Advanced Machine Learning Summer 2019

Part 20 - Repetition 11.07.2019

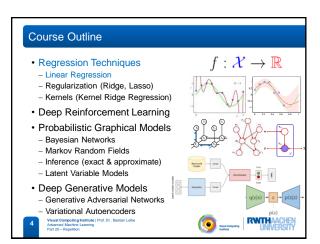
Prof. Dr. Bastian Leibe

RWTH Aachen University, Computer Vision Group http://www.vision.rwth-aachen.de

Announcements

- · Today, I'll summarize the most important points from the lecture.
- It is an opportunity for you to ask questions...
- ...or get additional explanations about certain topics.
- So. please do ask.
- Today's slides are intended as an index for the lecture.
- Summarizing the most important points from each class
- But they are not complete, won't be sufficient as only tool.
- Also look at the exercises they often explain algorithms in detail.
- · Exam procedure
- Closed-book exam, the core exam time will be 2h.
- We will send around an announcement with the exact starting times and places by email.

Course Outline $f: \mathcal{X} \to \mathbb{R}$ Regression Techniques - Linear Regression - Regularization (Ridge, Lasso) - Kernels (Kernel Ridge Regression) · Deep Reinforcement Learning · Probabilistic Graphical Models - Bayesian Networks - Markov Random Fields - Inference (exact & approximate) - Latent Variable Models · Deep Generative Models - Generative Adversarial Networks - Variational Autoencoders RWTHAA

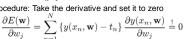


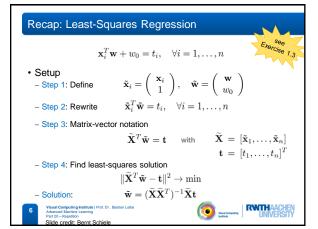
Recap: Regression

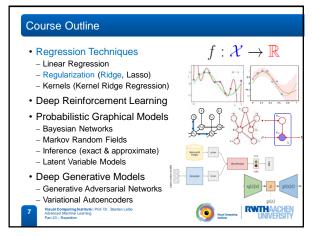
- · Learning to predict a continuous function value
- Given: training set $\mathbf{X} = \{x_1, ..., x_N\}$ with target values $T = \{t_1, ..., t_N\}$.
- \Rightarrow Learn a continuous function y(x) to predict the function value for a new input x.
- Define an error function $E(\mathbf{w})$ to optimize
- E.g., sum-of-squares error

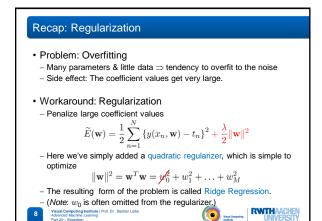
$$E(\mathbf{w}) = \frac{1}{2} \sum_{n=1}^{N} \left\{ y(x_n, \mathbf{w}) - t_n \right\}^2$$

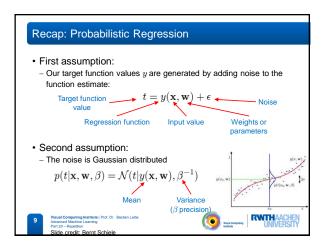
- Procedure: Take the derivative and set it to zero

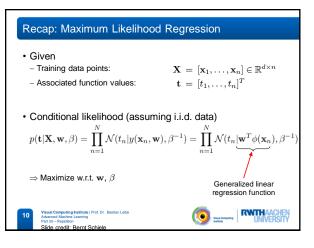




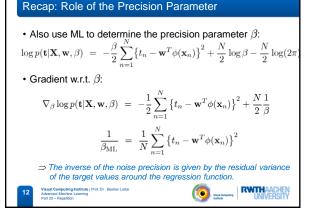








Recap: Maximum Likelihood Regression $\nabla_{\mathbf{w}} \log p(\mathbf{t}|\mathbf{X},\mathbf{w},\beta) = -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n)$ • Setting the gradient to zero: $0 = -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n)$ $\Leftrightarrow \sum_{n=1}^{N} t_n \phi(\mathbf{x}_n) = \left[\sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T \right] \mathbf{w}$ $\Leftrightarrow \Phi \mathbf{t} = \Phi \Phi^T \mathbf{w} \qquad \Phi = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_n)]$ $\Leftrightarrow \mathbf{w}_{\mathrm{ML}} = (\Phi \Phi^T)^{-1} \Phi \mathbf{t} \qquad \text{Same as in least-squares regression!}$ $\Rightarrow \text{Least-squares regression is equivalent to Maximum Likelihood under the assumption of Gaussian noise.}$

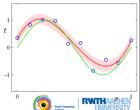


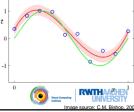
Recap: Predictive Distribution

• Having determined the parameters w and β , we can now make predictions for new values of x.

$$p(t|\mathbf{X}, \mathbf{w}_{\mathrm{ML}}, \beta_{\mathrm{ML}}) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}_{\mathrm{ML}}), \beta_{\mathrm{ML}}^{-1})$$

- · This means
- Rather than giving a point estimate, we can now also give an estimate of the estimation uncertainty.





Recap: Maximum-A-Posteriori Estimation

- Introduce a prior distribution over the coefficients w.
- For simplicity, assume a zero-mean Gaussian distribution

$$p(\mathbf{w}|\alpha) = \mathcal{N}(\mathbf{w}|\mathbf{0}, \alpha^{-1}\mathbf{I}) = \left(\frac{\alpha}{2\pi}\right)^{(M+1)/2} \exp\left\{-\frac{\alpha}{2}\mathbf{w}^T\mathbf{w}\right\}$$

- New hyperparameter lpha controls the distribution of model parameters.
- · Express the posterior distribution over w.
- Using Bayes' theorem:

$$p(\mathbf{w}|\mathbf{X}, \mathbf{t}, \beta, \alpha) \propto p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta)p(\mathbf{w}|\alpha)$$

- We can now determine ${f w}$ by maximizing the posterior.
- This technique is called maximum-a-posteriori (MAP).

Recap: MAP Solution

· Minimize the negative logarithm

$$-\log p(\mathbf{w}|\mathbf{X}, \mathbf{t}, \beta, \alpha) \propto -\log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) - \log p(\mathbf{w}|\alpha)$$
$$-\log p(\mathbf{t}|\mathbf{X}, \mathbf{w}, \beta) = \frac{\beta}{2} \sum_{n=1}^{N} \{y(\mathbf{x}_{n}, \mathbf{w}) - t_{n}\}^{2} + \text{const}$$
$$-\log p(\mathbf{w}|\alpha) = \frac{\alpha}{2} \mathbf{w}^{T} \mathbf{w} + \text{const}$$

• The MAP solution is therefore the solution of

$$\frac{\beta}{2} \sum_{i=1}^{N} \{y(\mathbf{x}_n, \mathbf{w}) - t_n\}^2 + \frac{\alpha}{2} \mathbf{w}^T \mathbf{w}$$

regularized sum-of-squares error (with $\lambda = \frac{\alpha}{\beta}$).

Recap: MAP Solution (2)

$$\nabla_{\mathbf{w}} \log p(\mathbf{w}|\mathbf{X}, \mathbf{t}, \beta, \alpha) = -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n) + \alpha \mathbf{w}$$

$$\begin{split} \nabla_{\mathbf{w}} \log p(\mathbf{w}|\mathbf{X}, \mathbf{t}, \beta, \alpha) &= -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n) + \alpha \mathbf{w} \\ \bullet \text{ Setting the gradient to zero:} \\ 0 &= -\beta \sum_{n=1}^{N} (t_n - \mathbf{w}^T \phi(\mathbf{x}_n)) \phi(\mathbf{x}_n) + \alpha \mathbf{w} \\ \Leftrightarrow \sum_{n=1}^{N} t_n \phi(\mathbf{x}_n) &= \left[\sum_{n=1}^{N} \phi(\mathbf{x}_n) \phi(\mathbf{x}_n)^T \right] \mathbf{w} + \frac{\alpha}{\beta} \mathbf{w} \\ \Leftrightarrow \Phi \mathbf{t} &= \left(\Phi \Phi^T + \frac{\alpha}{\beta} \mathbf{I} \right) \mathbf{w} \qquad \Phi = [\phi(\mathbf{x}_1), \dots, \phi(\mathbf{x}_n)] \\ \Leftrightarrow \mathbf{w}_{\text{MAP}} &= \left(\Phi \Phi^T + \frac{\alpha}{\beta} \mathbf{I} \right) \Phi \mathbf{t} \qquad \text{Effect of regularization:} \\ \text{Keeps the inverse} \end{split}$$

Recap: Bayesian Curve Fitting

- Given
- Training data points:

 $\mathbf{X} = [\mathbf{x}_1, \dots, \mathbf{x}_n] \in \mathbb{R}^{d \times n}$ $\mathbf{t} = [t_1, \dots, t_n]^T$

Associated function values:

– Our goal is to predict the value of t for a new point \mathbf{x} .

