Recap: General EM

• Bayesian Estimation Revisited
 Conjugate priors

 Probability distributions

• Bayesian Mixture Models
 Towards a full Bayesian treatment

 Dirichlet priors

 Finite mixtures

 Infinite mixtures

• Approximate Inference for Bayesian Mixture Models
 Gibbs Sampler
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Motivation

• Recall: Bayesian estimation

 So far, we have only done this for Gaussian distributions, where the 

integrals could be solved analytically.

 Now, let’s also examine other distributions…

Image created with Tagxedo.com
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Conjugate Priors

• Problem: How to evaluate the integrals?
 We will see that if likelihood and prior have the same functional form 

c¢f(x), then the analysis will be greatly simplified and the integrals will 
be solvable in closed form.

 Such an algebraically convenient choice is called a conjugate prior. 
Whenever possible, we should use it.

 To do this, we need to know for each probability distribution what is its 
conjugate prior.  Topic of this lecture.

• What to do when we cannot use the conjugate prior?
 Use approximate inference methods. 
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The Multinomial Distribution

• Multinomial Distribution
 Joint distribution over m1,…,mK conditioned on ¹ and N

with the normalization coefficient

 Properties

Slide adapted from C. Bishop
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Bayesian Multinomial

• Conjugate prior for the Multinomial

 Introduce a family of prior distributions for the parameters {¹k} of the 

Multinomial.

 The conjugate prior is given by

with the constraints
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The Dirichlet Distribution

• Dirichlet Distribution
 Multivariate generalization of the Beta distribution

• Properties
 Conjugate prior for the Multinomial.

 The Dirichlet distribution over K variables

is confined to a K-1 dimensional simplex.

 Expectations:

Image source: C. Bishop, 2006

E[¹k] =
®k

®0

var[¹k] =
®k(®0 ¡ ®k)

®2
0(®0 + 1)

cov[¹j¹k] = ¡ ®j®k

®2
0(®0 + 1)

with

Slide adapted from C. Bishop
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• One-dimensional case

 Mean ¹

 Variance ¾2

• Multi-dimensional case

 Mean ¹

 Covariance 𝚺

N (xj¹; ¾2) =
1p
2¼¾

exp

½
¡(x¡ ¹)2

2¾2

¾

N(xj¹;§) =
1

(2¼)D=2j§j1=2 exp

½
¡1

2
(x¡¹)T§¡1(x¡¹)

¾

Image source: C.M. Bishop, 2006

Recap: The Gaussian Distribution
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• Univariate conjugate priors

 ¾2 known, ¹ unknown: p(¹) Gaussian

 ¹ is known, ¸ unknown: p(¸) Gamma

 both ¹ and ¸ unknown: p(¹,¸) Gaussian-Gamma

Slide adapted from C. Bishop

Bayesian Inference for the Gaussian
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Bayesian Inference for the Gaussian

• Multivariate conjugate priors

 ¹ unknown, ¤ known: p(¹) Gaussian.

 ¤ unknown, ¹ known: p(¤) Wishart,

 ¤ and ¹ unknown: p(¹,¤) Gaussian-Wishart,

Slide adapted from C. Bishop
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Topics of This Lecture

• Recap: General EM

• Bayesian Estimation Revisited
 Conjugate priors

 Probability distributions

• Bayesian Mixture Models
 Towards a full Bayesian treatment

 Dirichlet priors

 Finite mixtures

 Infinite mixtures

• Approximate Inference for Bayesian Mixture Models
 Gibbs Sampler
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Towards a Full Bayesian Treatment…

• Mixture models

 We have discussed mixture distributions with K components

 So far, we have derived the ML estimates  EM

 Introduced a prior p(µ) over parameters  MAP-EM

 One question remains open: how to set K ?

 Let’s also set a prior on the number of components…
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Bayesian Mixture Models

• Let’s be Bayesian about mixture models
 Place priors over our parameters

 Again, introduce variable zn as indicator

which component data point xn belongs to.

 This is similar to the graphical model we’ve

used before, but now the ¼ and µk = (¹k,𝚺𝑘)
are also treated as random variables.

 What would be suitable priors for them?

Slide inspired by Yee Whye Teh
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Bayesian Mixture Models

• Let’s be Bayesian about mixture models
 Place priors over our parameters

 Again, introduce variable zn as indicator

which component data point xn belongs to.

 Introduce conjugate priors over parameters

Slide inspired by Yee Whye Teh

“Normal – Inverse Wishart”
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Bayesian Mixture Models

• Full Bayesian Treatment
 Given a dataset, we are interested in the cluster assignments

where the likelihood is obtained by marginalizing over the parameters µ

• The posterior over assignments is intractable! 
 Denominator requires summing over all possible partitions of the data 

into K groups!

