

Computer Vision – Lecture 1

Introduction

09.04.2019

Bastian Leibe
Visual Computing Institute
RWTH Aachen University
http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Organization

- Lecturer
 - Prof. Bastian Leibe (<u>leibe@vision.rwth-aachen.de</u>)
- Teaching Assistants
 - Istvan Sarandi (<u>sarandi@vision.rwth-aachen.de</u>)
 - Dan Jia (<u>jia@vision.rwth-Aachen.de</u>)
- Course webpage
 - http://www.vision.rwth-aachen.de/courses/
 - → Computer Vision
 - Slides will be made available on the webpage
 - There is also a moodle electronic repository
- Please subscribe to the lecture on RWTH Online!
 - Important to get email announcements and moodle access!

Language

- Official course language will be English
 - If at least one English-speaking student is present.
 - If not... you can choose.

- However...
 - Please tell me when I'm talking too fast or when I should repeat something in German for better understanding!
 - You may at any time ask questions in German!
 - You may turn in your exercises in German.
 - You may answer exam questions in German.

Organization

- Structure: 3V (lecture) + 1Ü (exercises)
 - 6 EECS credits
 - Part of the area "Applied Computer Science"
- Place & Time

Lecture: Mon 10:30 – 12:00 TEMP2

Lecture/Exercises: Tue 14:30 – 16:00 H03

- Exam
 - Written exam
 - Dates will be communicated soon

Exercises and Demos

Exercises

- Typically 1 exercise sheet every 2 weeks (numpy/TensorFlow)
- Hands-on experience with the algorithms from the lecture.
- Send in your solutions the night before the exercise class.
- No admission requirement to qualify for the exam this year!

Teams are encouraged!

- You can form teams of up to 3 people for the exercises.
- Each team should only turn in one solution.
- But list the names of all team members in the submission.

Course Webpage

Course Schedule

Date	Title	Content	Material
Mon, 2019-04-01		no class (RWTH DIES)	
Tue, 2019-04-02		no class (RWTH DIES)	
Mon, 2019-04-08		no class	
Tue, 2019-04-09	Introduction	Why vision? Applications, Challenges, Image Formation	
Mon, 2019-04-15	Image Processing I	Linear Filters, Gaussian Smoothing, Multi- scale Representations	
Tue, 2019-04-16	TBD	TBD	
Mon, 2019-04-22		no class (Easter Monday)	
Tue, 2019-04-23	Image Processing II	Image Derivatives, Edge detection, Canny	
Mon, 2019-04-29	Structure Extraction	Line Fitting, Hough Transform, Gen. Hough Transform	
Tue, 2019-04-30	Segmentation I	Segmentation as Clustering, k-means, EM, Mean-Shift Segmentation	
Mon, 2019-05-06	Exercise 1	Derivatives, Edges, Hough Transform	
Tue, 2019-05-07	Segmentation II	Segmentation as Energy Minimization, Markov Random Fields, Graph Cuts	
Mon, 2019-05-13	Categorization I	Sliding Window-based Object Detection, HOG, SVMs, Viola-Jones detector, AdaBoost	

http://www.vision.rwth-aachen.de/courses/

Textbooks

- No single textbook for the class.
- Basic material is covered in the following two books.

R. Szeliski Computer Vision – Algorithms and Applications Springer, 2010

(available in the library's "Handapparat")

R. Hartley, A. Zisserman Multiple View Geometry in Computer Vision 2nd Ed., Cambridge Univ. Press, 2004

- Additional material will be given out for some topics.
 - Tutorials and deeper introductions.
 - Application papers

How to Find Us

Office:

- UMIC Research Centre
- Mies-van-der-Rohe-Strasse 15, room 124

Office hours

- If you have questions to the lecture, come to us.
- Send us an email before to confirm a time slot.

Questions are welcome!

Topics of Today's Lecture

- What is computer vision?
- What does it mean to see and how do we do it?
- How can we make this computational?

- First Topic: Image Formation
 - Details in Forsyth & Ponce, chapter 1.

Why Computer Vision?

Cameras are all around us...

Images and video are everywhere...

Movies, news, sports

Internet services

Surveillance and security

Mobile and consumer applications B. Leibe

Medical and scientific images

What is Computer Vision?

