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Announcements

• Today, I’ll summarize the most important points from the 

lecture.
 It is an opportunity for you to ask questions…

 …or get additional explanations about certain topics.

 So, please do ask.

• Today’s slides are intended as an index for the lecture.
 Summarizing the most important points from each class

 But they are not complete, won’t be sufficient as only tool.

 Also look at the exercises – they often explain algorithms in detail.

• Exam procedure
 Closed-book exam, the core exam time will be 2h.

 We will send around an announcement with the exact starting times 

and places by email.
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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Recap: Regression

• Learning to predict a continuous function value

 Given: training set X = {x1, …, xN}

with target values  T = {t1, …, tN}.

 Learn a continuous function y(x) to predict the function value for a 

new input x.

• Define an error function E(w) to optimize

 E.g., sum-of-squares error

 Procedure: Take the derivative and set it to zero

Image source: C.M. Bishop, 2006
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Recap: Least-Squares Regression

• Setup
 Step 1: Define

 Step 2: Rewrite

 Step 3: Matrix-vector notation

 Step 4: Find least-squares solution

 Solution:

~xi =

µ
xi
1

¶
; ~w =

µ
w

w0

¶

with

Slide credit: Bernt Schiele
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Recap: Regularization

• Problem: Overfitting
 Many parameters & little data  tendency to overfit to the noise

 Side effect: The coefficient values get very large.

• Workaround: Regularization
 Penalize large coefficient values

 Here we’ve simply added a quadratic regularizer, which is simple to 

optimize

 The resulting  form of the problem is called Ridge Regression.

 (Note: w0 is often omitted from the regularizer.)
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Recap: Probabilistic Regression

• First assumption: 

 Our target function values y are generated by adding noise to the 

function estimate:

• Second assumption:
 The noise is Gaussian distributed

Target function

value

Regression function Input value Weights or

parameters

Noise

Mean Variance

(¯ precision)

Slide credit: Bernt Schiele
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Recap: Maximum Likelihood Regression

• Given
 Training data points:

 Associated function values:

• Conditional likelihood (assuming i.i.d. data)

 Maximize w.r.t. w, ¯
Generalized linear

regression function

Slide credit: Bernt Schiele

X = [x1; : : : ;xn] 2 Rd£n

t = [t1; : : : ; tn]T
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Recap: Maximum Likelihood Regression

• Setting the gradient to zero:

 Least-squares regression is equivalent to Maximum Likelihood under 

the assumption of Gaussian noise.

Same as in least-squares

regression!

Slide credit: Bernt Schiele

©= [Á(x1); : : : ; Á(xn)]
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Recap: Role of the Precision Parameter

• Also use ML to determine the precision parameter ¯:

• Gradient w.r.t. ¯:

 The inverse of the noise precision is given by the residual variance 

of the target values around the regression function.
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Recap: Predictive Distribution

• Having determined the parameters w and ¯, we can now 

make predictions for new values of x.

• This means
 Rather than giving a point

estimate, we can now also 

give an estimate of the 

estimation uncertainty.

Image source: C.M. Bishop, 2006
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• Introduce a prior distribution over the coefficients w.

 For simplicity, assume a zero-mean Gaussian distribution

 New hyperparameter ® controls the distribution of model parameters.

• Express the posterior distribution over w.

 Using Bayes’ theorem:

 We can now determine w by maximizing the posterior.

 This technique is called maximum-a-posteriori (MAP).

Recap: Maximum-A-Posteriori Estimation
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Recap: MAP Solution

• Minimize the negative logarithm

• The MAP solution is therefore the solution of

 Maximizing the posterior distribution is equivalent to minimizing the 

regularized sum-of-squares error (with             ).
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• Setting the gradient to zero:

©= [Á(x1); : : : ; Á(xn)]

Effect of regularization:

Keeps the inverse 

well-conditioned

Recap: MAP Solution (2)
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Recap: Bayesian Curve Fitting

• Given
 Training data points:

 Associated function values:

 Our goal is to predict the value of t for a new point x.

• Evaluate the predictive distribution

 Noise distribution – again assume a Gaussian here

 Assume that parameters ® and ¯ are fixed and known for now.

X = [x1; : : : ;xn] 2 Rd£n

t = [t1; : : : ; tn]T

What we just computed for MAP
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Recap: Bayesian Curve Fitting

• Under those assumptions, the posterior distribution is a 

Gaussian and can be evaluated analytically:

 where the mean and variance are given by

 and S is the regularized covariance matrix

Image source: C.M. Bishop, 2006
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Recap: Loss Functions for Regression

• Optimal prediction
 Minimize the expected loss

 Under squared loss, the optimal regression function is the 

mean E [t|x] of the posterior p(t|x) (“mean prediction”).

 For generalized linear regression function and squared loss:

Slide adapted from Stefan Roth Image source: C.M. Bishop, 2006

Mean prediction
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Recap: Loss Functions for Regression

• The squared loss is not the only possible choice

 Poor choice when conditional distribution p(t|x) is multimodal.

• Simple generalization: Minkowski loss

 Expectation

• Minimum of E[Lq] is given by  

 Conditional mean    for q = 2,

 Conditional median for q = 1,

 Conditional mode    for q = 0.

E[Lq] =

Z Z
jy(x)¡ tjqp(x; t)dxdt
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• Generally, we consider models of the following form

 where Áj(x) are known as basis functions.

 In the simplest case, we use linear basis functions: Ád(x) = xd.

• Other popular basis functions

Polynomial Gaussian Sigmoid

Recap: Linear Basis Function Models
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Recap: Regularized Least-Squares

• Consider more general regularization functions

 “Lq norms”:

• Effect: Sparsity for q  1.

 Minimization tends to set many coefficients to zero

Image source: C.M. Bishop, 2006
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Recap: Lasso as Bayes Estimation

• L1 regularization (“The Lasso”)

• Interpretation as Bayes Estimation

 We can think of |wj|
q as the log-prior density for wj.

• Prior for Lasso (q = 1): Laplacian distribution

with

Image source: Wikipedia
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Recap: The Lasso

• L1 regularization (“The Lasso”)

 The solution will be sparse (only few coefficients non-zero)

 The L1 penalty makes the problem non-linear.

 There is no closed-form solution.

• Interpretation as Bayes Estimation

 We can think of |wj|
q as the log-prior density for wj.

• Prior for Lasso (q = 1): 

 Laplacian distribution

with

Image source: Wikipedia
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Recap: Kernel Ridge Regression

• Dual definition

 Instead of working with w, substitute w = ©Ta into J(w) and write the 

result using the kernel matrix K = ©©T :

 Solving for a, we obtain

• Prediction for a new input x:

 Writing k(x) for the vector with elements

 The dual formulation allows the solution to be entirely expressed in 

terms of the kernel function k(x,x’).

Image source: Christoph Lampert
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Recap: Properties of Kernels

• Theorem
 Let k: X × X ! R be a positive definite kernel function. Then there 

exists a Hilbert Space H and a mapping ' : X ! H such that

 where h. , .iH is the inner product in H.

• Translation
 Take any set X and any function k : X × X ! R.

 If k is a positive definite kernel, then we can use k to learn a classifier 

for the elements in X!

• Note

 X can be any set, e.g. X = "all videos on YouTube" or X = "all 

permutations of {1, . . . , k}", or X = "the internet".

Slide credit: Christoph Lampert
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Recap: The “Kernel Trick”

Any algorithm that uses data only in the form 

of inner products can be kernelized.

• How to kernelize an algorithm
 Write the algorithm only in terms of inner products.

 Replace all inner products by kernel function evaluations.

