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Course Outline

* Regression Techniques
— Linear Regression
— Regqularization (Ridge, Lasso)
— Kernels (Kernel Ridge Regression)

» Deep Reinforcement Learning

* Probabillistic Graphical Models
— Bayesian Networks
— Markov Random Fields
— Inference (exact & approximate)
— Latent Variable Models

* Deep Generative Models
— Generative Adversarial Networks
— Variational Autoencoders

Visual Computing Institute | Prof. Dr . Bastian Leibe
2 Advanced Machine Learning

Part 17 — Generative Adversarial Networks

riable

Latent random va

f: XX —->R

[ele]e)

( 0 Visual Computing
Institute



Topics of This Lecture

* Recap: Bayesian Mixture Models

« Generative Adversarial Networks (GANS)

— Generative networks
— GAN loss and training procedure

» Applications & Extensions
— GANs for image generation
— GANSs for superresolution
— Conditional GANs

* Problems of GANs
— Problems during training

— Conceptual problems
— Extension: Wasserstein GANS
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Recap: Bayesian Mixture Models

* Let’s be Bayesian about mixture models
— Place priors over our parameters
— Again, introduce variable z,, as indicator

2
— Introduce conjugate priors over parameters
'

which component data point x,, belongs to.

Zn|T™ ~ Multinomial(7r)
X'n‘zn — kap’a 3~ N(y’ka Ek)

. . 8 Qo
T~ D1rlch1et(?, e E)
pk,Zk ~ H:N—M(O,S,d,ﬁb) n=1_...N
“Normal — Inverse Wishart”
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Recap: Bayesian Mixture Models

 Full Bayesian Treatment
— Given a dataset, we are interested in the cluster assignments

p(X|Z)p(Z)
PIZIX) = >z P(X|Z)p(Z)

where the likelihood is obtained by marginalizing over the parameters 6
p(X[2Z) = [ p(X|2.6)5(6)d0

:/H 1] p(xnl2nk, 0x)p(0| H)dO

n=1k=1
« The posterior over assignments is intractable!
— Denominator requires summing over all possible partitions of the data
into K groups!
= Need efficient approximate inference methods to solve this...
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Recap: Mixture Models with Dirichlet Priors

* Integrating out the mixing proportions =

plala) = / p(zlm)p(m|a)dn

Nk—|—Oé/K)
B N—I—a H I'a/K)

« Conditional probabilities
— Examine the conditional of z, given all other variables z_,
p(znk = 1,2_p|a)
p(z-n|a)
N_, K def
= ktaf N—nki Zzzk

N—-1+a 1=1,i#n
= The more populous a class is, the more likely it is to be joined!
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Recap: Infinite Dirichlet Mixture Models

« Conditional probabilities: Finite K
N
N pr+a/K def
nk — ]_ —n — i N—TL, — 24
plank = 1lz-n,0) = —ar. : :Z#

« Conditional probabilities: Infinite K
— Taking the limit as K — oo yields the conditionals

( Jév:fjfa if k represented
p(an — 1|Z—nva) = 4
o .
\ Nois if all £ not represented

— Left-over mass oo = countably infinite number of indicator settings
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Recap: Gibbs Sampling for Finite Mixtures

* We need approximate inference here
— Gibbs Sampling: Conditionals are simple to compute

K
p(z, = k|others) Z?TkN(Xn“,Lk, k)
k=1

 However, this will be rather inefficient...
— In each iteration, algorithm can only change

w |z~ Dir(N; +a/K,..., Nk + a/K)
Ky, Xy lothers ~ N —IW(v', s d', ¢') @

the assignment for individual data points.