 Need efficient approximate inference methods to solve this...
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Bayesian Mixture Models

• Let’s examine this model more closely 
 Role of Dirichlet priors?

 How can we perform efficient inference?

 What happens when K goes to infinity?

• This will lead us to an interesting class of models…
 Dirichlet Processes

 Possible to express infinite mixture distributions with their help

 Clustering that automatically adapts the number of clusters to the data 

and dynamically creates new clusters on-the-fly.

23
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 16 – Latent Variable Models III

Slide credit: Zoubin Gharamani

Samples drawn 

from DP mixture

 More structure

appears as more

points are drawn

Sneak Preview: Dirichlet Process MoG
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Recap: The Dirichlet Distribution

• Dirichlet Distribution
 Conjugate prior for the Categorical and the Multinomial distrib.

 Symmetric version (with concentration parameter ®)

 Properties (symmetric version)

Image source: C. Bishop, 2006

E[¹k] =
®k

®0

var[¹k] =
®k(®0 ¡ ®k)

®2
0(®0 + 1)

cov[¹j¹k] = ¡ ®j®k

®2
0(®0 + 1)

with

=
1

K

=
K ¡ 1

K2(® + 1)

= ¡ 1

K2(® + 1)
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Dirichlet Samples

• Effect of concentration parameter ®

 Controls sparsity of the resulting samples

Slide credit: Erik Sudderth Image source: Erik Sudderth
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Mixture Model with Dirichlet Priors

• Finite mixture of K components

 The distribution of latent variables zn given ¼ is multinomial

 Assume mixing proportions have a given symmetric conjugate Dirichlet

prior

Slide adapted from Zoubin Gharamani Image source: Zoubin Gharamani
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Mixture Model with Dirichlet Priors

• Integrating out the mixing proportions ¼:

 This is again a Dirichlet distribution (reason for conjugate priors)

Completed Dirichlet form  integrates to 1
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Mixture Models with Dirichlet Priors

• Integrating out the mixing proportions ¼ (cont’d)

• Conditional probabilities

 Let’s examine the conditional of zn given all other variables

where z-n denotes all indizes except n.

Slide adapted from Zoubin Gharamani
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Mixture Models with Dirichlet Priors

• Conditional probabilities
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Mixture Models with Dirichlet Priors

• Conditional probabilities
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Finite Dirichlet Mixture Models

• Conditional probabilities: Finite K

• This is a very interesting result. Why?
 We directly get a numerical probability, no distribution.

 The probability of joining a cluster mainly depends on the number of 
existing entries in a cluster.

 The more populous a class is, the more likely it is to be joined!

 In addition, we have a base probability of also joining as-yet empty 
clusters.

 This result can be directly used in Gibbs Sampling…
(see later derivation)

Slide adapted from Zoubin Gharamani
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Infinite Dirichlet Mixture Models

• Conditional probabilities: Finite K

• Conditional probabilities: Infinite K

 Taking the limit as K !1 yields the conditionals

 Left-over mass ® countably infinite number of indicator settings

Slide adapted from Zoubin Gharamani

if k represented

if all k not represented
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Discussion

• Infinite Mixture Models
 What we have just seen is a first example of a Dirichlet Process.

 DPs allow us to work with models that have an infinite number of 
components.

 This will raise a number of issues
 How to represent infinitely many parameters?

 How to deal with permutations of the class labels?

 How to control the effective size of the model?

 How to perform efficient inference?

 More background needed here!

 DPs are a very interesting class of models, but would take us too far 
here. 

 If you’re interested in learning more about them, take a look at the 
Advanced ML slides from Winter 2012.

34
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 16 – Latent Variable Models III

Topics of This Lecture

• Recap: General EM

• Bayesian Estimation Revisited
 Conjugate priors

 Probability distributions

• Bayesian Mixture Models
 Towards a full Bayesian treatment

 Dirichlet priors

 Finite mixtures

 Infinite mixtures

• Approximate Inference for Bayesian Mixture Models
 Gibbs Sampler
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Gibbs Sampling for Finite Mixtures

• We need approximate inference here
 Gibbs Sampling: Conditionals are simple to compute

Slide adapted from Yee Whye Teh Image source: Yee Whye Teh
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Recap: Gibbs Sampling

• Approach
 MCMC-algorithm that is simple and widely applicable.

 May be seen as a special case of Metropolis-Hastings.

• Idea
 Sample variable-wise: replace zi by a value drawn from the distribution 

p(zi|z\i).
 This means we update one coordinate at a time.

 Repeat procedure either by cycling through all variables or by choosing 
the next variable.

• Properties
 The algorithm always accepts!

 Completely parameter free.

 Can also be applied to subsets of variables.