 The resulting algorithm will do the same as the linear 
version, but in the (hidden) feature space H.

 Caveat: working in H is not a guarantee for better performance. A good 

choice of k and model selection are important!

Slide credit: Christoph Lampert
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Recap: How to Check if a Function is a Kernel

• Problem:
 Checking if a given k : X × X ! R fulfills the conditions for a kernel is 

difficult:

 We need to prove or disprove

for any set x1,… , xn 2 X and any t 2 Rn for any n 2 N.

• Workaround:

 It is easy to construct functions k that are positive definite kernels.

Slide credit: Christoph Lampert
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Recap: Reinforcement Learning

• Motivation
 General purpose framework for decision making.

 Basis: Agent with the capability to interact with its environment

 Each action influences the agent’s future state.

 Success is measured by a scalar reward signal.

 Goal: select actions to maximize future rewards.

 Formalized as a partially observable Markov decision process 

(POMDP)

Slide adapted from: David Silver, Sergey Levine
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Recap: The Agent–Environment Interface

• Let’s formalize this
 Agent and environment interact at discrete time 

steps 𝑡 = 0, 1, 2, …

 Agent observes state at time 𝑡: 𝑆𝑡 ∈ 𝒮

 Produces an action at time 𝑡: 𝐴𝑡 ∈ 𝒜(𝑆𝑡)

 Gets a resulting reward 𝑅𝑡+1 ∈ ℛ ⊂ ℝ

 And a resulting next state: 𝑆𝑡+1

Slide adapted from: Sutton & Barto
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Recap: Reward vs. Return

• Objective of learning
 We seek to maximize the expected return 𝐺𝑡 as some 

function of the reward sequence 𝑅𝑡+1, 𝑅𝑡+2, 𝑅𝑡+3, …

 Standard choice: expected discounted return

where 0 ≤ 𝛾 ≤ 1 is called the discount rate.

• Difficulty
 We don’t know which past actions caused the reward.

 Temporal credit assignment problem

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + … = 

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1
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Recap: Markov Decision Process (MDP)

• Markov Decision Processes
 We consider decision processes that fulfill the Markov property.

 I.e., where the environments response at time 𝑡 depends only on the 

state and action representation at 𝑡.

• To define an MDP, we need to specify
 State and action sets

 One-step dynamics defined by state transition probabilities

 Expected rewards for next state-action-next-state triplets

𝑝 𝑠′ 𝑠, 𝑎 = Pr 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 

𝑟∈ℛ

𝑝 𝑠′, 𝑟 𝑠, 𝑎)

𝑟 𝑠, 𝑎, 𝑠′ = 𝔼 𝑅𝑡+1| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝑆𝑡+1 = 𝑠′ =
σ𝑟∈ℛ 𝑟 𝑝(𝑠

′, 𝑟|𝑠, 𝑎)

𝑝(𝑠′|𝑠, 𝑎)
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Recap: Policy

• Definition
 A policy determines the agent’s behavior

 Map from state to action 𝜋: 𝒮 → 𝒜

• Two types of policies
 Deterministic policy: 𝑎 = 𝜋(𝑠)

 Stochastic policy: 𝜋 𝑎 𝑠 = Pr 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠

• Note
 𝜋 𝑎 𝑠 denotes the probability of taking action 𝑎 when in state 𝑠.



37
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 20 – Repetition

Recap: Value Function

• Idea
 Value function is a prediction of future reward

 Used to evaluate the goodness/badness of states

 And thus to select between actions

• Definition
 The value of a state 𝑠 under a policy 𝜋, denoted 𝑣𝜋 𝑠 , is the expected 

return when starting in 𝑠 and following 𝜋 thereafter.

 The value of taking action 𝑎 in state 𝑠 under a policy 𝜋, 

denoted 𝑞𝜋 𝑠, 𝑎 , is the expected return starting from 𝑠, 
taking action 𝑎, and following 𝜋 thereafter.

𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝔼𝜋 σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠

𝑞𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 𝔼𝜋 σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
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Recap: Optimal Value Functions

• Bellman optimality equations
 For the optimal state-value function 𝑣∗:

 𝑣∗ is the unique solution to this system of nonlinear equations.

 For the optimal action-value function 𝑞∗:

 𝑞∗ is the unique solution to this system of nonlinear equations.

 If the dynamics of the environment 𝑝 𝑠′, 𝑟 𝑠, 𝑎 are known, then in 

principle one can solve those equation systems.

𝑣∗ 𝑠 = max
𝑎∈𝒜(𝑠)

𝑞𝜋∗ 𝑠, 𝑎

= max
𝑎∈𝒜(𝑠)



𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣∗ 𝑠
′

𝑞∗ 𝑠, 𝑎 =

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾max
𝑎′

𝑞∗ 𝑠
′, 𝑎′
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Recap: Optimal Policies

• Why optimal state-value functions are useful
 Any policy that is greedy w.r.t. 𝑣∗ is an optimal policy.

 Given 𝑣∗, one-step-ahead search produces the long-term 

optimal results.

 Given 𝑞∗, we do not even have to do one-step-ahead search

• Challenge
 Many interesting problems have too many states for solving 𝑣∗.

 Many Reinforcement Learning methods can be understood as 

approximately solving the Bellman optimality equations, using actually 

observed transitions instead of the ideal ones.

𝜋∗ 𝑠 = argmax
𝑎∈𝒜 𝑠

𝑞∗ 𝑠, 𝑎
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Recap: Taxonomy of RL methods

Slide Credit: Zac Kenton
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Recap: Tabular vs. Approximate methods

• Tabular methods
 For problems with small discrete state and action spaces

 Value function or Policy function can be expressed as a table of values. 

• Approximate methods
 If we cannot enumerate our states or actions we use function 

approximation.

 E.g., Kernel methods, Deep Learning / Neural Networks

• In practice, large problems with huge state spaces 
 E.g. chess: 10120 states.

 Tabular methods don’t scale well – they are a lookup table

 Too many states to store in memory

 Too slow to learn value function for every state/state-action.
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Recap: Model-based vs Model-free

• Model-based
 Has a model of the environment dynamics and reward

 Allows agent to plan: predict state and reward before taking action

 Pro: Better sample efficiency

 Con: Agent only as good as the environment - Model-bias

• Model-free
 No explicit model of the environment dynamics and reward

 Less structured. More popular and further developed and tested.

 Pro: Can be easier to implement and tune

 Con: Very sample inefficient
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Recap: Value-based RL vs Policy-based RL

• Policy-based RL
 RL methods directly estimate a policy

 A direct mapping of what action to take in each state.

𝜋 𝑎 𝑠 = P(a|s, 𝜃)

• Value-based RL 
 RL methods estimate a value function and derive a policy from that

 Either a state-value function
𝑉 𝑠; 𝜃 ≈ 𝑉𝜋(s)

 Or an action-state value function (Q function)
𝑄 𝑠, 𝑎; 𝜃 ≈ 𝑄𝜋(s, a)

• Or both simultaneously: Actor-Critic
 Actor-Critic methods learn both a policy (actor) and a value function 

(critic)
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Recap: Exploration-Exploitation Trade-off

• Example: N-armed bandit problem
 Suppose we have the choice between
𝑁 actions 𝑎1, … , 𝑎𝑁.

 If we knew their value functions 𝑞∗(𝑠, 𝑎𝑖),
it would be trivial to choose the best.

 However, we only have estimates based
on our previous actions and their returns.

• We can now
 Exploit our current knowledge 

 And choose the greedy action that has the highest value based on our 
current estimate.

 Explore to gain additional knowledge
 And choose a non-greedy action to improve our estimate of that action’s 

value.