· Evaluate the predictive distribution

$$p(t|x, \mathbf{X}, \mathbf{t}) = \int p(t|x, \mathbf{w}) p(\mathbf{w}|\mathbf{X}, \mathbf{t}) d\mathbf{w}$$

What we just computed for MAP

- Noise distribution - again assume a Gaussian here

$$p(t|x, \mathbf{w}) = \mathcal{N}(t|y(\mathbf{x}, \mathbf{w}), \beta^{-1})$$

Assume that parameters α and β are fixed and known for now.

RWTHAACHEN LINIVERSITY

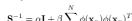
Recap: Bayesian Curve Fitting

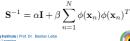
· Under those assumptions, the posterior distribution is a Gaussian and can be evaluated analytically:

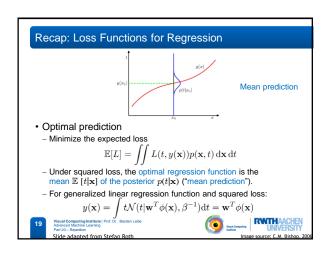
$$p(t|x, \mathbf{X}, \mathbf{t}) = \mathcal{N}(t|m(x), s^2(x))$$

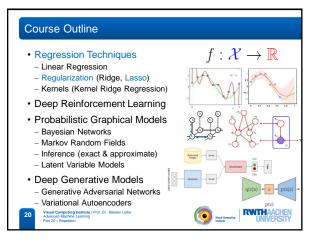
- where the mean and variance are given by

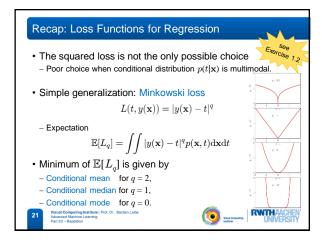
$$m(x) = \beta \phi(x)^T \mathbf{S} \sum_{n=1}^{N} \phi(\mathbf{x}_n) t_n$$

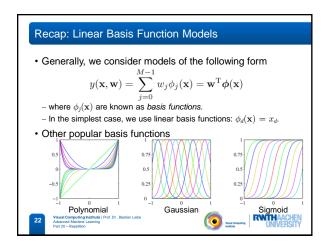




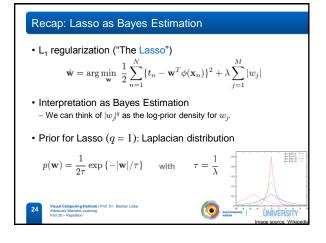








Recap: Regularized Least-Squares • Consider more general regularization functions $- \text{``L}_q \text{ norms''}: \qquad \frac{1}{2} \sum_{n=1}^N \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2 + \frac{\lambda}{2} \sum_{j=1}^M |w_j|^q$ • Effect: Sparsity for $q \leq 1$. - Minimization tends to set many coefficients to zero **Valuat Computing Partitions First. Dr. Battern Labo **Part 20 - Regularized Part Dr. Battern Labo **Part 20 - Regularized Least-Squares** **Image source C.M. Bishoo. 2008



Recap: The Lasso

• L1 regularization ("The Lasso")

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \ \frac{1}{2} \sum_{n=1}^{N} \{t_n - \mathbf{w}^T \phi(\mathbf{x}_n)\}^2 + \lambda \sum_{j=1}^{M} |w_j|$$

- The solution will be sparse (only few coefficients non-zero)
- The L₁ penalty makes the problem non-linear.
 - \Rightarrow There is no closed-form solution.

Interpretation as Bayes Estimation

– We can think of $|w_j|^q$ as the log-prior density for w_j .

• Prior for Lasso (q = 1):

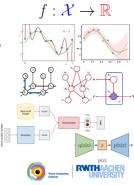
Laplacian distribution

$$p(\mathbf{w}) = \frac{1}{2\tau} \exp\left\{-|\mathbf{w}|/\tau\right\} \quad \text{with} \quad \tau = \frac{1}{\lambda}$$

Course Outline

- Regression Techniques
- Linear Regression
- Regularization (Ridge, Lasso)
- Kernels (Kernel Ridge Regression)
- Deep Reinforcement Learning
- · Probabilistic Graphical Models
- Bayesian Networks
- Markov Random Fields
- Inference (exact & approximate)
- Latent Variable Models
- · Deep Generative Models
- Generative Adversarial Networks
- Variational Autoencoders

Visual Computing Institute Advanced Machine Learning



Recap: Kernel Ridge Regression

- · Dual definition
- Instead of working with ${f w}$, substitute ${f w}={f \Phi}^T{f a}$ into $J({f w})$ and write the result using the kernel matrix $\mathbf{K} = \mathbf{\Phi} \mathbf{\Phi}^T$:

$$J(\mathbf{a}) = \frac{1}{2}\mathbf{a}^T \mathbf{K} \mathbf{K} \mathbf{a} - \mathbf{a}^T \mathbf{K} \mathbf{t} + \frac{1}{2}\mathbf{t}^T \mathbf{t} + \frac{\lambda}{2}\mathbf{a}^T \mathbf{K} \mathbf{a}$$

- Solving for a, we obtain

$$\mathbf{a} = (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{t}$$

- Prediction for a new input x:
- Writing $\mathbf{k}(\mathbf{x})$ for the vector with elements $k_n(\mathbf{x}) = k(\mathbf{x}_n, \mathbf{x})$

$$y(\mathbf{x}) = \mathbf{w}^T \phi(\mathbf{x}) = \mathbf{a}^T \Phi \phi(\mathbf{x}) = \mathbf{k}(\mathbf{x})^T (\mathbf{K} + \lambda \mathbf{I}_N)^{-1} \mathbf{t}$$

⇒ The dual formulation allows the solution to be entirely expressed in terms of the kernel function $k(\mathbf{x},\mathbf{x}')$.

RWTHAACHEN

Recap: Properties of Kernels

- Theorem
 - Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a positive definite kernel function. Then there exists a Hilbert Space ${\mathcal H}$ and a mapping $\varphi: {\mathcal X} o {\mathcal H}$ such that

$$k(x, x') = \langle (\phi(x), \phi(x')) \rangle_{\mathcal{H}}$$

- where $\langle.$, .)_{\mathcal{H}} is the inner product in H.
- Translation
- Take any set \mathcal{X} and any function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$.
- If k is a positive definite kernel, then we can use k to learn a classifier for the elements in \mathcal{X} !
- Note
- $-\mathcal{X}$ can be any set, e.g. \mathcal{X} = "all videos on YouTube" or \mathcal{X} = "all permutations of $\{1, \ldots, k\}$ ", or $\mathcal{X} =$ "the internet".

RWTHAACHEN

Recap: The "Kernel Trick"

Any algorithm that uses data only in the form of inner products can be kernelized.

- · How to kernelize an algorithm
 - Write the algorithm only in terms of inner products.
- Replace all inner products by kernel function evaluations.
- ⇒ The resulting algorithm will do the same as the linear version, but in the (hidden) feature space \mathcal{H} .
- Caveat: working in ${\mathcal H}$ is not a guarantee for better performance. A good choice of k and model selection are important!