!
— There are often groups of data points that are
o}

associated with high probability to the same
component. = Unlikely that group is moved.
— Better performance by collapsed Gibbs sampling
which integrates out the parameters m, u, X.
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Recap: Collapsed Finite Bayesian Mixture

* More efficient algorithm
— Conjugate priors allow analytic integration of some parameters

— Resulting sampler operates on reduced space of cluster assignments
(implicitly considers all possible cluster shapes)

* Procedure
— The model implies the factorization
P(Zn|Z—n,X,, H) X p(2p|2Z_pn, 0)p(Xn|z,X_pn, H
— Derive @
pela) = [ plalmp(mia)in /
K ?
pcolzn H) = [ 3 2p(al00)p(6c] )8, | A
= 20

— Conjugate prior, Normal - Inverse Wishart
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Topics of This Lecture

« Generative Adversarial Networks (GANS)
— Generative networks
— GAN loss and training procedure
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Generative Networks
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« Using a network to generate images

— Sampling from noise distribution
— Sequence of upsampling layers to generate an output image

— How can we train such a model to produce the desired output?
RWTH
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Image from https://blog.openai.com/generative-models/
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Generative Adversarial Networks (GANS)

« Conceptual view

Realworld ——= Sample
images Rl
& A @ 5
Discriminator @ 4
w
Fake
Generator [—+ Sample

Latent random variable
1000

« Main idea
— Simultaneously train an image generator ¢ and a discriminator D.
— Interpreted as a two-player game

Visual Computing Institute | Prof. Dr . Bastian Leibe
13 Advanced Machine Learning 0 Visual Camputing
Institute

Part 17 — Generative Adversarial Networks
Image credit: Kevin McGuiness




Two-Player Game

* Generator N
— Tries to draw samples from p(x). \
— Analogy: counterfeiter

£ |19 /
« Discriminator )
— Tries to determine whether the sample
came from the generator or the data \ Real
dIStrIbUtlon \>» Discriminator ;. E
— Analogy: police investigator / F.k i
« Both generator and discriminator are deep networks
— We can train them with backprop.
RWTH
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Training the Discriminator

Real world
images
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Generator

- o

Fake

Backprop error to

Latent random variable

 Procedure

update discriminator
weights

— Fix generator weights

— Train discriminator
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Training the Generator
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— Fix discriminator weights
— Sample from generator
— Backprop through discriminator to update generator weights
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Formalizing This Procedure

* This corresponds to a two-player minimax game:

IExNPdam(x) [10gD(x)]‘+ II5:z~pz(z) [log (1 - D(G(Z)))]

minmaxV (D, G) =
G D

« Explanation

— Train D to maximize the probability of assigning the correct label to both
training examples and samples from G.

— Simultaneously train G to minimize log (1 — D(G(z))).

« The Nash equilibrium of this game is achieved at

— Pg (X) = Paata(x) Vx
-D(x) =3 Vx
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GAN Algorithm

18

Algorithm 1 Minibatch stochastic gradient descent training of generative adversarial nets. The number of
steps to apply to the discriminator, k, is a hyperparameter. We used £ = 1, the least expensive option, in our
experiments.

for number of training iterations do
for £ steps do
e Sample minibatch of 7 noise samples {21, z(M)} from noise prior p,(2).

e Sample minibatch of m examples {21, m)} from data generating distribution

pdata( )
e Update the discriminator by ascending its stochastic gradient:

Ved% i [log D (2) +10g (1-D (¢ (=)))]. Discriminator
updates

1=

. Sample minibatch of /m noise samples {z ™)} from noise prior p,(2).
e Update the generator by descending its stochastic gradient:

s (i-2(e () ~ Updetes

end for
The gradient-based updates can use any standard gradient-based learning rule. We used momen-
tum in our experiments.
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« Behavior near convergence
— In the inner loop, D is trained to discriminate samples from data.

— Gradient of D guides G to flow to regions that are more likely to be
classified as data.

— After several steps of training, ¢ and D will reach a point at which they
cannot further improve, because p; = Paqtq-

— Now, the discriminator is unable to differentiate between the two

distributions, i.e., D(x) = 0.5.

- -

.
. .