Image source: research.microsoft.com



45
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 20 – Repetition

Recap: Simple Action Selection Strategies

• ϵ-greedy
 Select the greedy action with probability 1 − 𝜖 and a random one in 

the remaining cases.

 In the limit, every action will be sampled infinitely often.

 Probability of selecting the optimal action becomes > (1 − 𝜖).

 But: many bad actions are chosen along the way.

• Softmax
 Choose action 𝑎𝑖 at time 𝑡 according to the softmax function

where 𝜏 is a temperature parameter (start high, then lower it).

 Generalization: replace 𝑞𝑡 by a preference function 𝐻𝑡 that is learned 

by stochastic gradient ascent (“gradient bandit”).

𝑒𝑞𝑡(𝑎𝑖)/𝜏

σ𝑗=1
𝑁 𝑒𝑞𝑡(𝑎𝑗)/𝜏
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• Policy evaluation (the prediction problem)
 For a given policy 𝜋, compute the state-value function 𝑣𝜋.

• One option: Monte-Carlo methods
 Play through a sequence of actions until a reward is reached, then 

backpropagate it to the states on the path.

• Temporal Difference Learning – TD(𝜆)
 Directly perform an update using the estimate 𝑉(𝑆𝑡+𝜆+1).

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝐺𝑡 − 𝑉(𝑆𝑡)

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)

Target: the actual return after time 𝑡

Target: an estimate of the return (here: TD(0))

Recap: TD-Learning
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Recap: SARSA – On-Policy TD Control

• Idea
 Turn the TD idea into a control method by always updating the policy to 

be greedy w.r.t. the current estimate

• Procedure
 Estimate 𝑞𝜋(𝑠, 𝑎) for the current policy 𝜋 and for all states 𝑠 and 

actions 𝑎.

 TD(0) update equation

 This rule is applied after every transition from a nonterminal state 𝑆𝑡.

 It uses every element of the quintuple (𝑆𝑡 , 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1).

 Hence, the name SARSA.

𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄(𝑆𝑡 , 𝐴𝑡)
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• Idea
 Directly approximate the optimal action-value function 𝑞∗, independent 

of the policy being followed.

• Procedure
 TD(0) update equation

 Dramatically simplifies the analysis of the algorithm.

 All that is required for correct convergence is that all pairs continue to 

be updated.

𝑄 𝑆𝑡 , 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝑆𝑡+1, 𝑎 − 𝑄(𝑆𝑡 , 𝐴𝑡)

Recap: Q-Learning – Off-Policy TD Control
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 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Recap: Deep Q-Learning

• Idea
 Optimal Q-values should obey Bellman equation

 Treat the right-hand side 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝐰 as a target

 Minimize MSE loss by stochastic gradient descent

 This converges to 𝑄∗ using a lookup table representation.

 Unfortunately, it diverges using neural networks due to

 Correlations between samples

 Non-stationary targets

Slide adapted from David Silver

𝑄∗ 𝑠, 𝑎 = 𝔼 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′ |𝑠, 𝑎

𝐿(𝐰) = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝐰 − 𝑄 𝑠, 𝑎,𝐰
2
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• Adaptation: Experience Replay
 To remove correlations, build a dataset from agent’s own experience

 Perform minibatch updates to samples of experience drawn at random 

from the pool of stored samples 

 𝑠, 𝑎, 𝑟, 𝑠′ ~ 𝑈 𝐷 where 𝐷 = (𝑠𝑡 , 𝑎𝑡, 𝑟𝑡+1, 𝑠𝑡+1) is the dataset

 Advantages 

 Each experience sample is used in many updates (more efficient)

 Avoids correlation effects when learning from consecutive samples

 Avoids feedback loops from on-policy learning

Recap: Deep Q-Networks (DQN)

Slide adapted from David Silver
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• Adaptation: Experience Replay
 To remove correlations, build a dataset from agent’s own experience

 Sample from the dataset and apply an update

 To deal with non-stationary parameters, 𝐰− are held fixed.

 Only update the target network parameters every 𝐶 steps.

 I.e., clone the network 𝑄 to generate a target network 𝑄.

 Again, this reduces oscillations to make learning more stable.

𝐿(𝐰) = 𝑟 + 𝛾max
𝑎′

𝑄 𝑠′, 𝑎′, 𝐰− − 𝑄 𝑠, 𝑎,𝐰
2

Slide adapted from David Silver

Recap: Deep Q-Networks (DQN)
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Recap: Policy Gradients

• How to make high-value actions more likely
 The gradient of a stochastic policy 𝜋 𝑠, 𝐮 is given by

 The gradient of a deterministic policy 𝑎 = 𝜋(𝑠) is given by

if 𝑎 is continuous and 𝑄 is differentiable.

𝜕𝐿(𝐮)

𝜕𝐮
=

𝜕

𝜕𝐮
𝔼𝜋 𝑟1 + 𝛾𝑟2 + 𝛾2𝑟3 + … | 𝜋(∙, 𝐮)

= 𝔼𝜋
𝜕 log𝜋 𝑎 𝑠, 𝒖

𝜕𝒖
𝑄𝜋(𝑠, 𝑎)

𝜕𝐿(𝐮)

𝜕𝐮
= 𝔼𝜋

𝜕𝑄𝜋(𝑠, 𝑎)

𝜕𝑎

𝜕𝑎

𝜕𝐮

Slide adapted from David Silver
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Recap: Monte-Carlo Policy Gradient

• Execute policy to obtain sample episodes

• Update parameters by stochastic gradient ascent using

the policy gradient theorem

• REINFORCE algorithm
 Initialize parameters arbitrarily

 Repeat

 Sample episode 𝑠𝑜, 𝑎0, 𝑟1, 𝑠1, 𝑎1, … , 𝑟𝑇 , 𝑠𝑇 using current policy

 For each 𝑡 ∈ 0, … , 𝑇 − 1

- Update policy

Slide credit: David Silver
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Recap: Deep Policy Gradients (DPG)

• DPG is the continuous analogue of DQN
 Experience replay: build data-set from agent's experience

 Critic estimates value of current policy by DQN

 To deal with non-stationarity, targets 𝐮−, 𝐰−are held fixed

 Actor updates policy in direction that improves Q

 In other words critic provides loss function for actor.

𝐿𝐰(𝐰) = 𝑟 + 𝛾𝑄 𝑠′, 𝜋(𝑠′, 𝐮−),𝐰− − 𝑄 𝑠, 𝑎,𝐰
2

𝜕𝐿𝐮(𝐮)

𝜕𝐮
=
𝜕𝑄(𝑠, 𝑎,𝐰)

𝜕𝑎

𝜕𝑎

𝜕𝐮

Slide credit: David Silver
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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Recap: Graphical Models

• Two basic kinds of graphical models
 Directed graphical models or Bayesian Networks

 Undirected graphical models or Markov Random Fields

• Key components

 Nodes

 Random variables

 Edges

 Directed or undirected

 The value of a random variable may be known or unknown.

Slide credit: Bernt Schiele

Directed

graphical model

Undirected

graphical model

unknown known
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Recap: Directed Graphical Models

• Chains of nodes:

 Knowledge about a is expressed by the prior probability:

 Dependencies are expressed through conditional probabilities:

 Joint distribution of all three variables:

Slide credit: Bernt Schiele, Stefan Roth

p(a; b; c) = p(cja; b)p(a; b)

= p(cjb)p(bja)p(a)

p(cjb)p(bja)p(a)

p(bja);

p(a)

p(cjb)
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Recap: Directed Graphical Models

• Convergent connections:

 Here the value of c depends on both variables a and b.