RWTHAACHEN LINIVERSITY

Recap: How to Check if a Function is a Kernel

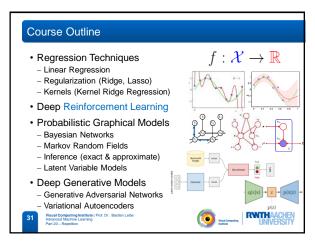
- · Problem:
- Checking if a given $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ fulfills the conditions for a kernel is difficult:
- We need to prove or disprove

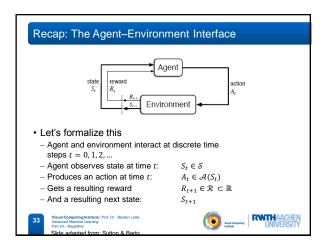
$$\sum_{i=0}^{n} t_i k(x_i,x_j) t_j \geq 0$$

 $\sum_{i,j=1}^n t_i k(x_i,x_j) t_j \geq 0$ for any set $x_1,\dots,x_n\in\mathcal{X}$ and any $\mathbf{t}\in\mathbb{R}^n$ for any $n\in N$.

- · Workaround:
- It is easy to construct functions k that are positive definite kernels.

RWTHAACHEN LINIVERSITY

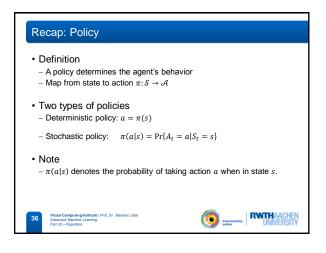




Recap: Reward vs. Return • Objective of learning - We seek to maximize the expected return G_t as some function of the reward sequence $R_{t+1}, R_{t+2}, R_{t+3}, \dots$ - Standard choice: expected discounted return $G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$ where $0 \le \gamma \le 1$ is called the discount rate. • Difficulty - We don't know which past actions caused the reward. \Rightarrow Temporal credit assignment problem

RWTHAACHEN

Markov Decision Processes We consider decision processes that fulfill the Markov property. I.e., where the environments response at time t depends only on the state and action representation at t. To define an MDP, we need to specify State and action sets One-step dynamics defined by state transition probabilities p(s'|s,a) = Pr{S_{t+1} = s'|S_t = s, A_t = a} = ∑_{r∈R} p(s',r|s,a) Expected rewards for next state-action-next-state triplets r(s,a,s') = E[R_{t+1}|S_t = s, A_t = a, S_{t+1} = s'] = ∑_{r∈R} r p(s',r|s,a)/p(s'|s,a)



Recap: Value Function

Idea

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And thus to select between actions

Definition

– The value of a state s under a policy π , denoted $v_{\pi}(s)$, is the expected return when starting in s and following π thereafter.

$$v_\pi(s) = \mathbb{E}_\pi[G_t|S_t = s] = \mathbb{E}_\pi[\sum_{k=0}^\infty \gamma^k R_{t+k+1} \left| S_t = s \right]$$

- The value of taking action a in state s under a policy π , denoted $q_{\pi}(s, a)$, is the expected return starting from s, taking action a, and following π thereafter.

$$q_\pi(s,a) = \mathbb{E}_\pi[G_t|S_t = s, A_t = a] = \mathbb{E}_\pi[\sum_{k=0}^\infty \gamma^k R_{t+k+1} \left| S_t = s, A_t = a \right]$$

RWTHAACHEN UNIVERSITY

Recap: Optimal Value Functions

- Bellman optimality equations
- For the optimal state-value function v_* :

$$v_*(s) = \max_{a \in A(s)} q_{\pi_*}(s, a)$$

$$= \max_{a \in \mathcal{A}(s)} \sum_{s',r} p(s',r|s,a)[r + \gamma v_*(s')]$$

- $-v_*$ is the unique solution to this system of nonlinear equations.
- For the optimal action-value function q_* :

$$q_*(s,a) = \sum_{s',r} p(s',r|s,a) \left[r + \gamma \max_{a'} q_*(s',a') \right]$$

- $-q_*$ is the unique solution to this system of nonlinear equations.
- \Rightarrow If the dynamics of the environment p(s',r|s,a) are known, then in principle one can solve those equation systems.

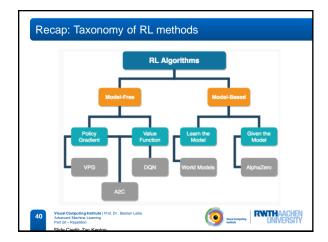
Recap: Optimal Policies

- · Why optimal state-value functions are useful
- Any policy that is greedy w.r.t. v_{*} is an optimal policy.
- \Rightarrow Given v_* , one-step-ahead search produces the long-term optimal results.
- \Rightarrow Given q_* , we do not even have to do one-step-ahead search

$$\pi_*(s) = \operatorname*{argmax}_{a \in \mathcal{A}(s)} q_*(s,a)$$

Challenge

- Many interesting problems have too many states for solving v*.
- Many Reinforcement Learning methods can be understood as approximately solving the Bellman optimality equations, using actually observed transitions instead of the ideal ones.



Recap: Tabular vs. Approximate methods

- · Tabular methods
- For problems with small discrete state and action spaces
- Value function or Policy function can be expressed as a table of values.
- Approximate methods
 - If we cannot enumerate our states or actions we use function
- E.g., Kernel methods, Deep Learning / Neural Networks
- · In practice, large problems with huge state spaces
- E.g. chess: 10120 states.
- Tabular methods don't scale well they are a lookup table
- Too many states to store in memory
- Too slow to learn value function for every state/state-action.

RWTHAACHEN LINIVERSITY

Recap: Model-based vs Model-free

- Model-based
- Has a model of the environment dynamics and reward
- Allows agent to plan: predict state and reward before taking action
- Pro: Better sample efficiency
- Con: Agent only as good as the environment Model-bias
- Model-free
- No explicit model of the environment dynamics and reward
- Less structured. More popular and further developed and tested.
- Pro: Can be easier to implement and tune
- Con: Very sample inefficient

RWTHAACHEN

Recap: Value-based RL vs Policy-based RL

- · Policy-based RL
- RL methods directly estimate a policy
- A direct mapping of what action to take in each state.

$$\pi(a|s) = P(a|s,\theta)$$

- Value-based RL
- RL methods estimate a value function and derive a policy from that
- Either a state-value function

$$\hat{V}(s;\theta)\approx V^{\pi}(s)$$

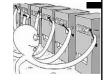
- Or an action-state value function (Q function)

$$\hat{Q}(s,a;\theta) \approx Q^{\pi}(s,a)$$

- · Or both simultaneously: Actor-Critic
- Actor-Critic methods learn both a policy (actor) and a value function

Recap: Exploration-Exploitation Trade-off

- · Example: N-armed bandit problem
- Suppose we have the choice between N actions a_1, \ldots, a_N .
- If we knew their value functions $q_*(s, a_i)$, it would be trivial to choose the best.
- However, we only have estimates based on our previous actions and their returns.



- · We can now
- Exploit our current knowledge
- And choose the greedy action that has the highest value based on our current estimate.
- Explore to gain additional knowledge
- And choose a non-greedy action to improve our estimate of that action's

RWTHAACHEN UNIVERSITY

Recap: Simple Action Selection Strategies

- ∈-greedy
- Select the greedy action with probability $(1-\epsilon)$ and a random one in the remaining cases.
- ⇒ In the limit, every action will be sampled infinitely often.
- \Rightarrow Probability of selecting the optimal action becomes $> (1 \epsilon)$.
- But: many bad actions are chosen along the way.
- Choose action a_i at time t according to the softmax function

$$\frac{e^{q_t(a_i)/\tau}}{\sum_{j=1}^N e^{q_t(a_j)/\tau}}$$

where τ is a temperature parameter (start high, then lower it).

– Generalization: replace q_t by a preference function H_t that is learned by stochastic gradient ascent ("gradient bandit").