LR
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Topics of This Lecture

» Applications & Extensions
— GANs for image generation
— GANSs for superresolution
— Conditional GANs
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Example: Deep Convolutional GAN (DCGAN)

G(2)

« Generator for images
— Remove fully-connected layers
— Upsampling with fractional strided convolutions
— Batch normalization after each layer (important!)
— Use Relu in generator for hidden layers, tanh for output layer
— Use Leaky Relu in the discriminator for all layers
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Example Application: Image Generation

« Generating bedroom images
— Each sample is generated from a sampled random number

Visual Computing Institute | Prof. Dr . Bastian Leibe RMI
22 Advanced Machine Learning 0 Visual Camputing
Part 17 — Generative Adversarial Networks Institute

Image credit; Alec Radford et al.




Example Application: Image Generation

“erf TE R

-l

1 )

; . : )
: .iL . - . . ~ . e W
: W e — 3 . e w2
- - - -

* Interpolating between the random points in latent space...
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Interpolation between Face Images

Karras et al, “Progressive growing of GANs for improved quality, stability, and variation”, ICLR’18
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Interpolation between Arbitrary Images

Karras et al, “Progressive growing of GANs for improved quality, stability, and variation”, ICLR’18
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Example Application: Super-Resolution (SRGAN)
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Extension: Conditional GANs

G,

Residual blocks

Residual blocks

-

G,

2x downsampling

* ldea
— Condition the latent space representation on an input image
— Used to create the pix2pix network

P. Isola, J.-Y. Zhu, T. Zhou, and A. A. Efros. Image-to-image translation with
conditional adversarial networks. CVPR 2017.
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Extension: Conditional GANs

T-C. Wang, M-Y. Liu, J-Y. Zhu, A. Tao, J. Kautz, B. Catanzaro, High-Resolution Image
Synthesis and Semantic Manipulation with Conditional GANs, CVPR 2018.
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Artist Project: edges2cats [Christopher Hesse]

INPUT OUTPUT

pix2pix

g ] Process i mmg

INPUT OUTPUT

PiX2pix
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Topics of This Lecture

* Problems of GANs
— Problems during training
— Conceptual problems
— Extension: Wasserstein GANSs
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What Can Possibly Go Wrong? Problems with GANs

* Problem 1: Vanishing gradients
— When the discriminator is perfect, the loss function falls to zero.
— No gradient to update the loss during learning iterations.

— Dilemma: Walking a fine line...
= Discriminator behaves badly = generator does not have accurate feedback
= Discriminator does a great job = gradient of the loss drops close to zero
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What Can Possibly Go Wrong? Problems with GANs

* Problem 2: Mode collapse

— Even though the generator might be able to trick the discriminator, it
may falil to represent the complex real-world data distribution.

— Training gets stuck in a small space

with little variety
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What Can Possibly Go Wrong? Problems with GANs
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* Problem 3: Non-convergence

33

— GANs involve two players
— Each model updates its cost independently

— This means we are performing simultaneous gradient descent
— Problem: might not converge to Nash equilibrium
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What Can Possibly Go Wrong? Problems with GANs

* Problem 4: Low-dimensional support
— Both pgq:tq and p, lie on low-dimensional manifolds.
— Those manifolds most likely do not intersect

— The Jensen divergence implicitly optimized in GANs cannot deal with
this well.

— Wasserstein GANSs fix this by introducing a different loss function.
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« Advantages
— GANSs can be trained with backpropagation
— Generated images are sharper than from VAES
— Robust to overfitting, since generator never sees the training data
— Fast process: single forward pass generates a single sample

» Disadvantages
— GANSs are well known for being delicate and unstable
— Problems with non-convergence
— Problems with mode collapse

« Extensions
— Wasserstein GANSs fix several major problems in the GAN formulation
— Energy-based GANSs allow general loss functions
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2017: Explosion of GANs

e “The GAN Zoo”

* GAN - Generative Adversarial Networks

Context-RNN-GAN - Contextual RNN-GANSs for Abstract Reasoning Diagram Generation
C-RNN-GAN - C-RNN-GAN: Continuous recurrent neural networks with adversarial training