 This is modeled with the conditional probability:

 Therefore, the joint probability of all three variables is given as:

p(a; b; c) = p(cja; b)p(a; b)

= p(cja; b)p(a)p(b)

p(cja; b)

Slide credit: Bernt Schiele, Stefan Roth
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Recap: Factorization of the Joint Probability

• Exercise: Computing the joint probability

General factorization

Image source: C. Bishop, 2006

p(x1; : : : ; x7) = p(x1)p(x2)p(x3)p(x4jx1; x2; x3)
p(x5jx1; x3)p(x6jx4)p(x7jx4; x5)

We can directly read off the factorization

of the joint from the network structure!
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Recap: Factorized Representation

• Reduction of complexity

 Joint probability of n binary variables requires us to represent values 

by brute force

 The factorized form obtained from the graphical model only requires

 k: maximum number of parents of a node.

O(2n) terms

O(n ¢ 2k) terms

Slide credit: Bernt Schiele, Stefan Roth

 It’s the edges that are missing in the graph that are important! 

They encode the simplifying assumptions we make.
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Recap: Conditional Independence

• X is conditionally independent of Y given V

 Definition:

 Also:

 Special case: Marginal Independence

 Often, we are interested in conditional independence between 

sets of variables:
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Recap: Conditional Independence

• Three cases
 Divergent (“Tail-to-Tail”)

 Conditional independence when c is observed.

 Chain (“Head-to-Tail”)

 Conditional independence when c is observed.

 Convergent (“Head-to-Head”)

 Conditional independence when neither c,

nor any of its descendants are observed.

Image source: C. Bishop, 2006



64
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 20 – Repetition

Recap: D-Separation

• Definition

 Let A, B, and C be non-intersecting subsets of nodes in a 

directed graph.

 A path from A to B is blocked if it contains a node such that either

 The arrows on the path meet either head-to-tail or 

tail-to-tail at the node, and the node is in the set C, or

 The arrows meet head-to-head at the node, and neither 

the node, nor any of its descendants, are in the set C.

 If all paths from A to B are blocked, A is said to be d-separated

from B by C. 

• If A is d-separated from B by C, the joint distribution over 

all variables in the graph satisfies                   .

 Read: “A is conditionally independent of B given C.”

Slide adapted from Chris Bishop
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Recap: “Bayes Ball” Algorithm

• Graph algorithm to compute d-separation

 Goal: Get a ball from X to Y without being blocked by V.

 Depending on its direction and the previous node, the ball can

 Pass through (from parent to all children, from child to all parents)

 Bounce back (from any parent/child to all parents/children)

 Be blocked

• Game rules

 An unobserved node (W  V) passes through balls from parents, but 

also bounces back balls from children.

 An observed node (W 2 V) bounces back balls from parents, but 

blocks balls from children.

Slide adapted from Zoubin Gharahmani
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Recap: The Markov Blanket

• Markov blanket of a node xi

 Minimal set of nodes that isolates xi from the rest of the graph.

 This comprises the set of

 Parents,

 Children, and

 Co-parents of xi. This is what we have to watch out for!

Image source: C. Bishop, 2006
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Recap: D-Separation

• Definition

 Let A, B, and C be non-intersecting subsets of nodes in a 

directed graph.

 A path from A to B is blocked if it contains a node such that either

 The arrows on the path meet either head-to-tail or 

tail-to-tail at the node, and the node is in the set C, or

 The arrows meet head-to-head at the node, and neither 

the node, nor any of its descendants, are in the set C.

 If all paths from A to B are blocked, A is said to be d-separated

from B by C. 

• If A is d-separated from B by C, the joint distribution over 

all variables in the graph satisfies                   .

 Read: “A is conditionally independent of B given C.”

Slide adapted from Chris Bishop



68
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 20 – Repetition

Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Recap: Undirected Graphical Models

• Undirected graphical models (“Markov Random Fields”)
 Given by undirected graph

• Conditional independence for undirected graphs

 If every path from any node in set A to set B passes through at least 

one node in set C, then              . 

 Simple Markov blanket:

Image source: C. Bishop, 2006
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Recap: Factorization in MRFs

• Joint distribution
 Written as product of potential functions over maximal cliques in the 

graph:

 The normalization constant Z is called the partition function.

• Remarks
 BNs are automatically normalized. But for MRFs, we have to explicitly 

perform the normalization.

 Presence of normalization constant is major limitation!

 Evaluation of Z involves summing over O(KM) terms for M nodes!

p(x) =
1

Z

Y

C

ÃC(xC)

Z =
X

x

Y

C

ÃC(xC)
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Recap: Factorization in MRFs

• Role of the potential functions
 General interpretation

 No restriction to potential functions that have a specific probabilistic 

interpretation as marginals or conditional distributions.

 Convenient to express them as exponential functions (“Boltzmann 

distribution”)

 with an energy function E.

 Why is this convenient?

 Joint distribution is the product of potentials  sum of energies.

 We can take the log and simply work with the sums…

ÃC(xC) = expf¡E(xC)g
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• Problematic case: multiple parents

 Need to introduce additional links (“marry the parents”).

 This process is called moralization. It results in the moral graph.

Image source: C. Bishop, 2006

Need a clique of x1,…,x4 to represent this factor!

Fully connected,

no cond. indep.!

Slide adapted from Chris Bishop

Recap: Converting Directed to Undirected Graphs
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• General procedure to convert directed  undirected
1. Add undirected links to marry the parents of each node.

2. Drop the arrows on the original links  moral graph.

3. Find maximal cliques for each node and initialize all clique

potentials to 1.

4. Take each conditional distribution factor of the original directed 

graph and multiply it into one clique potential.

• Restriction
 Conditional independence properties are often lost!

 Moralization results in additional connections and larger cliques.

Slide adapted from Chris Bishop

Recap: Conversion Algorithm
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Recap: Computing Marginals

• How do we apply graphical models?
 Given some observed variables, 

we want to compute distributions

of the unobserved variables.

 In particular, we want to compute 

marginal distributions, for example p(x4).

• How can we compute marginals?
 Classical technique: sum-product algorithm by Judea Pearl.

 In the context of (loopy) undirected models, this is also called 

(loopy) belief propagation [Weiss, 1997].

 Basic idea: message-passing.

Slide credit: Bernt Schiele, Stefan Roth
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Recap: Message Passing on a Chain

 Idea: Pass messages from the two ends towards the query node xn.

 Define the messages recursively:

 Compute the normalization constant Z at any node xm.

Image source: C. Bishop, 2006Slide adapted from Chris Bishop

¹®(xn) =
X

xn¡1

Ãn¡1;n(xn¡1; xn)¹®(xn¡1)

¹¯(xn) =
X

xn+1

Ãn;n+1(xn; xn+1)¹¯(xn+1)
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Summary: Message Passing on Trees

• General procedure for all tree graphs.
 Root the tree at the variable that we want 

to compute the marginal of.

 Start computing messages at the leaves.

 Compute the messages for all nodes for which all
incoming messages have already been computed.

 Repeat until we reach the root.

• If we want to compute the marginals for all possible nodes 
(roots), we can reuse some of the messages.
 Computational expense linear in the number of nodes.

• We already motivated message passing for inference.
 How can we formalize this into a general algorithm? 

Slide credit: Bernt Schiele, Stefan Roth
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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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• Joint probability
 Can be expressed as product of factors:

 Factor graphs make this explicit through separate factor nodes.

• Converting a directed polytree
 Conversion to undirected tree creates loops due to moralization!

 Conversion to a factor graph again results in a tree!

Image source: C. Bishop, 2006

Recap: Factor Graphs
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Recap: Sum-Product Algorithm

• Objectives
 Efficient, exact inference algorithm for finding marginals.