RWTHAACHEN IIMIVERSITY

Recap: TD-Learning

- · Policy evaluation (the prediction problem)
- For a given policy π , compute the state-value function v_{π} .
- One option: Monte-Carlo methods
- Play through a sequence of actions until a reward is reached, then backpropagate it to the states on the path.

$$V(S_t) \leftarrow V(S_t) + \alpha [\textbf{G}_t - V(S_t)]$$

Target: the actual return after time t

- Temporal Difference Learning TD(λ)
- Directly perform an update using the estimate V(S_{t+λ+1}).

$$V(S_t) \leftarrow V(S_t) + \alpha[R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

Target: an estimate of the return (here: TD(0))

RWTHAACHEN I INIVERSITY

Recap: SARSA - On-Policy TD Control

- Turn the TD idea into a control method by always updating the policy to be greedy w.r.t. the current estimate
- Procedure
- Estimate $q_{\pi}(s,a)$ for the current policy π and for all states s and actions a.
- TD(0) update equation

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

- This rule is applied after every transition from a nonterminal state S_t .
- It uses every element of the quintuple $(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1})$.
- ⇒ Hence, the name SARSA.

RWTHAACHEN UNIVERSITY

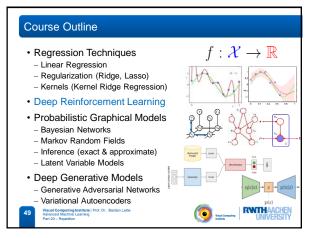
Recap: Q-Learning - Off-Policy TD Control

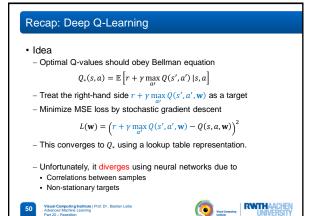
- - Directly approximate the optimal action-value function q_{st} , independent of the policy being followed.
- · Procedure
- TD(0) update equation

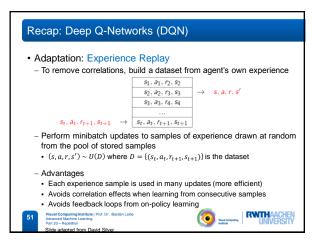
$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

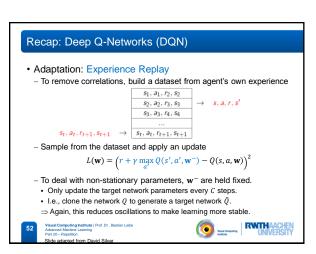
- Dramatically simplifies the analysis of the algorithm.
- All that is required for correct convergence is that all pairs continue to be updated.

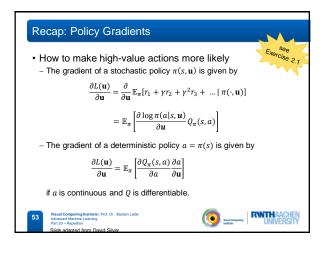
RWTHAACHEN IINIVERSITY

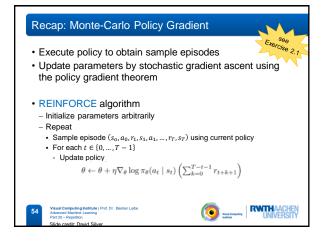












Recap: Deep Policy Gradients (DPG)

- DPG is the continuous analogue of DQN
- Experience replay: build data-set from agent's experience
- Critic estimates value of current policy by DQN

$$L_{\mathbf{w}}(\mathbf{w}) = (r + \gamma Q(s', \pi(s', \mathbf{u}^{-}), \mathbf{w}^{-}) - Q(s, a, \mathbf{w}))^{2}$$

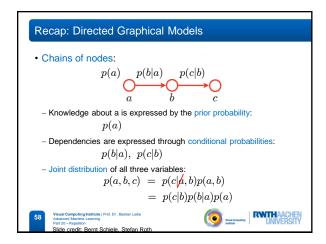
- To deal with non-stationarity, targets $\mathbf{u}^-, \mathbf{w}^-$ are held fixed
- Actor updates policy in direction that improves Q

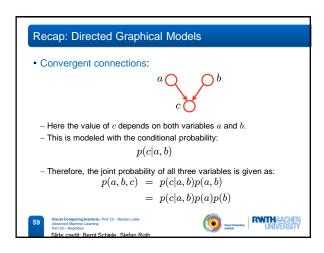
$$\frac{\partial L_{\mathbf{u}}(\mathbf{u})}{\partial \mathbf{u}} = \frac{\partial Q(s, a, \mathbf{w})}{\partial a} \frac{\partial a}{\partial \mathbf{u}}$$

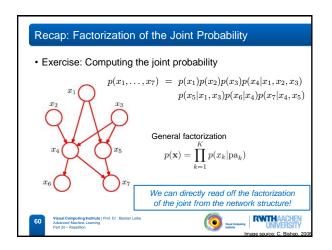
- In other words critic provides loss function for actor.

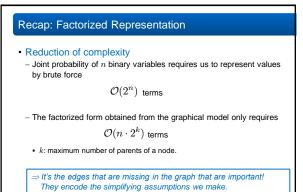
Regression Techniques Linear Regression Regularization (Ridge, Lasso) Kernels (Kernel Ridge Regression) Deep Reinforcement Learning Probabilistic Graphical Models Bayesian Networks Markov Random Fields Inference (exact & approximate) Latent Variable Models Generative Adversarial Networks Variational Autoencoders Variational Autoencoders Variational Autoencoders

Recap: Graphical Models · Two basic kinds of graphical models - Directed graphical models or Bayesian Networks - Undirected graphical models or Markov Random Fields · Key components - Nodes Random variables - Edges Directed Undirected Directed or undirected graphical model graphical model - The value of a random variable may be known or unknown. () unknown known RWTHAACHEN 'INIVERSITY

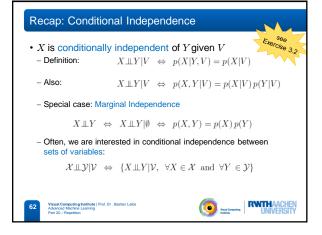


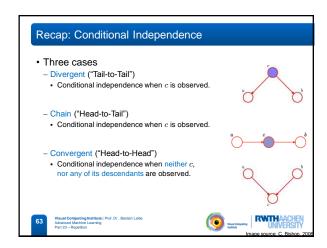


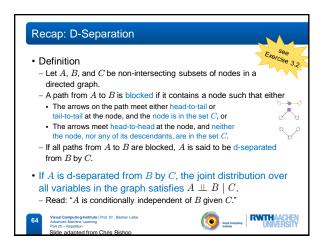


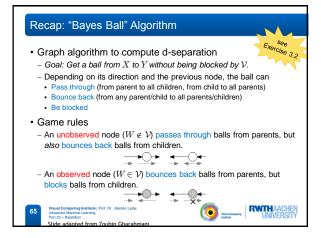


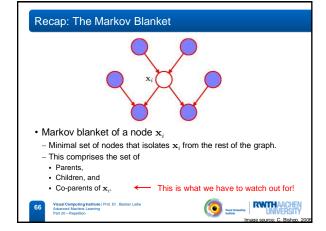
RWTHAACHEN IINIVERSITY

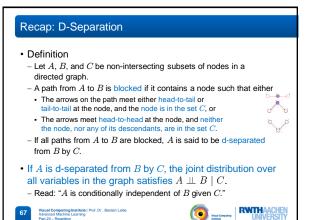


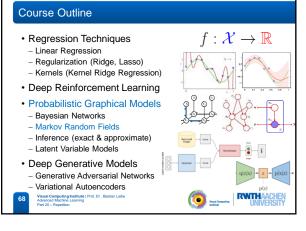


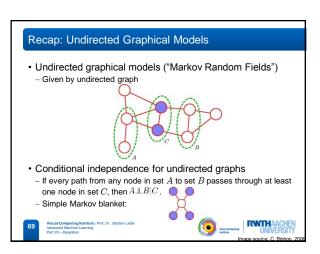


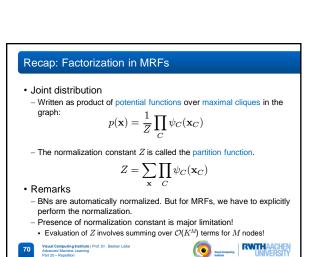


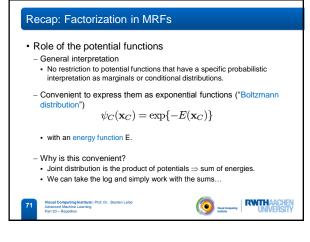


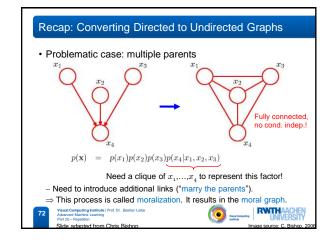












Recap: Conversion Algorithm

- General procedure to convert directed → undirected
 - 1. Add undirected links to marry the parents of each node.
 - 2. Drop the arrows on the original links \Rightarrow
 - 3. Find maximal cliques for each node and initialize all clique potentials to 1.
 - 4. Take each conditional distribution factor of the original directed graph and multiply it into one clique potential.
- Restriction
- Conditional independence properties are often lost!
- Moralization results in additional connections and larger cliques.