- Goal of Computer Vision
 - Enable a machine to "understand" images and videos
- Automatic understanding
 - Computing properties of the 3D world from visual data (measurement)
 - Algorithms and representations to allow a machine to recognize objects, people, scenes, and activities.
 (perception and interpretation)

Vision for Measurement

Real-time stereo

Pollefeys et al.

Structure from motion

Multi-view stereo for community photo collections

Goesele et al.

Vision for Perception, Interpretation

Related Disciplines

Directions to Computer Vision

- Science
 - Foundations of perception. How do WE see?
- Engineering
 - How do we build systems that perceive the world?
- Many applications
 - Medical imaging, surveillance, entertainment, graphics, ...

Applications: Faces and Digital Cameras

Setting camera focus via face detection

Camera waits for everyone to smile to take a photo [Canon]

Automatic lighting correction based on face detection

Segmentation

- Automatic background removal from images
 - > Functionality is included in Microsoft Office 2010...

Matching

Stitch your photos together to create panoramas

Applications: Vision for Mobile Phones

Google Goggles in Action

Click the icons below to see the different ways Google Goggles can be used.

Take photos of objects as queries for visual search

Slide credit: Svetlana Lazebnik

Applications: Vision-based Interfaces

Games (Microsoft Kinect)

Assistive technology systems
Camera Mouse
Boston College

Applications: Medical & Neuroimaging

Image guided surgery MIT AI Vision Group

fMRI data Golland et al.

Applications: Visual Special Effects

The Matrix

MoCap for *Pirates of the Carribean*, Industrial Light and Magic (Source: S. Seitz)

Applications: Safety & Security

Autonomous robots

Driver assistance

Monitoring pools

Pedestrian detection [MERL, Viola et al.]

Surveillance

Ok, Let's Do It – Any Obstacles?

 1966: Seymour Papert directs an undergraduate student to solve "the problem of computer vision" as a summer project.

MASSACHUSETTS INSTITUTE OF TECHNOLOGY
PROJECT MAC

Artificial Intelligence Group Vision Memo. No. 100. July 7, 1966

THE SUMMER VISION PROJECT

Seymour Papert

The summer vision project is an attempt to use our summer workers effectively in the construction of a significant part of a visual system. The particular task was chosen partly because it can be segmented into sub-problems which will allow individuals to work independently and yet participate in the construction of a system complex enough to be a real landmark in the development of "pattern recognition".

Obviously, computer vision was too difficult for that...

Challenges: Many Nuisance Parameters

Illumination

Object pose

Clutter

Occlusions

Intra-class appearance

Viewpoint

Challenges: Intra-Category Variation

B. Leibe

Slide credit: Fergus, FeiFei, Torralba

Challenges: Complexity

- Thousands to millions of pixels in an image
- 3,000-30,000 human recognizable object categories
- 30+ degrees of freedom in the pose of articulated objects (humans)
- Billions of images indexed by Google Image Search
- 18 billion+ prints produced from digital camera images in 2004
- 295.5 million camera phones sold in 2005
- About half of the cerebral cortex in primates is devoted to processing visual information [Felleman and van Essen 1991].

So, Should We Give Up?

NO! Very active research area with exciting progress!

Things Are Starting to Work...

Computer Vision in realistic scenarios is becoming feasible!

Course Outline

Image Processing Basics

- Segmentation
- Local Features & Matching
- Object Recognition and Categorization
- 3D Reconstruction

Course Outline

- Image Processing Basics
- Segmentation

3D Reconstruction

Course Outline

- Image Processing Basics
- Segmentation
- Local Features & Matching

3D Reconstruction

Course Outline

- Image Processing Basics
- Segmentation
- Local Features & Matching
- Object Recognition and Categorization
- 3D Reconstruction

Course Outline

- Image Processing Basics
- Segmentation
- Local Features & Matching
- Object Recognition and Categorization

3D Reconstruction

And you might have heard of...

Topics of Today's Lecture

- What is computer vision?
- What does it mean to see and how do we do it?
- How can we make this computational?

- First Topic: Image Formation
 - Details in Forsyth & Ponce, chapter 1.