• Procedure:
 Pick an arbitrary node as root.

 Compute and propagate messages from the leaf nodes to the root, 

storing received messages at every node.

 Compute and propagate messages from the root to the leaf nodes, 

storing received messages at every node.

 Compute the product of received messages at each node for which the 

marginal is required, and normalize if necessary.

• Computational effort
 Total number of messages = 2 ¢ number of graph edges.

Slide adapted from Chris Bishop
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Recap: Sum-Product Algorithm

• Two kinds of messages
 Message from factor node to variable nodes: 

 Sum of factor contributions

 Message from variable node to factor node: 

 Product of incoming messages

 Simple propagation scheme.

¹fs!x(x) ´
X

Xs

Fs(x; Xs)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

=
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)
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Recap: Sum-Product from Leaves to Root

¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions:

fa fb

fc

Image source: C. Bishop, 2006
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Recap: Sum-Product from Root to Leaves

¹fs!x(x) ´
X

Xs

fs(xs)
Y

m2ne(fs)nx

¹xm!fs(xm)

¹xm!fs(xm) ´
Y

l2ne(xm)nfs

¹fl!xm(xm)

Message definitions:

fa fb

fc

Image source: C. Bishop, 2006
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Recap: Max-Sum Algorithm

• Objective: an efficient algorithm for finding

 Value xmax that maximises p(x);

 Value of p(xmax).

 Application of dynamic programming in graphical models.

• Key ideas
 We are interested in the maximum value of the joint distribution

 Maximize the product p(x).

 For numerical reasons, use the logarithm.

 Maximize the sum (of log-probabilities).

Slide adapted from Chris Bishop

p(xmax) = max
x

p(x)
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Recap: Max-Sum Algorithm

• Initialization (leaf nodes)

• Recursion
 Messages

 For each node, keep a record of which values of the variables gave rise 

to the maximum state:

Slide adapted from Chris Bishop
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Recap: Max-Sum Algorithm

• Termination (root node)
 Score of maximal configuration

 Value of root node variable giving rise to that maximum

 Back-track to get the remaining 

variable values

xmaxn¡1 = Á(xmaxn )

Slide adapted from Chris Bishop
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Recap: Junction Tree Algorithm

• Motivation
 Exact inference on general graphs.

 Works by turning the initial graph into a junction tree and then running 
a sum-product-like algorithm.

 Intractable on graphs with large cliques.

• Main steps
1. If starting from directed graph, first convert it to an undirected 

graph by moralization.

2. Introduce additional links by triangulation in order to reduce the 
size of cycles.

3. Find cliques of the moralized, triangulated graph.

4. Construct a new graph from the maximal cliques.

5. Remove minimal links to break cycles and get a junction tree.

 Apply regular message passing to perform inference.
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Recap: Junction Tree Example

• Without triangulation step
 The final graph will contain cycles that we cannot break

without losing the running intersection property!

Image source: J. Pearl, 1988



88
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 20 – Repetition

Recap: Junction Tree Example

• When applying the triangulation
 Only small cycles remain that are easy to break.

 Running intersection property is maintained.

Image source: J. Pearl, 1988



89
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 20 – Repetition

Recap: MRF Structure for Images

• Basic structure

• Two components
 Observation model

 How likely is it that node xi has label Li given observation yi?

 This relationship is usually learned from training data.

 Neighborhood relations
 Simplest case: 4-neighborhood

 Serve as smoothing terms.

 Discourage neighboring pixels to have different labels.

 This can either be learned or be set to fixed “penalties”.

“True” image content

Noisy observations
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Recap: Energy Formulation

• Energy function

• Single-node (unary) potentials 
 Encode local information about the given pixel/patch.

 How likely is a pixel/patch to belong to a certain class
(e.g. foreground/background)?

• Pairwise potentials 
 Encode neighborhood information.

 How different is a pixel/patch’s label from that of its neighbor? 
(e.g. based on intensity/color/texture difference, edges)

Pairwise

potentials

Single-node

potentials

,

( , ) ( , ) ( , )i i i j

i i j

E x y x y x x        

( , )i ix y

( , )i jx x
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• Unary potentials
 E.g. color model, modeled with a Mixture of Gaussians

 Learn color distributions for each label

Á(xi; yi; µÁ) = log
X

k

µÁ(xi; k)p(kjxi)N(yi; ¹yk;§k)

Á(xp = 1; yp)

Á(xp = 0; yp)

yp y

Recap: How to Set the Potentials? 

( , )i ix y

( , )i jx x
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• Pairwise potentials
 Potts Model

 Simplest discontinuity preserving model.

 Discontinuities between any pair of labels are penalized equally.

 Useful when labels are unordered or number of labels is small.

 Extension: “contrast sensitive Potts model”

where

 Discourages label changes except in places where there is also a large 

change in the observations.

 2

2 i javg y y   
2

( ) i jy y

ijg y e
 



Ã(xi; xj; µÃ) = µÃ±(xi 6= xj)

Ã(xi; xj; gij(y);µÃ) = µÃgij(y)±(xi 6= xj)

Recap: How to Set the Potentials?

( , )i ix y

( , )i jx x
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pqw

n-links

s

t a cut)(tDp

)(sDp

 22 2/||||exp)( s

pp IIsD 

 22 2/||||exp)( t

pp IItD 

EM-style optimization

“expected” intensities of

object and background

can be re-estimated

ts II   and

[Boykov & Jolly, ICCV’01]Slide credit: Yuri Boykov

Recap: Graph Cuts for Binary Problems
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Recap: Maxflow Algorithms

Source

Sink

v1 v2

2

5

9

4
2

1

Algorithms assume non-negative capacity

Flow = 0

1. Find path from source to sink with 

positive capacity

2. Push maximum possible flow 

through this path

3. Adjust the capacity of the used 

edges and record “residual flows“

4. Repeat until no path can be found

Slide credit: Pushmeet Kohli

Augmenting Path Based Algorithms
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• s-t graph cuts can only globally minimize binary energies that 

are submodular. 

• Submodularity is the discrete equivalent to convexity.
 Implies that every local energy minimum is a global minimum.

 Solution will be globally optimal.





Npq

qp

p

pp LLELELE ),()()(

},{ tsLp t-links n-links

[Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

pairwise potentialsunary potentials

E(L) can be minimized by 

s-t graph cuts
),(),(),(),( stEtsEttEssE 

Submodularity (“convexity”)

Recap: When Can s-t Graph Cuts Be Applied?
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Recap: -Expansion

• Basic idea:
 Break multi-way cut computation into a sequence of 

binary s-t cuts.

other labels

Slide credit: Yuri Boykov
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Graph *g;

For all pixels p 

/* Add a node to the graph */
nodeID(p) = g->add_node();

/* Set cost of terminal edges */
set_weights(nodeID(p), fgCost(p), bgCost(p));

end

for all adjacent pixels p,q
add_weights(nodeID(p), nodeID(q),  cost);

end

g->compute_maxflow();

label_p = g->is_connected_to_source(nodeID(p));

// is the label of pixel p (0 or 1)

Recap: Converting an MRF to an s-t Graph

Sink (1)

Source (0)

fgCost(a1) fgCost(a2)

bgCost(a1) bgCost(a2)

a1 a2

cost(p,q)

a1 = bg a2 = fg

Slide credit: Pushmeet Kohli
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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Recap: Sampling Idea

• Objective: 

 Evaluate expectation of a function f(z)

w.r.t. a probability distribution p(z).

• Sampling idea

 Draw L independent samples z(l) with l = 1,…,L from p(z).

