Advanced Machine Learning Summer 2019

Part 17 – Generative Adversarial Networks 26.06.2019

Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

Course Outline

- Regression Techniques
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
- Deep Reinforcement Learning
- Probabilistic Graphical Models
 - Bayesian Networks
 - Markov Random Fields
 - Inference (exact & approximate)
 - Latent Variable Models
- Deep Generative Models
 - Generative Adversarial Networks
 - Variational Autoencoders

Topics of This Lecture

- Recap: Bayesian Mixture Models
- Generative Adversarial Networks (GANs)
 - Generative networks
 - GAN loss and training procedure
- Applications & Extensions
 - GANs for image generation
 - GANs for superresolution
 - Conditional GANs
- Problems of GANs

- Problems during training
- Conceptual problems
- Extension: Wasserstein GANs

Recap: Bayesian Mixture Models

- Let's be Bayesian about mixture models
 - Place priors over our parameters
 - Again, introduce variable \mathbf{z}_n as indicator which component data point \mathbf{x}_n belongs to.

$$\mathbf{z}_n | \boldsymbol{\pi} \sim ext{Multinomial}(\boldsymbol{\pi} \ \mathbf{x}_n | \mathbf{z}_n = k, \boldsymbol{\mu}, \boldsymbol{\Sigma} \sim \mathcal{N}(\boldsymbol{\mu}_k, \Sigma_k)$$

- Introduce conjugate priors over parameters

$$\boldsymbol{\pi} \sim \operatorname{Dirichlet}(\frac{\alpha}{K}, \dots, \frac{\alpha}{K})$$

 $\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k \sim H = \mathcal{N} - \mathcal{IW}(0, s, d, \phi)$

 α

"Normal – Inverse Wishart"

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 17 – Generative Adversarial Networks

4

Slide inspired by Yee Whye Teh

Recap: Bayesian Mixture Models

- Full Bayesian Treatment
 - Given a dataset, we are interested in the cluster assignments

$$p(\mathbf{Z}|\mathbf{X}) = \frac{p(\mathbf{X}|\mathbf{Z})p(\mathbf{Z})}{\sum_{\mathbf{Z}} p(\mathbf{X}|\mathbf{Z})p(\mathbf{Z})}$$

where the likelihood is obtained by marginalizing over the parameters θ

$$p(\mathbf{X}|\mathbf{Z}) = \int p(\mathbf{X}|\mathbf{Z}, \boldsymbol{\theta}) p(\boldsymbol{\theta}) \mathrm{d}\boldsymbol{\theta}$$

$$= \int \prod_{n=1}^{N} \prod_{k=1}^{K} p(\mathbf{x}_{n}|z_{nk}, \boldsymbol{\theta}_{k}) p(\boldsymbol{\theta}_{k}|H) \mathrm{d}\boldsymbol{\theta}$$

- The posterior over assignments is intractable!
 - Denominator requires summing over all possible partitions of the data into K groups!
 - \Rightarrow Need efficient approximate inference methods to solve this...

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 17 – Generative Adversarial Networks

Recap: Mixture Models with Dirichlet Priors

- Integrating out the mixing proportions $\boldsymbol{\pi}$

$$p(\mathbf{z}|\alpha) = \int p(\mathbf{z}|\boldsymbol{\pi}) p(\boldsymbol{\pi}|\alpha) d\boldsymbol{\pi}$$
$$= \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \prod_{k=1}^{K} \frac{\Gamma(N_k + \alpha/K)}{\Gamma(\alpha/K)}$$

- Conditional probabilities
 - Examine the conditional of \mathbf{z}_n given all other variables \mathbf{z}_{-n}

$$p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) = \frac{p(z_{nk} = 1, \mathbf{z}_{-n} | \alpha)}{p(\mathbf{z}_{-n} | \alpha)}$$
$$= \frac{N_{-n,k} + \alpha/K}{N - 1 + \alpha} \qquad N_{-n,k} \stackrel{\text{def}}{=} \sum_{i=1, i \neq n}^{N} z_{ik}$$

Visual Computing

Institute

 \Rightarrow The more populous a class is, the more likely it is to be joined!