Camera Obscura

Around 1519, Leonardo da Vinci (1452 – 1519)

"When images of illuminated objects ... penetrate through a small hole into a very dark room ... you will see [on the opposite wall] these objects in their proper form and color, reduced in size ... in a reversed position owing to the intersection of the rays"

Camera Obscura

 Used by artists (e.g. Vermeer 17th century) and scientists

RWTHAACHEN UNIVERSITY

Camera Obscura

PERFECT LIVING PICTURE

SURROUNDING OBJECTS.

An Elegant Appendage to
Gentlemens Mansions Purks &c.

Jetty at Margate England, 1898.

An attraction in the late 19th century

Pinhole Camera

- (Simple) standard and abstract model today
 - Box with a small hole in it
 - Works in practice

RWTHAACHEN UNIVERSITY

Pinhole Size / Aperture

- Pinhole too big many directions are averaged, blurring the image
- Pinhole too small diffraction effects blur the image
- Generally, pinhole cameras are dark, because a very small set of rays from a particular point hits the screen.

Source: Forsyth & Ponce

0.15 mm

2 mm

0.07 mm

The Reason for Lenses

 Keep the image in sharp focus while gathering light from a large area

The Thin Lens

$$\frac{1}{z'} - \frac{1}{z} = \frac{1}{f}$$

Focus and Depth of Field

Thin lens: scene points at distinct depths come in focus at different image planes.

(Real camera lens systems have greater depth of field.)

"circles of confusion"

 Depth of field: distance between image planes where blur is tolerable

Focus and Depth of Field

How does the aperture affect the depth of field?

A smaller aperture increases the range in which the object is approximately in focus

Application: Depth from (De-)Focus

Images from same point of view, different camera parameters

3D Shape / depth estimates

Field of View

Angular measure of the portion of 3D space seen by the camera

Field of View Depends on Focal Length

- As f gets smaller, image becomes more wide angle
 - More world points project onto the finite image plane

 As f gets larger, image becomes more telescopic

Smaller part of the world projects onto the finite image plane

Digital Images

- Film is replaced by a sensor array
- Current technology: arrays of charge coupled devices (CCD)
- Discretize the image into pixels
- Quantize light intensities into pixel values.

Resolution

- Sensor: size of real world scene element that images to a single pixel
- Image: number of pixels
- Influences what analysis is feasible, affects best representation choice

Color Sensing in Digital Cameras

Estimate missing compo -nents from neighboring values (demosaicing)

Grayscale Image

- Problem of Computer Vision
 - How can we recognize fruits from an array of (gray-scale) numbers?
 - How can we perceive depth from an array of (gray-scale) numbers?
 - **>** ...

	58	59	60	64											
_				61	62	63	64	65	66	67	68	69	70	71	72
y = 41	210	209	204	202	197	247	143	71	64	80	84	54	54	57	58
42	206	196	203	197	195	210	207	56	63	58	53	53	61	62	513
43	201	207	192	201	198	213	156	69	65	57	55	52	53	60	50
44	216	206	211	193	202	207	208	57	69	60	55	77	49	62	-61
45	221	206	211	194	196	197	220	56	63	60	55	46	97	58	106
46	209	214	224	199	194	193	204	173	64	60	59	51	62	56	48
47	204	212	213	208	191	190	191	214	60	62	66	76	51	49	55
48	214	215	215	207	208	180	172	188	69	72	55	49	56	52	56
49	209	205	214	205	204	196	187	196	86	62	66	87	57	60	48
50	208	209	205	203	202	186	174	185	149	71	63	55	55	45	56
51	207	210	211	199	217	194	183	177	209	90	62	64	52	93	52
52	208	205	209	209	197	194	183	187	187	239	58	68	61	51	56
53	204	206	203	209	195	203	188	185	183	221	75	61	58	60	60
54	200	203	199	236	188	197	183	190	183	196	122	63	58	64	66
55	205	210	202	203	199	197	196	181	173	186	105	62	57	64	63

How do we humans do it? How can we make a computer do it?

Next Lectures

- First few lectures: low-level vision
 - > Filtering operations
 - Edge and structure extraction
 - Segmentation and grouping
- Next week: Linear Filters

Questions?