 This allows the expectation to be approximated by a finite sum

 As long as the samples z(l) are drawn independently from p(z), then

 Unbiased estimate, independent of the dimension of z!

Slide adapted from Bernt Schiele

f̂ =
1

L

LX

l=1

f(zl)

Image source: C.M. Bishop, 2006
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• In general, assume we are given the pdf p(x) and the 

corresponding cumulative distribution:

 To draw samples from this pdf, we can invert the cumulative distribution 

function:

F (x) =

Z x

¡1
p(z)dz

u » Uniform(0;1)) F¡1(u) » p(x)

Slide credit: Bernt Schiele Image source: C.M. Bishop, 2006

Recap: Transformation Method
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Recap: Rejection Sampling

• Assumptions

 Sampling directly from p(z) is difficult.

 But we can easily evaluate p(z) (up to some norm. factor Zp):

• Idea

 We need some simpler distribution q(z) (called proposal distribution) 

from which we can draw samples.

 Choose a constant k such that: 

• Sampling procedure

 Generate a number z0 from q(z).

 Generate a number u0 from the

uniform distribution over [0, 𝑘𝑞(𝑧0)].

 If reject sample, otherwise accept.

p(z) =
1

Zp

~p(z)

8z : kq(z) ¸ ~p(z)

Slide adapted from Bernt Schiele

u0 > ~p(z0)

Image source: C.M. Bishop, 2006
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Recap: Importance Sampling

• Approach
 Approximate expectations directly

(but does not enable to draw samples from p(z) directly).

• Idea

 Use a proposal distribution q(z) from which it is easy to sample.

 Express expectations in the form of a finite sum over samples {z(l)}

drawn from q(z).

Slide adapted from Bernt Schiele

Importance weights

Image source: C.M. Bishop, 2006



103
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 20 – Repetition

• Overview
 Allows to sample from a large class of distributions.

 Scales well with the dimensionality of the sample space.

• Idea

 We maintain a record of the current state z(¿)

 The proposal distribution depends on the current state: q(z|z(¿)) 

 The sequence of samples forms a Markov chain z(1), z(2),…

• Approach
 At each time step, we generate a candidate 

sample from the proposal distribution and 

accept the sample according to a criterion.

 Different variants of MCMC for different

criteria.

Slide adapted from Bernt Schiele Image source: C.M. Bishop, 2006

Recap: MCMC – Markov Chain Monte Carlo
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Recap: Markov Chains – Properties

• Invariant distribution
 A distribution is said to be invariant (or stationary) w.r.t. a Markov chain 

if each step in the chain leaves that distribution invariant.

 Transition probabilities:

 For homogeneous Markov chain, distribution p*(z) is invariant if:

• Detailed balance
 Sufficient (but not necessary) condition to ensure that a distribution is 

invariant:

 A Markov chain which respects detailed balance is reversible.

T
³
z(m);z(m+1)

´
= p

³
z(m+1)jz(m)

´

p?(z) =
X

z0

T (z0; z)p?(z0)

p?(z)T (z;z0) = p?(z0)T (z0;z)

Slide credit: Bernt Schiele
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Recap: Detailed Balance

• Detailed balance means

 If we pick a state from the target distribution p(z) and make a transition 

under T to another state, it is just as likely that we will pick zA and go 

from zA to zB than that we will pick zB and go from zB to zA.

 It can easily be seen that a transition probability that satisfies detailed 

balance w.r.t. a particular distribution will leave that distribution 

invariant, because
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Recap: MCMC – Metropolis Algorithm

• Metropolis algorithm [Metropolis et al., 1953]

 Proposal distribution is symmetric: 

 The new candidate sample z* is accepted with probability

 New candidate samples always accepted if                        .

 The algorithm sometimes accepts a state with lower probability.

• Metropolis-Hastings algorithm
 Generalization: Proposal distribution not necessarily symmetric.

 The new candidate sample z* is accepted with probability

 where k labels the members of the set of considered transitions.

q(zAjzB) = q(zBjzA)

A(z?; z(¿)) = min

µ
1;

~p(z?)

~p(z(¿))

¶

~p(z?) ¸ ~p(z(¿))

Slide adapted from Bernt Schiele

A(z?; z(¿)) = min

µ
1;

~p(z?)qk(z
(¿)jz?)

~p(z(¿))qk(z?jz(¿))

¶
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Recap: Gibbs Sampling

• Approach
 MCMC-algorithm that is simple and widely applicable.

 May be seen as a special case of Metropolis-Hastings.

• Idea
 Sample variable-wise: replace zi by a value drawn from the 

distribution p(zi|z\i).
 This means we update one coordinate at a time.

 Repeat procedure either by cycling through all variables or by 
choosing the next variable.

• Properties
 The algorithm always accepts!

 Completely parameter free.

 Can also be applied to subsets of variables.

Slide credit: Bernt Schiele
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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Recap: Mixtures of Gaussians

• “Generative model”

p(xjµ) =

3X

j=1

¼jp(xjµj)
p(j) = ¼j

j

1
2

3

p(xjµ1)
p(xjµ2)

p(xjµ3)

Image source: C.M. Bishop, 2006Slide credit: Bernt Schiele
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• Write GMMs in terms of latent variables z

 Marginal distribution of x

• Advantage of this formulation
 We have represented the marginal distribution in terms of 

latent variables z.

 Since p(x) = z p(x, z), there is a corresponding latent variable zn

for each data point xn.

 We are now able to work with the joint distribution p(x, z) instead of 

the marginal distribution p(x).

 This will lead to significant simplifications…

Recap: GMMs as Latent Variable Models
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• MoG Sampling
 We can use ancestral sampling to generate random samples from a 

Gaussian mixture model.

1. Generate a value      from the marginal distribution p(z).

2. Generate a value      from the conditional distribution            .

Samples from the

joint p(x, z)
Samples from the

marginal p(x)
Evaluating the

responsibilities (znk)

Image source: C.M. Bishop, 2006

Recap: Sampling from a Gaussian Mixture



112
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 20 – Repetition

Recap: Gaussian Mixtures Revisited

• Applying the latent variable view of EM

 Goal is to maximize the log-likelihood using the observed data X

 Corresponding graphical model:

 Suppose we are additionally given the values

of the latent variables Z.

 The corresponding graphical model for the

complete data now looks like this:

 Straightforward to marginalize…

Image source: C.M. Bishop, 2006
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Recap: Alternative View of EM

• In practice, however,…

 We are not given the complete data set {X,Z}, but only the 

incomplete data X. All we can compute about Z is the posterior 

distribution                   .

 Since we cannot use the complete-data log-likelihood, we consider 

instead its expected value under the posterior distribution of the 

latent variables:

 This corresponds to the E-step of the EM algorithm.

 In the subsequent M-step, we then maximize the expectation to obtain 

the revised parameter set µnew.
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Recap: General EM Algorithm

• Algorithm
1. Choose an initial setting for the parameters 

2. E-step: Evaluate 

3. M-step: Evaluate           given by

where 

4. While not converged, let                        and return to step 2.
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Recap: MAP-EM

• Modification for MAP
 The EM algorithm can be adapted to find MAP solutions for models for 

which a prior          is defined over the parameters.