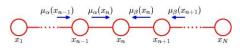
Recap: Computing Marginals

- · How do we apply graphical models?
- Given some observed variables. we want to compute distributions of the unobserved variables.
- In particular, we want to compute marginal distributions, for example $p(x_4)$.

- · How can we compute marginals?
- Classical technique: sum-product algorithm by Judea Pearl.
- In the context of (loopy) undirected models, this is also called (loopy) belief propagation [Weiss, 1997].
- Basic idea: message-passing.

RWTHAACHEN IINIVERSITY

Recap: Message Passing on a Chain



- Idea: Pass messages from the two ends towards the query node x_n .
- Define the messages recursively:

$$\mu_{\alpha}(x_n) = \sum_{x_{n-1}} \psi_{n-1,n}(x_{n-1}, x_n) \mu_{\alpha}(x_{n-1})$$

$$\mu_{\beta}(x_n) = \sum_{x_{n+1}} \psi_{n,n+1}(x_n, x_{n+1}) \mu_{\beta}(x_{n+1})$$

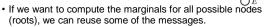
 $x_{n+1} \\ - \text{Compute the normalization constant } Z \text{ at any node } x_m.$

$$Z = \sum_{n} \mu_{\alpha}(x_n) \mu_{\beta}(x_n)$$

RWTHAACHEN

Summary: Message Passing on Trees

- General procedure for all tree graphs.
- Root the tree at the variable that we want to compute the marginal of.
- Start computing messages at the leaves.
- Compute the messages for all nodes for which all incoming messages have already been computed.
- Repeat until we reach the root.

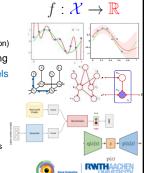


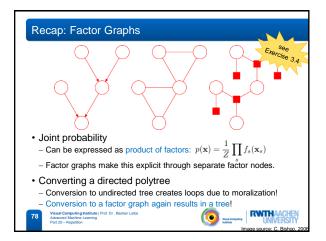
- Computational expense linear in the number of nodes.
- · We already motivated message passing for inference.
- How can we formalize this into a general algorithm?

RWTHAACHEN IINIVERSITY

Course Outline

- · Regression Techniques
 - Linear Regression
- Regularization (Ridge, Lasso)
- Kernels (Kernel Ridge Regression)
- · Deep Reinforcement Learning
- Probabilistic Graphical Models
- Bayesian Networks
- Markov Random Fields
- Inference (exact & approximate)
- Latent Variable Models
- · Deep Generative Models Generative Adversarial Networks
- Variational Autoencoders



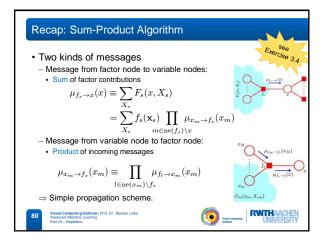


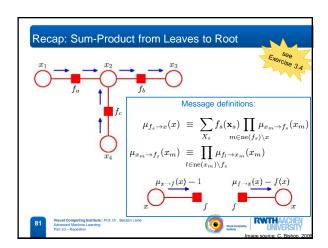
Recap: Sum-Product Algorithm

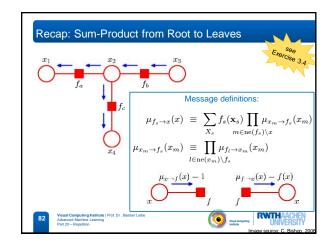
- Objectives
- Efficient, exact inference algorithm for finding marginals.
- · Procedure:
- Pick an arbitrary node as root.
- Compute and propagate messages from the leaf nodes to the root, storing received messages at every node.
- Compute and propagate messages from the root to the leaf nodes, storing received messages at every node.
- Compute the product of received messages at each node for which the marginal is required, and normalize if necessary.

$$p(x) \propto \prod \mu_{f_s \to x}(x)$$

- Computational effort
- Total number of messages = 2 · number of graph edges.







Recap: Max-Sum Algorithm

- · Objective: an efficient algorithm for finding
- Value \mathbf{x}^{\max} that maximises $p(\mathbf{x})$;
- Value of $p(\mathbf{x}^{\max})$.
- \Rightarrow Application of dynamic programming in graphical models.
- Key ideas
- We are interested in the maximum value of the joint distribution

$$p(\mathbf{x}^{\max}) = \max p(\mathbf{x})$$

- \Rightarrow Maximize the product $p(\mathbf{x})$.
- For numerical reasons, use the logarithm.

$$\ln\left(\max_{\mathbf{x}} p(\mathbf{x})\right) = \max_{\mathbf{x}} \ln p(\mathbf{x}).$$

 \Rightarrow Maximize the sum (of log-probabilities).

Recap: Max-Sum Algorithm

· Initialization (leaf nodes)

$$\mu_{x \to f}(x) = 0$$
 $\mu_{f \to x}(x) = \ln f(x)$

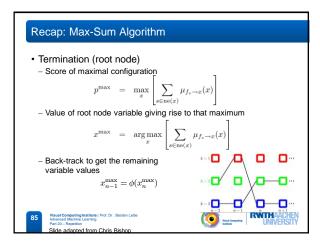
Recursion

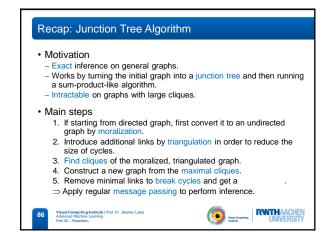
- Messages

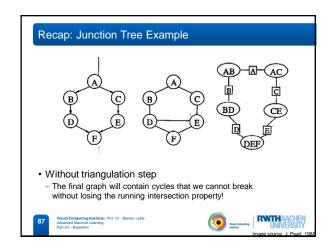
pressages
$$\mu_{f \to x}(x) \quad = \quad \max_{x_1, \dots, x_M} \left[\ln f(x, x_1, \dots, x_M) + \sum_{m \in \operatorname{ne}(f_r) \backslash x} \mu_{x_m \to f}(x_m) \right]$$

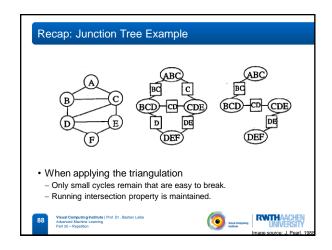
$$\mu_{x \to f}(x) \quad = \quad \sum_{l \in \text{ne}(x) \backslash f} \mu_{f_l \to x}(x)$$

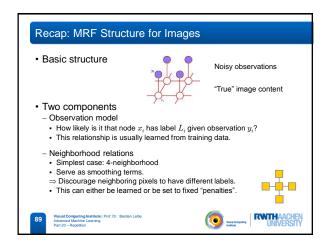
- For each node, keep a record of which values of the variables gave rise to the maximum state: _