Slide adapted from Bernt Schiele
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• Standard finite mixture sampler

 Given mixture weights ¼(t-1) and cluster parameters 

from the previous iteration, sample new parameters as follows

1. Independently assign each point xn to one of the K clusters by 

sampling the variables zn from the multinomial distributions

2. Sample new mixture weights from the Dirichlet distribution

3. For each of the K clusters, independently sample new parameters 

from the conditional of the assigned observations

Slide adapted from Erik Sudderth

Gibbs Sampling for Finite Mixtures
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Standard Sampler: 2 Iterations

Slide credit: Erik Sudderth Image source: Erik Sudderth
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Standard Sampler: 10 Iterations

Image source: Erik SudderthSlide credit: Erik Sudderth
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Standard Sampler: 10 Iterations

Image source: Erik SudderthSlide credit: Erik Sudderth
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• We need approximate inference here
 Gibbs Sampling: Conditionals are simple to compute

• However, this will be rather inefficient…
 In each iteration, algorithm can only change

the assignment for individual data points.

 There are often groups of data points that are 

associated with high probability to the same

component.  Unlikely that group is moved.

 Better performance by collapsed Gibbs sampling

which integrates out the parameters ¼, ¹, 𝚺.

Slide adapted from Yee Whye Teh Image source: Yee Whye Teh

Gibbs Sampling for Finite Mixtures
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Collapsed Finite Bayesian Mixture

• More efficient algorithm
 Conjugate priors allow analytic integration of some parameters

 Resulting sampler operates on reduced space of cluster assignments 

(implicitly considers all possible cluster shapes)

• Procedure
 The model implies the factorization

 Derive 

Slide adapted from Erik Sudderth Image source: Yee Whye Teh
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• Integrating out the mixing proportions ¼

• Conditional probabilities

 Examine the conditional of zn given all other variables z-n

 The more populous a class is, the more likely it is to be joined!

Slide adapted from Zoubin Gharamani

Recap: Mixture Models with Dirichlet Priors
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Collapsed Finite Bayesian Mixture

• More efficient algorithm
 Conjugate priors allow analytic integration of some parameters

 Resulting sampler operates on reduced space of cluster assignments 

(implicitly considers all possible cluster shapes)

• Procedure
 The model implies the factorization

 Derive 

 Conjugate prior, Normal - Inverse Wishart

Slide adapted from Erik Sudderth Image source: Yee Whye Teh
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• Algorithm

1. Sample a random permutation ¿ (¢) of the integers {1,…,N}.

2. Set z = z(t-1). For each i 2 {¿(1),…,¿(N)}, sequentially resample 

zi as follows

a) For each of the K clusters, determine the predictive likelihood 

(this can be computed from cached sufficient statistics)

b) Sample a new assignment zn from the multinomial distribution

c) Update cached sufficient statistics to reflect assignment znk.

3. Set z(t) = z. Optionally, mixture parameters may be sampled via 

steps 2-3 of the standard finite mixture sampler.

Slide adapted from Erik Sudderth

Collapsed (Rao-Blackwellized) Finite Mixture Sampler
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Standard vs. Collapsed Samplers

 Collapsed sampler converges much more quickly.
 Theorem (Rao-Blackwell)

“Analytical marginalization of some variables from a joint distribution 

always reduces the variance of later estimates.”

Slide credit: Erik Sudderth Image source: Erik Sudderth
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Discussion

• Collapsed Gibbs sampling
 Integrates out the parameters ¼, ¹, 𝚺.

• Properties
 Can change all assignments in each iteration.

 Able to move entire groups between clusters.

 Faster convergence, less likely to get stuck.

Image source: Yee Whye Teh
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References and Further Reading

• Unfortunately, there are currently no good introductory 
textbooks on the Dirichlet Process. We therefore recommend 
a number of tutorial papers on their different aspects. 

 One of the best available general introductions
 E.B. Sudderth, “Graphical Models for Visual Object Recognition and 

Tracking“, PhD thesis, Chapter 2, Section 2.5, 2006.

 A gentle introductory tutorial (recommended 1st read)
 S.J. Gershman, D.M. Blei, „A Tutorial on Bayesian Nonparametric Methods”, 

In Journal of Mathematical Psychology, Vol. 56, 2012.

 Good overview of MCMC methods for DPMMs
 R. Neal, Markov Chain Sampling Methods for Dirichlet Process Mixture 

Models. Journal of Computational and Graphical Statistics, Vol. 9(2), p. 249-
265, 2000. 

http://www.cs.brown.edu/~sudderth/papers/sudderthPhD.pdf
http://www.princeton.edu/~sjgershm/GershmanBlei12.pdf
http://www.stat.purdue.edu/~rdutta/24.PDF