 Only changes needed:

2. E-step: Evaluate 

3. M-step: Evaluate           given by

 Suitable choices for the prior will remove the ML singularities!
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Recap: Monte Carlo EM

• EM procedure
 M-step: Maximize expectation of complete-data log-likelihood

 For more complex models, we may not be able to compute this 
analytically anymore…

• Idea
 Use sampling to approximate this integral by a finite sum over samples 

{Z(l)} drawn from the current estimate of the posterior

 This procedure is called the Monte Carlo EM algorithm. 
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Recap: EM as Variational Inference

• Decomposition
 Introduce a distribution 𝑞(𝐙) over the latent variables. For any choice 

of 𝑞(𝐙), the following decomposition holds 

 where

 𝐾𝐿 𝑞 ∥ 𝑝 is the Kullback-Leibler divergence between the distribution 

𝑞 𝐙 and the posterior distribution 𝑝 𝐙|𝐗, 𝛉 .

 ℒ 𝑞, 𝛉 is a functional of the distribution 𝑞 𝐙 and a function of the 

parameters 𝛉. Since KL ≥ 0, ℒ 𝑞, 𝛉 is a lower bound on log 𝑝 𝐗 𝜃 .

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝

ℒ 𝑞, 𝛉 =

𝐙

𝑞 𝐙 log
𝑝 𝐗, 𝐙|𝛉

𝑞(𝐙)

𝐾𝐿 𝑞 ∥ 𝑝 = −

𝐙

𝑞 𝒁 log
𝑝 𝐙|𝐗, 𝛉

𝑞 𝐙
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Recap: Analysis of EM

• Decomposition

• Interpretation
 ℒ 𝑞, 𝛉 is a lower bound on log 𝑝 𝐗 𝛉 .

 The approximation comes from the fact that we use an approximative

distribution 𝑞 𝒁 = 𝑝 𝐙|𝐗, 𝛉𝑜𝑙𝑑 Instead of the (unknown) real posterior.

 The KL divergence measures the difference between the approximative

distribution 𝑞 𝒁 and the real posterior 𝑝 𝐙|𝐗, 𝛉 . 

 In every EM iteration, we try to make this difference smaller.

log 𝑝 𝐗 𝜃 = ℒ 𝑞, 𝛉 + 𝐾𝐿 𝑞 ∥ 𝑝
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Recap: Analysis of EM

• Visualization in the space

of parameters

• The EM algorithm alternately… 
 Computes a lower bound on the log-likelihood for the current 

parameters values 

 And then maximizes this bound to obtain the new parameter values.
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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Bayesian Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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• Conceptual shift

 Maximum Likelihood views the true parameter vector µ to be 

unknown, but fixed.

 In Bayesian learning, we consider µ to be a random variable.

• This allows us to use knowledge about the parameters µ

 i.e., to use a prior for µ

 Training data then converts this

prior distribution on µ into 

a posterior probability density.

 The prior thus encodes knowledge we have about the type of 

distribution we expect to see for µ.

Slide adapted from Bernt Schiele

Recap: Bayesian Estimation
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Recap: Bayesian Estimation

• Discussion

 The parameter values µ are not the goal, just a means to an end.

p(xjX) =

Z
p(xjµ)L(µ)p(µ)R

L(µ)p(µ)dµ
dµ

Normalization: integrate 

over all possible values of µ

Likelihood of the parametric 

form µ given the data set X.

Prior for the 

parameters µ

Estimate for x based on

parametric form µ
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Recap: Conjugate Priors

• Problem: How to evaluate the integrals?
 We will see that if likelihood and prior have the same functional form 

c¢f(x), then the analysis will be greatly simplified and the integrals will 
be solvable in closed form.

 Such an algebraically convenient choice is called a conjugate prior. 
Whenever possible, we should use it.

 To do this, we need to know for each probability distribution what is its 
conjugate prior.

• What to do when we cannot use the conjugate prior?
 Use approximate inference methods. 
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Recap: The Dirichlet Distribution

• Dirichlet Distribution
 Conjugate prior for the Categorical and the Multinomial distrib.

 Symmetric version (with concentration parameter ®)

 Properties (symmetric version)

Image source: C. Bishop, 2006

E[¹k] =
®k

®0

var[¹k] =
®k(®0 ¡ ®k)

®2
0(®0 + 1)

cov[¹j¹k] = ¡ ®j®k

®2
0(®0 + 1)

with

=
1

K

=
K ¡ 1

K2(® + 1)

= ¡ 1

K2(® + 1)
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Recap: Bayesian Mixture Models

• Let’s be Bayesian about mixture models
 Place priors over our parameters

 Again, introduce variable zn as indicator

which component data point xn belongs to.

 Introduce conjugate priors over parameters

Slide inspired by Yee Whye Teh

“Normal – Inverse Wishart”
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Recap: Bayesian Mixture Models

• Full Bayesian Treatment
 Given a dataset, we are interested in the cluster assignments

where the likelihood is obtained by marginalizing over the parameters µ

• The posterior over assignments is intractable! 
 Denominator requires summing over all possible partitions of the data 

into K groups!

 Need efficient approximate inference methods to solve this...
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• Integrating out the mixing proportions ¼

• Conditional probabilities

 Examine the conditional of zn given all other variables z-n

 The more populous a class is, the more likely it is to be joined!

Slide adapted from Zoubin Gharamani

Recap: Mixture Models with Dirichlet Priors



128
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 20 – Repetition

Recap: Infinite Dirichlet Mixture Models

• Conditional probabilities: Finite K

• Conditional probabilities: Infinite K

 Taking the limit as K ! 1 yields the conditionals

 Left-over mass ®  countably infinite number of indicator settings

Slide adapted from Zoubin Gharamani

if k represented

if all k not represented



129
Visual Computing Institute | Prof. Dr . Bastian Leibe

Advanced Machine Learning

Part 20 – Repetition

• We need approximate inference here
 Gibbs Sampling: Conditionals are simple to compute

• However, this will be rather inefficient…
 In each iteration, algorithm can only change

the assignment for individual data points.

 There are often groups of data points that are 

associated with high probability to the same

component.  Unlikely that group is moved.

 Better performance by collapsed Gibbs sampling

which integrates out the parameters ¼, ¹, 𝚺.

Slide adapted from Yee Whye Teh Image source: Yee Whye Teh

Recap: Gibbs Sampling for Finite Mixtures
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Recap: Collapsed Finite Bayesian Mixture

• More efficient algorithm
 Conjugate priors allow analytic integration of some parameters

 Resulting sampler operates on reduced space of cluster assignments 

(implicitly considers all possible cluster shapes)

• Procedure
 The model implies the factorization

 Derive 

 Conjugate prior, Normal - Inverse Wishart

Slide adapted from Erik Sudderth Image source: Yee Whye Teh
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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Recap: Generative Adversarial Networks (GANs)

• Conceptual view

• Main idea
 Simultaneously train an image generator 𝐺 and a discriminator 𝐷.

 Interpreted as a two-player game

Image credit: Kevin McGuiness
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Recap: GAN Loss Function

• This corresponds to a two-player minimax game:

• Explanation
 Train 𝐷 to maximize the probability of assigning the correct label to both 

training examples and samples from 𝐺. 

 Simultaneously train 𝐺 to minimize log 1 − 𝐷 𝐺 𝒛 .

• The Nash equilibrium of this game is achieved at
 𝑝𝑔 𝒙 = 𝑝𝑑𝑎𝑡𝑎 𝒙 ∀𝒙

 𝐷 𝒙 = 1

2
∀𝒙

min
𝐺

max
𝐷

𝑉 𝐷, 𝐺 = 𝔼𝒙∼𝑝𝑑𝑎𝑡𝑎(𝒙) log𝐷 𝒙 +𝔼𝒛∼𝑝𝒛(𝒛) log 1 − 𝐷 𝐺 𝒛
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GAN Algorithm

Discriminator

updates

Generator

updates
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Recap: Intuition behind GANs

• Behavior near convergence
 In the inner loop, 𝐷 is trained to discriminate samples from data.