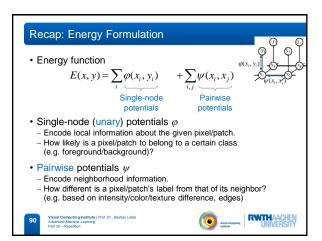


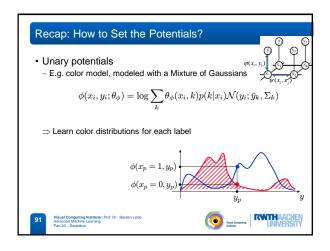


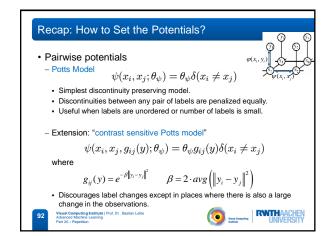


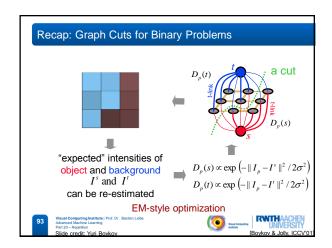


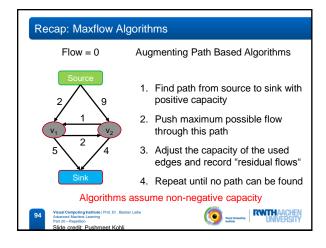


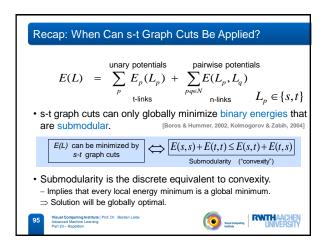


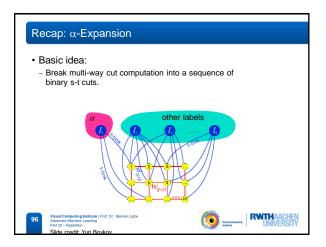


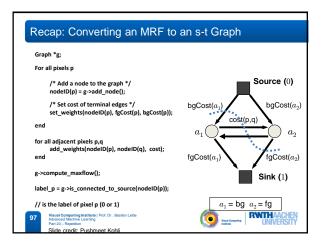


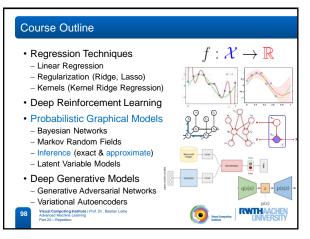


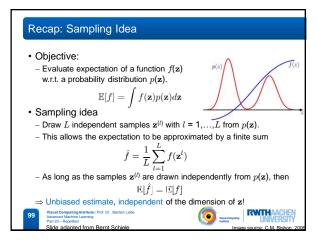


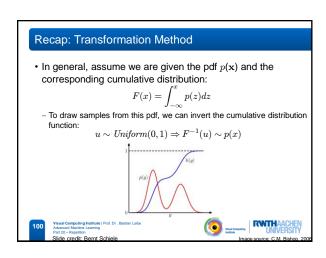


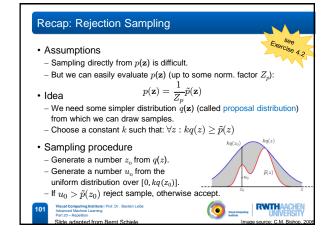


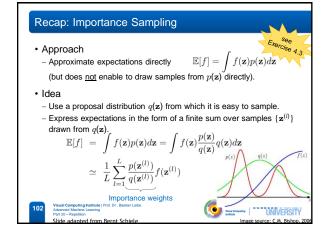












Recap: MCMC - Markov Chain Monte Carlo

- Overview
- Allows to sample from a large class of distributions.
- Scales well with the dimensionality of the sample space.
- We maintain a record of the current state $\mathbf{z}^{(\tau)}$
- The proposal distribution depends on the current state: $q(\mathbf{z}|\mathbf{z}^{(\tau)})$
- The sequence of samples forms a Markov chain $\mathbf{z}^{(1)}, \, \mathbf{z}^{(2)}, \dots$
- At each time step, we generate a candidate sample from the proposal distribution and accept the sample according to a criterion.
- Different variants of MCMC for different criteria.

Recap: Markov Chains - Properties

- · Invariant distribution
- A distribution is said to be invariant (or stationary) w.r.t. a Markov chain if each step in the chain leaves that distribution invariant.
- Transition probabilities:

$$T\left(\mathbf{z}^{(m)}, \mathbf{z}^{(m+1)}\right) = p\left(\mathbf{z}^{(m+1)}|\mathbf{z}^{(m)}\right)$$

– For homogeneous Markov chain, distribution $p^{\star}(\mathbf{z})$ is invariant if:

$$p^{\star}(\mathbf{z}) = \sum_{i} T(\mathbf{z}', \mathbf{z}) p^{\star}(\mathbf{z}')$$

- Detailed balance
- Sufficient (but not necessary) condition to ensure that a distribution is invariant:

$$p^{\star}(\mathbf{z})T(\mathbf{z}, \mathbf{z}') = p^{\star}(\mathbf{z}')T(\mathbf{z}', \mathbf{z})$$

A Markov chain which respects detailed balance is reversible.

Recap: Detailed Balance

- · Detailed balance means
- If we pick a state from the target distribution $p(\mathbf{z})$ and make a transition under T to another state, it is just as likely that we will pick \mathbf{z}_A and go from \mathbf{z}_A to \mathbf{z}_B than that we will pick \mathbf{z}_B and go from \mathbf{z}_B to \mathbf{z}_A .
- It can easily be seen that a transition probability that satisfies detailed balance w.r.t. a particular distribution will leave that distribution invariant, because

$$\begin{split} \sum_{\mathbf{z}'} p^{\star}(\mathbf{z}') T\left(\mathbf{z}', \mathbf{z}\right) &= \sum_{\mathbf{z}'} p^{\star}(\mathbf{z}) T\left(\mathbf{z}, \mathbf{z}'\right) \\ &= p^{\star}(\mathbf{z}) \sum_{\mathbf{z}'} p\left(\mathbf{z}' | \mathbf{z}\right) = p^{\star}(\mathbf{z}) \end{split}$$

Recap: MCMC - Metropolis Algorithm

- · Metropolis algorithm
- Proposal distribution is symmetric: $q(\mathbf{z}_A|\mathbf{z}_B) = q(\mathbf{z}_B|\mathbf{z}_A)$
- The new candidate sample \mathbf{z}^{\star} is accepted with probability

$$A(\mathbf{z}^{\star}, \mathbf{z}^{(\tau)}) = \min\left(1, \frac{\tilde{p}(\mathbf{z}^{\star})}{\tilde{p}(\mathbf{z}^{(\tau)})}\right)$$

- \Rightarrow New candidate samples always accepted if $\tilde{p}(\mathbf{z}^\star) \geq \tilde{p}(\mathbf{z}^{(\tau)})$
- The algorithm sometimes accepts a state with lower probability.
- Metropolis-Hastings algorithm
- Generalization: Proposal distribution not necessarily symmetric.
- The new candidate sample \mathbf{z}^{\star} is accepted with probability

$$A(\mathbf{z}^{\star},\mathbf{z}^{(\tau)}) = \min\left(1,\frac{\tilde{p}(\mathbf{z}^{\star})q_k(\mathbf{z}^{(\tau)}|\mathbf{z}^{\star})}{\tilde{p}(\mathbf{z}^{(\tau)})q_k(\mathbf{z}^{\star}|\mathbf{z}^{(\tau)})}\right)$$
 where k labels the members of the set of considered transitions.

Recap: Gibbs Sampling

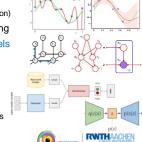
- Approach
- MCMC-algorithm that is simple and widely applicable.
- May be seen as a special case of Metropolis-Hastings.
- Sample variable-wise: replace z_i by a value drawn from the distribution $p(z_i|\mathbf{z}_{\setminus i})$.
- This means we update one coordinate at a time.
- Repeat procedure either by cycling through all variables or by choosing the next variable.
- Properties
- The algorithm always accepts!
- Completely parameter free.
- Can also be applied to subsets of variables.