* SD-GAN - Leaming a Probabilistic Latent Space of Object Shapes via 3D Generative-Adversarial Modeling * CS-GAN - Improving Neural Machine Translation with Conditional Sequence Generative Adversarial Nets

* acGAN - Face Aging With Conditional Generative Adversarial Networks CVAE-GAN - CVAE-GAN: Fine-Grained Image Generation through Asymmetric Training
¢ AC-GAN - Conditional Image Synthesis With Auxiliary Classifier GANs CycleGAN - Unpaired Image-to-Image Translation using Cycle-Consistent Adversarial Networks

* AdaGAN - AdaGAN: Boosting Generative Models * DTN - Unsupervised Cross-Domain Image Generation
DCGAN - Unsupervised Representation Learning with Deep Convolutional Generative Adversarial Networks

* AEGAN - Learning Inverse Mapping by Autoencoder based Generative Adversarial Nets

X . DiscoGAN - Learning to Discover Cross-Domain Relations with Generative Adversarial Networks
« AffGAN - Amortised MAP Inference for Image Super-resolution 9

. . . DR-GAN - Disentangled Representation Learning GAN for Pose-Invariant Face Recognition
* AL-CGAN - Learning to Generate Images of Outdoor Scenes from Attributes and Semantic Layouts

DualGAN - DualGAN: Unsupervised Dual Learning for Image-to-Image Translation
o ALl - Adversarially Learned Inference

EBGAN - Energy-based Generative Adversarial Network

* AM-GAN - Generative Adversarial Nets with Labeled Data by Activation Maximization f-GAN - f-GAN: Training Generative Neural Samplers using Variational Divergence Minimization
* AnoGAN - Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide Marker Discovery * FF-GAN - Towards Large-Pose Face Frontalization in the Wild

« ArtGAN - ArtGAN: Artwork Synthesis with Conditional Categorial GANs GAWWN - Learning What a“‘" Where to Draw A A

o B GAN - HuGANI Unified Framiawotic of Generative Adversarial Networks GeneGAN - GeneGAN: Learning Object Transfiguration and Attribute Subspace from Unpaired Data
Geometric GAN - Geometric GAN

* Bayesian GAN - Deep and Hierarchical Implicit Models GoGAN - Gang of GANs: Generative Adversarial Networks with Maximum Margin Ranking

« BEGAN - BEGAN: Boundary Equilibrium Generative Adversarial Networks GP-GAN - GP-GAN: Towards Realistic High-Resolution Image Blending

* BiGAN - Adversarial Feature Learning IAN - Neural Photo Editing with Introspective Adversarial Networks

* BS-GAN - Boundary-Seeking Generative Adversarial Networks iGAN - Generative Visual Manipulation on the Natural Image Manifold

« CGAN - Conditional Generative Adversarial Nets IcGAN - Invertible Conditional GANs for image editing

= s 2 2 : R > < * ID-CGAN - | De-raining Usi Conditional G tive Ad' ial Network
¢ CaloGAN - CaloGAN: Simulating 3D High Energy Particle Showers in Multi-Layer Electromagnetic Calorimeters i G e e

g A : « Improved GAN - Improved Techniques for Training GANs
with Generative Adversarial Networks P § 4 g

2 ; g ; - ; . InfoGAN - InfoGAN: Interpretable Representation Learning by Information Maximizing Generative Adversarial Nets
* CCGAN - Semi-Supervised Learning with Context-Conditional Generative Adversarial Networks

LAGAN - Learning Particle Physics by Example: Location-Aware Generative Adversarial Networks for Physics
* CatGAN - Unsupervised and Semi-supervised Learning with Categorical Generative Adversarial Networks Synthesis

* CoGAN - Coupled Generative Adversarial Networks LAPGAN - Deep Generative Image Models using a Laplacian Pyramid of Adversarial Networks

https://qithub.com/hindupuravinash/the-gan-zoo
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Interest in GANSs Is Still Growing...

Cumulative number of named GAN papers by month
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https://github.com/hindupuravinash/the-gan-zoo
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