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 17 – Generative Adversarial Networks

6

Slide adapted from Zoubin Gharamani

Recap: Infinite Dirichlet Mixture Models

• Conditional probabilities: Finite K

$$p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) = \frac{N_{-n,k} + \alpha/K}{N - 1 + \alpha}, \qquad N_{-n,k} \stackrel{\text{def}}{=} \sum_{i=1, i \neq n}^{N} z_{ik}$$

- Conditional probabilities: Infinite K
 - Taking the limit as $K \to \infty$ yields the conditionals

$$p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) = \begin{cases} \frac{N_{-n,k}}{N-1+\alpha} & \text{if } k \text{ represented} \\ \frac{\alpha}{N-1+\alpha} & \text{if all } k \text{ not represented} \end{cases}$$

– Left-over mass $\alpha \Rightarrow$ countably infinite number of indicator settings

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 17 – Generative Adversarial Networks

Slide adapted from Zoubin Gharamani

 ΛT

Recap: Gibbs Sampling for Finite Mixtures

- We need approximate inference here
 - Gibbs Sampling: Conditionals are simple to compute

$$p(\mathbf{z}_n = k | \text{others}) \propto \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$$
$$\boldsymbol{\pi} \mid \mathbf{z} \sim \text{Dir}(N_1 + \alpha/K, \dots, N_K + \alpha/K)$$

$$\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k | \text{others} \sim \mathcal{N} - \mathcal{IW}(v', s', d', \phi')$$

- However, this will be rather inefficient...
 - In each iteration, algorithm can only change the assignment for individual data points.
 - There are often groups of data points that are associated with high probability to the same component. \Rightarrow Unlikely that group is moved.
 - Better performance by collapsed Gibbs sampling which integrates out the parameters π , μ , Σ .

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 17 – Generative Adversarial Networks Slide adapted from Yee Whye Teh

8

Image source: Yee Whye Teh

Visual Computing

Institute

Recap: Collapsed Finite Bayesian Mixture

- More efficient algorithm
 - Conjugate priors allow analytic integration of some parameters
 - Resulting sampler operates on reduced space of cluster assignments (implicitly considers all possible cluster shapes)

Topics of This Lecture

- Recap: Bayesian Mixture Models
- Generative Adversarial Networks (GANs)
 - Generative networks
 - GAN loss and training procedure
- Applications & Extensions
 - GANs for image generation
 - GANs for superresolution
 - Conditional GANs
- Problems of GANs

- Problems during training
- Conceptual problems
- Extension: Wasserstein GANs

Generative Networks

- Using a network to generate images
 - Sampling from noise distribution
 - Sequence of upsampling layers to generate an output image
 - How can we train such a model to produce the desired output?

Generative Adversarial Networks (GANs)

Conceptual view

Main idea

- Simultaneously train an image generator G and a discriminator D.
- Interpreted as a two-player game

Two-Player Game

- Generator Real world Sample images - Tries to draw samples from p(x). - Analogy: counterfeiter Latent random variable Generator Sample Discriminator - Tries to determine whether the sample Sample came from the generator or the data Real distribution. Loss Discriminator – Analogy: *police investigator* Fake Sample
- Both generator and discriminator are deep networks
 - We can train them with backprop.

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 17 – Generative Adversarial Networks

14

Image sources: www.bundesbank.de, weclipart.com, Kevin McGuiness

Training the Discriminator

• Procedure

- Fix generator weights
- Train discriminator to distinguish between real and generated images

Training the Generator

Procedure

- Fix discriminator weights
- Sample from generator
- Backprop through discriminator to update generator weights

Formalizing This Procedure

• This corresponds to a two-player minimax game:

$$\min_{G} \max_{D} V(D,G) = \mathbb{E}_{\boldsymbol{x} \sim p_{data}(\boldsymbol{x})}[\log D(\boldsymbol{x})] + \mathbb{E}_{\boldsymbol{z} \sim p_{\boldsymbol{z}}(\boldsymbol{z})}\left[\log\left(1 - D(G(\boldsymbol{z}))\right)\right]$$

- Explanation
 - Train D to maximize the probability of assigning the correct label to both training examples and samples from G.
 - Simultaneously train G to minimize $\log(1 D(G(\mathbf{z})))$.
- The Nash equilibrium of this game is achieved at

$$-p_g(\mathbf{x}) = p_{data}(\mathbf{x}) \quad \forall \mathbf{x}$$

 $-D(\mathbf{x}) = \frac{1}{2} \quad \forall \mathbf{x}$

GAN Algorithm

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of steps to apply to the discriminator, k, is a hyperparameter. We used k = 1, the least expensive option, in our experiments.