RWTHAACHEN

Course Outline

- · Regression Techniques
- Linear Regression
- Regularization (Ridge, Lasso)
- Kernels (Kernel Ridge Regression)
- · Deep Reinforcement Learning
- · Probabilistic Graphical Models
- Bayesian Networks
- Markov Random Fields
- Inference (exact & approximate) - Latent Variable Models
- · Deep Generative Models
- Generative Adversarial Networks Variational Autoencoders

Visual Computing Institute | Advanced Machine Learning Part 20 = Receiver

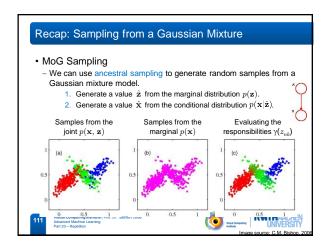


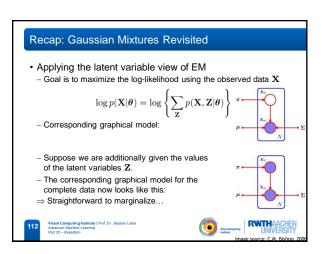
 $f: \mathcal{X} \to \mathbb{R}$

Recap: Mixtures of Gaussians $p(\mathbf{x}) = \sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ $p(j) = \pi_j$ $p(\mathbf{x}|\theta) = \sum_{j=1}^3 \pi_j p(\mathbf{x}|\theta_j)$ $p(\mathbf{x}|\theta_1) = \sum_$

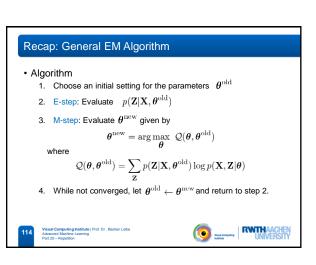
Recap: GMMs as Latent Variable Models Write GMMs in terms of latent variables z – Marginal distribution of x p(x) = ∑_x p(x, z) = ∑_x p(z)p(x|z) = ∑_{k=1}^K π_kN(x|μ_k, Σ_k) • Advantage of this formulation – We have represented the marginal distribution in terms of latent variables z. – Since p(x) = ∑_x p(x, z), there is a corresponding latent variable z_n for each data point x_n. – We are now able to work with the joint distribution p(x, z) instead of the marginal distribution p(x). ⇒ This will lead to significant simplifications...

RWTHAACHEN UNIVERSITY





* In practice, however,... - We are not given the complete data set $\{X,Z\}$, but only the incomplete data X. All we can compute about Z is the posterior distribution $p(Z|X,\theta)$. - Since we cannot use the complete-data log-likelihood, we consider instead its expected value under the posterior distribution of the latent variables: $Q(\theta,\theta^{\text{old}}) = \sum_{Z} p(Z|X,\theta^{\text{old}}) \log p(X,Z|\theta)$ - This corresponds to the E-step of the EM algorithm. - In the subsequent M-step, we then maximize the expectation to obtain the revised parameter set θ^{new} . $\theta^{\text{new}} = \arg\max_{\theta} Q(\theta,\theta^{\text{old}})$



Recap: MAP-EM

- Modification for MAP
- The EM algorithm can be adapted to find MAP solutions for models for which a prior $p(\boldsymbol{\theta})$ is defined over the parameters.
- Only changes needed:
- 2. E-step: Evaluate $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\mathrm{old}})$
- 3. M-step: Evaluate $oldsymbol{ heta}^{\mathrm{new}}$ given by

$$oldsymbol{ heta}^{ ext{new}} = rg \max_{oldsymbol{ heta}} \ \mathcal{Q}(oldsymbol{ heta}, oldsymbol{ heta}^{ ext{old}}) + \log p(oldsymbol{ heta})$$

⇒ Suitable choices for the prior will remove the ML singularities!

RWTHAACHEN LINIVERSITY

Recap: Monte Carlo EM

- EM procedure
- M-step: Maximize expectation of complete-data log-likelihood

$$Q(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) = \int p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta}^{\text{old}}) \log p(\mathbf{X}, \mathbf{Z}|\boldsymbol{\theta}) d\mathbf{Z}$$

- For more complex models, we may not be able to compute this analytically anymore...
- - Use sampling to approximate this integral by a finite sum over samples $\{Z^{(l)}\}$ drawn from the current estimate of the posterior

$$\mathcal{Q}(\boldsymbol{\theta}, \boldsymbol{\theta}^{\text{old}}) \sim \frac{1}{L} \sum_{l=1}^{L} \log p(\mathbf{X}, \mathbf{Z}^{(l)} | \boldsymbol{\theta})$$
 – This procedure is called the Monte Carlo EM algorithm.

Recap: EM as Variational Inference

- · Decomposition
- Introduce a distribution $q(\mathbf{Z})$ over the latent variables. For any choice of $q(\mathbf{Z})$, the following decomposition holds

$$\log p(\mathbf{X}|\theta) = \mathcal{L}(q, \mathbf{\theta}) + KL(q \parallel p)$$

- where

$$\mathcal{L}(q, \mathbf{\theta}) = \sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{X}, \mathbf{Z} | \mathbf{\theta})}{q(\mathbf{Z})} \right\}$$

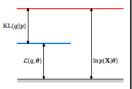
$$\mathit{KL}(q \parallel p) = -\sum_{\mathbf{Z}} q(\mathbf{Z}) \log \left\{ \frac{p(\mathbf{Z} | \mathbf{X}, \boldsymbol{\theta})}{q(\mathbf{Z})} \right\}$$

- $-\mathit{KL}(q \parallel p)$ is the Kullback-Leibler divergence between the distribution $q(\mathbf{Z})$ and the posterior distribution $p(\mathbf{Z} | \mathbf{X}, \boldsymbol{\theta})$.
- $\mathcal{L}(q, \mathbf{\theta})$ is a functional of the distribution $q(\mathbf{Z})$ and a function of the parameters θ . Since $KL \ge 0$, $\mathcal{L}(q, \theta)$ is a lower bound on $\log p(\mathbf{X}|\theta)$.

Recap: Analysis of EM

Decomposition

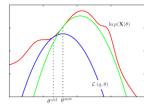
$$\log p(\mathbf{X}|\theta) = \mathcal{L}(q, \mathbf{\theta}) + KL(q \parallel p)$$



- Interpretation
- $-\mathcal{L}(q, \mathbf{\theta})$ is a lower bound on $\log p(\mathbf{X}|\mathbf{\theta})$.
- The approximation comes from the fact that we use an approximative distribution $q(\mathbf{Z}) = p(\mathbf{Z}|\mathbf{X}, \mathbf{\theta}^{old})$ Instead of the (unknown) real posterior.
- The KL divergence measures the difference between the approximative distribution $q(\mathbf{Z})$ and the real posterior $p(\mathbf{Z}|\mathbf{X}, \boldsymbol{\theta})$.
- In every EM iteration, we try to make this difference smaller.

Recap: Analysis of EM

· Visualization in the space of parameters



- The EM algorithm alternately...
 - Computes a lower bound on the log-likelihood for the current parameters values
 - And then maximizes this bound to obtain the new parameter values.

RWTHAACHEN IINIVERSITY

Course Outline

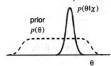
- · Regression Techniques
- Linear Regression
- Regularization (Ridge, Lasso)
- Kernels (Kernel Ridge Regression)
- · Deep Reinforcement Learning
- · Probabilistic Graphical Models
- Bayesian Networks
- Markov Random Fields
- Inference (exact & approximate)
- Bayesian Latent Variable Models
- · Deep Generative Models
- Generative Adversarial Networks Variational Autoencoders

Visual Computing Institute | Advanced Machine Learning Part 20 = Receiver

 $f: \mathcal{X} \to \mathbb{R}$

Recap: Bayesian Estimation

- Conceptual shift
- Maximum Likelihood views the true parameter vector θ to be unknown, but fixed.
- In Bayesian learning, we consider θ to be a random variable.
- This allows us to use knowledge about the parameters heta
- i.e., to use a prior for θ
- Training data then converts this prior distribution on $\boldsymbol{\theta}$ into a posterior probability density.