 Gradient of 𝐷 guides 𝐺 to flow to regions that are more likely to be 

classified as data.

 After several steps of training, 𝐺 and 𝐷 will reach a point at which they 

cannot further improve, because 𝑝𝑔 = 𝑝𝑑𝑎𝑡𝑎.

 Now, the discriminator is unable to differentiate between the two 

distributions, i.e., 𝐷 𝒙 = 0.5.

data

model

distrib.

discrimi-

nator
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Course Outline

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Recap: Autoencoders

• How to learn such a feature representation?
 Unsupervised learning approach for learning a lower-dimensional 

feature representation 𝐳 from unlabeled input data 𝐱.

 𝐳 usually smaller than 𝐱 (dimensionality reduction)

 Want to capture meaningful factors of variation in the data Train such 

that features can be used to reconstruct original data.

𝑥

ො𝑥

𝑧

Encoder

Decoder

Input data

Features

Reconstructed

input data

Encoder: 4-layer conv
Decoder: 4-layer upconv

Slide credit: Feifei Li

L2 Loss function
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Recap: Autoencoders

• After training
 Throw away the decoder part

 Encoder can be used to initialize a supervised model

 Fine-tune encoder jointly with supervised model

 Idea used in the 90s and early 2000s to pre-train deeper models

𝑥

𝑧

Encoder

Classifier

Input data

Features

Predicted label

Slide credit: Feifei Li

Loss function (softmax, etc.)

ො𝑦 𝑦
bird     plane

dog     deer     truck

Train for final task

(on small dataset)

F
in

e
-t

u
n

e
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Recap: Variants of Autoencoders

• Regularized Autoencoders

 Include a regularization term to the  loss function: 𝐿 𝐱, 𝑔 𝑓 𝐱 + Ω 𝐳

 E.g., enforce sparsity by an L1 regularizer

𝑥

ො𝑥

𝑧

Encoder

Decoder

Input data

Features

Reconstructed

input data

L2 Loss function

Ω 𝐳 = λ
𝑖
𝑧𝑖
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Recap: Variants of Autoencoders

• Denoising Autoencoder (DAE)

 Rather than the reconstruction loss, minimize 𝐿 𝐱, 𝑔 𝑓 𝐱

where x is a copy of 𝐱 that has been corrupted by some noise.

 Denoising forces 𝑓 and 𝑔 to implicitly learn the structure of 𝑝𝑑𝑎𝑡𝑎 𝐱 .

𝑥

ො𝑥

𝑧

Encoder

Decoder

Input data

Features

Reconstructed

input data

Loss function

Image source: [Goodfellow 2016]
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Recap: Probabilistic Spin on Autoencoders

• Idea: Sample the model to generate data
 We want to estimate the true parameters 𝜃∗ of this generative model.

• How should we represent the model?
 Choose prior 𝑝 𝐳 to be simple, e.g., Gaussian

 Conditional 𝑝 𝐱 | 𝐳 is complex (generates image) 

 Represent with neural network

 Learn model parameters to maximize likelihood of training data

𝑥

𝑧

Sample from true conditional

𝑝𝜃∗(𝐱|𝐳
(𝑖))

Sample from true prior

𝑝𝜃∗(𝐳)

Slide adapted from Feifei Li

Decoder network

𝑝𝜃 𝐱 = න𝑝𝜃 𝐳 𝑝𝜃 𝐱 | 𝐳 𝑑𝐳 Intractable!
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Recap: Variational Autoencoders

• Define additional encoder network 𝑞𝜙 𝐳 | 𝐱
 Since we are modelling probabilistic generation of data, 

encoder and decoder networks are probabilistic

 Encoder and decoder networks are also called recognition/inference and 
generation networks

Slide credit: Feifei Li

𝝁𝑥|𝑧

𝑧

𝚺𝑥|𝑧

Sample 𝑥|𝑧 from 𝑥|𝑧 ~𝒩 𝝁𝑥|𝑧, 𝚺𝑥|𝑧

Decoder network

𝑝𝜃 𝑥 | 𝑧
(parameters 𝜃)

Encoder network

𝑞𝜙 𝑧 | 𝑥

(parameters 𝜙)

𝝁𝑧|𝑥

𝑥

𝚺𝑧|𝑥

Sample 𝑧 from 𝑧|𝑥 ~𝒩 𝝁𝑧|𝑥, 𝚺𝑧|𝑥

D. Kingma, M. Welling, Auto-Encoding Variational Bayes, ICLR 2014

https://arxiv.org/pdf/1312.6114.pdf
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Recap: Variational Autoencoders

• We can now work out the log-likelihood

Slide credit: Feifei Li

ℒ 𝑥(𝑖), 𝜃, 𝜙 ≥ 0

Tractable lower bound, which we can take gradient of and optimize

log 𝑝𝜃 𝑥(𝑖) = 𝔼
𝑧~𝑞𝜙 𝑧ቚ𝑥(𝑖)

log 𝑝𝜃 𝑥(𝑖)

= 𝔼𝑧 log 𝑝𝜃 𝑥(𝑖) | 𝑧 − 𝐷𝐾𝐿 𝑞𝜙 𝑧 | 𝑥 𝑖 ԡ𝑝𝜃 𝑧 + 𝐷𝐾𝐿 𝑞𝜙 𝑧 | 𝑥 𝑖 ฮ𝑝𝜃 𝑧 | 𝑥(𝑖)

= 𝔼𝑧 log 𝑝𝜃 𝑥(𝑖) | 𝑧 − 𝔼𝑧 log
𝑞𝜙 𝑧 | 𝑥 𝑖

𝑝𝜃 𝑧
+ 𝔼𝑧 log

𝑞𝜙 𝑧 | 𝑥 𝑖

𝑝𝜃 𝑧 | 𝑥(𝑖)

= 𝔼𝑧 log
𝑝𝜃 𝑥(𝑖) | 𝑧 𝑝𝜃 𝑧

𝑝𝜃 𝑧 | 𝑥(𝑖)
𝑞𝜙 𝑧 | 𝑥 𝑖

𝑞𝜙 𝑧 | 𝑥 𝑖

= 𝔼𝑧 log
𝑝𝜃 𝑥(𝑖) | 𝑧 𝑝𝜃 𝑧

𝑝𝜃 𝑧 | 𝑥(𝑖)
(Bayes’ Rule)

(Multiply by constant)

(𝑝𝜃 𝑥(𝑖) does not depend on 𝑧)

Want to

maximize

data

likelihood
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Recap: Variational Autoencoders

• Variational Lower Bound (“ELBO”)

• Training: Maximize lower bound

Slide adapted from  Feifei Li

log 𝑝𝜃 𝑥(𝑖) ≥ ℒ 𝑥(𝑖), 𝜃, 𝜙

𝜃∗, 𝜙∗ = argmax
𝜃,𝜙



𝑖=1

𝑁

ℒ 𝑥(𝑖), 𝜃, 𝜙

= 𝔼𝑧 log 𝑝𝜃 𝑥(𝑖) | 𝑧 − 𝐷𝐾𝐿 𝑞𝜙 𝑧 | 𝑥 𝑖 ԡ𝑝𝜃 𝑧

“Reconstruct

the input data”

“Make approximate posterior

distribution close to prior”
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We’re Done!

• Regression Techniques
 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

• Deep Reinforcement Learning

• Probabilistic Graphical Models
 Bayesian Networks

 Markov Random Fields

 Inference (exact & approximate)

 Latent Variable Models

• Deep Generative Models
 Generative Adversarial Networks

 Variational Autoencoders
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Any More Questions?

Good luck for the exam!