for number of training iterations do

for k steps do

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_g(z)$.
- Sample minibatch of m examples $\{x^{(1)}, \ldots, x^{(m)}\}$ from data generating distribution $p_{\text{data}}(x)$.
- Update the discriminator by ascending its stochastic gradient:

$$\nabla_{\theta_d} \frac{1}{m} \sum_{i=1}^m \left[\log D\left(\boldsymbol{x}^{(i)} \right) + \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right) \right] \cdot \quad \text{Discriminator}$$

end for

- Sample minibatch of m noise samples $\{z^{(1)}, \ldots, z^{(m)}\}$ from noise prior $p_q(z)$.
- Update the generator by descending its stochastic gradient:

$$\nabla_{\theta_g} \frac{1}{m} \sum_{i=1}^m \log \left(1 - D\left(G\left(\boldsymbol{z}^{(i)} \right) \right) \right). \qquad \qquad \begin{array}{c} \text{Generator} \\ \text{updates} \end{array}$$

end for

18

The gradient-based updates can use any standard gradient-based learning rule. We used momentum in our experiments.

Intuition

- Behavior near convergence
 - In the inner loop, D is trained to discriminate samples from data.
 - Gradient of *D* guides *G* to flow to regions that are more likely to be classified as data.
 - After several steps of training, *G* and *D* will reach a point at which they cannot further improve, because $p_g = p_{data}$.
 - Now, the discriminator is unable to differentiate between the two distributions, i.e., D(x) = 0.5.

Topics of This Lecture

- Recap: Bayesian Mixture Models
- Generative Adversarial Networks (GANs)
 - Generative networks
 - GAN loss and training procedure
- Applications & Extensions
 - GANs for image generation
 - GANs for superresolution
 - Conditional GANs
- Problems of GANs

- Problems during training
- Conceptual problems
- Extension: Wasserstein GANs

Example: Deep Convolutional GAN (DCGAN)

- Generator for images
 - Remove fully-connected layers
 - Upsampling with fractional strided convolutions
 - Batch normalization after each layer (important!)
 - Use ReLu in generator for hidden layers, tanh for output layer
 - Use Leaky ReLu in the discriminator for all layers

Example Application: Image Generation

- Generating bedroom images
 - Each sample is generated from a sampled random number

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 17 – Generative Adversarial Networks

22

UNIVERSITY

Image credit: Alec Radford et al.

Example Application: Image Generation

• Interpolating between the random points in latent space...

Interpolation between Face Images

Karras et al, "Progressive growing of GANs for improved quality, stability, and variation", ICLR'18

Interpolation between Arbitrary Images

Karras et al, "Progressive growing of GANs for improved quality, stability, and variation", ICLR'18

Example Application: Super-Resolution (SRGAN)

26

Image credit C. Ledig et al.

Extension: Conditional GANs

Idea

27

- Condition the latent space representation on an input image
- Used to create the pix2pix network

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with conditional adversarial networks. CVPR 2017.

Extension: Conditional GANs

T-C. Wang, M-Y. Liu, J-Y. Zhu, A. Tao, J. Kautz, B. Catanzaro, High-Resolution Image Synthesis and Semantic Manipulation with Conditional GANs, CVPR 2018.

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 17 – Generative Adversarial Networks

Artist Project: edges2cats [Christopher Hesse]

lvy Tasi @ivymyt

@ka92

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 17 – Generative Adversarial Networks

Slide credit: Aljosa Efros

Topics of This Lecture

- Recap: Bayesian Mixture Models
- Generative Adversarial Networks (GANs)
 - Generative networks
 - GAN loss and training procedure
- Applications & Extensions
 - GANs for image generation
 - GANs for superresolution
 - Conditional GANs

Problems of GANs

- Problems during training
- Conceptual problems
- Extension: Wasserstein GANs

- Problem 1: Vanishing gradients
 - When the discriminator is perfect, the loss function falls to zero.
 - No gradient to update the loss during learning iterations.
 - Dilemma: Walking a fine line...
 - Discriminator behaves badly \Rightarrow generator does not have accurate feedback
 - Discriminator does a great job \Rightarrow gradient of the loss drops close to zero

- Problem 2: Mode collapse
 - Even though the generator might be able to trick the discriminator, it may fail to represent the complex real-world data distribution.
 - Training gets stuck in a small space with little variety

- Problem 3: Non-convergence
 - GANs involve two players
 - Each model updates its cost independently
 - This means we are performing simultaneous gradient descent
 - Problem: might not converge to Nash equilibrium

- Problem 4: Low-dimensional support
 - Both p_{data} and p_g lie on low-dimensional manifolds.
 - Those manifolds most likely do not intersect
 - The Jensen divergence implicitly optimized in GANs cannot deal with this well.
 - Wasserstein GANs fix this by introducing a different loss function.