- The prior thus encodes knowledge we have about the type of distribution we expect to see for θ .

Recap: Bayesian Estimation Discussion Likelihood of the parametric form θ given the data set X. Estimate for x based on Prior for the parametric form θ parameters θ Normalization: integrate over all possible values of $\boldsymbol{\theta}$ \Rightarrow The parameter values θ are not the goal, just a means to an end. RWTHAACHEN UNIVERSITY

Recap: Conjugate Priors

- Problem: How to evaluate the integrals?
- We will see that if likelihood and prior have the same functional form $c \cdot f(x),$ then the analysis will be greatly simplified and the integrals will be solvable in closed form.

$$p(X|\theta)p(\theta) = \prod_{x_n} c_1 f(x_n, \theta) c_2 f(\theta, \alpha)$$
$$= \prod_{x_n} c_1 f(x_n, \theta) c_2 f(\theta, \alpha)$$

- Such an algebraically convenient choice is called a conjugate prior. Whenever possible, we should use it.
- To do this, we need to know for each probability distribution what is its conjugate prior.
- · What to do when we cannot use the conjugate prior? ⇒ Use approximate inference methods.

Recap: The Dirichlet Distribution

- Dirichlet Distribution
- Conjugate prior for the Categorical and the Multinomial distrib.

$$\mathrm{Dir}(\boldsymbol{\mu}|\boldsymbol{\alpha}) = \frac{\Gamma(\alpha_0)}{\Gamma(\alpha_1)\cdots\Gamma(\alpha_K)} \prod_{k=1}^K \mu_k^{\alpha_k-1} \qquad \text{with} \qquad \alpha_0 = \sum_{k=1}^K \alpha_k$$

– Symmetric version (with concentration parameter α)

$$\operatorname{Dir}(\boldsymbol{\mu}|\alpha) = \frac{\Gamma(\alpha)}{\Gamma(\alpha/K)^K} \prod_{k=1}^K \mu_k^{\alpha/K-1}$$

(symmetric version) - Properties

$$\mathbb{E}[\mu_k] = \frac{\alpha_k}{\alpha_0} = \frac{1}{K}$$

$$\operatorname{var}[\mu_k] = \frac{\alpha_k(\alpha_0 - \alpha_k)}{\alpha_0^2(\alpha_0 + 1)} = \frac{K - 1}{K^2(\alpha + 1)}$$

$$\operatorname{ov}[\mu_k \mu_k] = -\frac{\alpha_j \alpha_k}{1} = \frac{1}{K^2(\alpha + 1)}$$

 $\operatorname{cov}[\mu_j \mu_k] = -\frac{\alpha_j \alpha_n}{\alpha_0^2(\alpha_0 + 1)}$

Recap: Bayesian Mixture Models

- · Let's be Bayesian about mixture models
- Place priors over our parameters
- Again, introduce variable \mathbf{z}_n as indicator which component data point \mathbf{x}_n belongs to.

$$\mathbf{z}_n | \boldsymbol{\pi} \sim \text{Multinomial}(\boldsymbol{\pi})$$

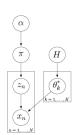
 $\mathbf{x}_n | \mathbf{z}_n = k, \boldsymbol{\mu}, \boldsymbol{\Sigma} \sim \mathcal{N}(\boldsymbol{\mu}_k, \Sigma_k)$

- Introduce conjugate priors over parameters

$$\pi \sim \operatorname{Dirichlet}(\frac{\alpha}{K}, \dots, \frac{\alpha}{K})$$

"Normal - Inverse Wishart"

 $\mu_k, \Sigma_k \sim H = \mathcal{N} - \mathcal{IW}(0, s, d, \phi)$



Recap: Bayesian Mixture Models

- · Full Bayesian Treatment
- Given a dataset, we are interested in the cluster assignments

$$p(\mathbf{Z}|\mathbf{X}) = \frac{p(\mathbf{X}|\mathbf{Z})p(\mathbf{Z})}{\sum_{\mathbf{Z}} p(\mathbf{X}|\mathbf{Z})p(\mathbf{Z})}$$

where the likelihood is obtained by marginalizing over the parameters $\boldsymbol{\theta}$ $p(\mathbf{X}|\mathbf{Z}) = \int p(\mathbf{X}|\mathbf{Z}, \boldsymbol{\theta}) p(\boldsymbol{\theta}) d\boldsymbol{\theta}$

$$= \int \prod_{k=1}^{N} \prod_{k=1}^{K} p(\mathbf{x}_{n}|z_{nk}, \boldsymbol{\theta}_{k}) p(\boldsymbol{\theta}_{k}|H) d\boldsymbol{\theta}$$

- · The posterior over assignments is intractable!
- Denominator requires summing over all possible partitions of the data into K groups!
- ⇒ Need efficient approximate inference methods to solve this...

RWITHAACHEN

Recap: Mixture Models with Dirichlet Priors

• Integrating out the mixing proportions π

$$\begin{split} p(\mathbf{z}|\alpha) &= \int p(\mathbf{z}|\pi) p(\pi|\alpha) \mathrm{d}\pi \\ &= \frac{\Gamma(\alpha)}{\Gamma(N+\alpha)} \prod_{k=1}^K \frac{\Gamma(N_k + \alpha/K)}{\Gamma(\alpha/K)} \end{split}$$

- · Conditional probabilities
- Examine the conditional of \mathbf{z}_n given all other variables \mathbf{z}_n

$$\begin{split} p(z_{nk} = 1 | \mathbf{z}_{-n}, \alpha) &= \frac{p(z_{nk} = 1, \mathbf{z}_{-n} | \alpha)}{p(\mathbf{z}_{-n} | \alpha)} \\ &= \frac{N_{-n,k} + \alpha/K}{N - 1 + \alpha} \qquad N_{-n,k} \stackrel{\text{def}}{=} \sum_{i=1, i \neq n}^{N} z_{ik} \\ \Rightarrow \text{The more populous a class is, the more likely it is to be joined!} \end{split}$$

RWTHAAC

RWTHAACHEN

Recap: Infinite Dirichlet Mixture Models $\text{ • Conditional probabilities: Finite } K \\ p(z_{nk}=1|\mathbf{z}_{-n},\alpha) = \frac{N_{-n,k}+\alpha/K}{N-1+\alpha}, \qquad N_{-n,k} \stackrel{\text{def}}{=} \sum_{i=1,i\neq n}^{N} z_{ik} \\ \text{ • Conditional probabilities: Infinite } K \\ \text{ - Taking the limit as } K \to \infty \text{ yields the conditionals} \\ p(z_{nk}=1|\mathbf{z}_{-n},\alpha) = \begin{cases} \frac{N_{-n,k}}{N-1+\alpha} & \text{if } k \text{ represented} \\ \frac{\alpha}{N-1+\alpha} & \text{if all } k \text{ not represented} \\ \text{ - Left-over mass } \alpha \Rightarrow \text{ countably infinite number of indicator settings} \end{cases}$

Recap: Gibbs Sampling for Finite Mixtures • We need approximate inference here – Gibbs Sampling: Conditionals are simple to compute $p(\mathbf{z}_n = k|\text{others}) \propto \sum_{k=1}^{K} \pi_k \mathcal{N}(\mathbf{x}_n|\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)$ $\pi \mid \mathbf{z} \sim \text{Dir}(N_1 + \alpha/K, \dots, N_K + \alpha/K)$ $\boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k | \text{others} \sim \mathcal{N} - \mathcal{I}\mathcal{W}(v', s', d', \phi')$ • However, this will be rather inefficient... – In each iteration, algorithm can only change the assignment for individual data points. – There are often groups of data points that are associated with high probability to the same component. \Rightarrow Unlikely that group is moved. – Better performance by collapsed Gibbs sampling

which integrates out the parameters π , μ , Σ