Summary

- Advantages
 - GANs can be trained with backpropagation
 - Generated images are sharper than from VAEs
 - Robust to overfitting, since generator never sees the training data
 - Fast process: single forward pass generates a single sample
- Disadvantages
 - GANs are well known for being delicate and unstable
 - Problems with non-convergence
 - Problems with mode collapse
- Extensions

- Wasserstein GANs fix several major problems in the GAN formulation
- Energy-based GANs allow general loss functions

2017: Explosion of GANs

"The GAN Zoo"

- GAN Generative Adversarial Networks
- 3D-GAN Learning a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling
- acGAN Face Aging With Conditional Generative Adversarial Networks
- AC-GAN Conditional Image Synthesis With Auxiliary Classifier GANs
- AdaGAN AdaGAN: Boosting Generative Models
- AEGAN Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets
- AffGAN Amortised MAP Inference for Image Super-resolution
- AL-CGAN Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts
- ALI Adversarially Learned Inference
- AM-GAN Generative Adversarial Nets with Labeled Data by Activation Maximization
- AnoGAN Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery
- ArtGAN ArtGAN: Artwork Synthesis with Conditional Categorial GANs
- b-GAN b-GAN: Unified Framework of Generative Adversarial Networks
- Bayesian GAN Deep and Hierarchical Implicit Models
- BEGAN BEGAN: Boundary Equilibrium Generative Adversarial Networks
- BiGAN Adversarial Feature Learning
- BS-GAN Boundary-Seeking Generative Adversarial Networks
- CGAN Conditional Generative Adversarial Nets
- CaloGAN CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters with Generative Adversarial Networks
- CCGAN Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks
- CatGAN Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks
- CoGAN Coupled Generative Adversarial Networks

- Context-RNN-GAN Contextual RNN-GANs for Abstract Reasoning Diagram Generation
 C-RNN-GAN C-RNN-GAN: Continuous recurrent neural networks with adversarial training
- · CS-GAN Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets
- CVAE-GAN CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
- CycleGAN Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks
- DTN Unsupervised Cross-Domain Image Generation
- DCGAN Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks
- DiscoGAN Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
- DR-GAN Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
- DualGAN DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
- EBGAN Energy-based Generative Adversarial Network
- f-GAN f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
- FF-GAN Towards Large-Pose Face Frontalization in the Wild
- · GAWWN Learning What and Where to Draw
- · GeneGAN GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
- Geometric GAN Geometric GAN
- · GoGAN Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking
- · GP-GAN GP-GAN: Towards Realistic High-Resolution Image Blending
- · IAN Neural Photo Editing with Introspective Adversarial Networks
- iGAN Generative Visual Manipulation on the Natural Image Manifold
- IcGAN Invertible Conditional GANs for image editing
- ID-CGAN Image De-raining Using a Conditional Generative Adversarial Network
- Improved GAN Improved Techniques for Training GANs
- InfoGAN InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
- LAGAN Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics Synthesis
- LAPGAN Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://github.com/hindupuravinash/the-gan-zoo

36

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 17 – Generative Adversarial Networks

Slide credit: FeiFei Li

Interest in GANs Is Still Growing...

Cumulative number of named GAN papers by month

https://github.com/hindupuravinash/the-gan-zoo

Visual Computing Institute | Prof. Dr . Bastian Leibe Advanced Machine Learning Part 17 – Generative Adversarial Networks

References

- Original GAN
 - I.J. Goodfellow, J. Pouget-Abadie, M. Mirza, B. Xu, D. Warde-Farley, S. Ozair,
 A. Courville, Y. Bengio, <u>Generative Adversarial Nets</u>, NIPS, 2014.
 - A. Radford, L. Metz, S. Chintala, <u>Unsupervised Representation Learning with</u> <u>Deep Convolutional Generative Adversarial Networks</u>, arXiv 1511.06434, 2015.
- GAN Extensions
 - J. Zhao, M. Mathieu, Y. LeCun, <u>Energy-based Generative Adversarial Networks</u>, arXiv 1506.03365, 2015.
 - M. Arjovsky, S. Chintala, L. Bottou, Wasserstein GAN, arXiv 1701.07875, 2017.
- Evaluations
 - M. Lucic, K. Kurach, M. Michalski, S. Gelly, O. Bousquet, <u>Are GANs Created</u> <u>Equal? A Large-Scale Study</u>, arXiv 1711.10337, 2017.

