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Computer Vision — Lecture 2

Linear Filters

15.04.2019

Bastian Leibe

Visual Computing Institute
RWTH Aachen University
http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Course Outline

* Image Processing Basics
» Image Formation
» Linear Filters
» Edge & Structure Extraction
» Color

* Segmentation

* Local Features & Matching

* Object Recognition and Categorization
* Deep Learning

* 3D Reconstruction

B. Leibe

Topics of This Lecture

¢ Linear filters

» What are they? How are they applied? o H

» Application: smoothing
» Gaussian filter
» What does it mean to filter an image?

* Nonlinear Filters
» Median filter

* Multi-Scale representations
» How to properly rescale an image?

* Filters as templates
» Correlation as template matching

B. Leibe

Organizational Remarks

* Presenting today

» Istvan Séarandi (sarandi@vision.rwth-aachen.de)
* No lecture tomorrow

» Next lecture: Tue, 23.04.

Course Schedule

Date Title Content. Material
Tue, 20190408 | Introduction | Why vision? Applications, Challenges, Image |6on
Formation fullpage
Maon, 2019-04-15 | Image Linear Filters, Gaussian Smoothing, Multi-scale |6on1
Processing | |Representations fullpage
Tue, 2019-04-16 |~ no class
Maon, 2019-04-22 |- no class (Easter Monday) |
Tue, 2019-04-23  |Image Image Derivatives, Edge detection, Canny
Processing Il

Computer Vision Summer19

B. Leibe

Motivation

* Noise reduction/image restoration

Computer Vision Summer19

B. Leibe

Common Types of Noise

* Salt & pepper noise

» Random occurrences of
black and white pixels

* Impulse noise

» Random occurrences of
white pixels

* Gaussian noise
» Variations in intensity drawn
from a Gaussian (“Normal”)
distribution.

* Basic Assumption

» Noise is i.i.d. (independent & ? ® ./
identically distributed) Impulse noise Gaussian noise
B. Leibe
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Gaussian Noise

Gaussian i.i.d. (“white") noise;
n(z,y) ~ N, )

>> noise = randn(size(im)).*sigma;

Ideal Image  Noise process
pack s

fxy)= @) + a(zy)

Computer Vision Summer19

>> output = im + noise;

lide credit; Kristen Grauman B. Leibe Image Source: Martial Heberl

Moving Average in 2D
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Moving Average in 2D
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First Attempt at a Solution

* Assumptions:
» Expect pixels to be like their neighbors

» Expect noise processes to be independent from pixel to pixel
(“i.i.d. = independent, identically distributed”)

* Let's try to replace each pixel with an average of all the
values in its neighborhood...

Computer Vision Summer19

ide credit; Kristen Grauman B. Leibe

Moving Average in 2D
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Moving Average in 2D
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Moving Average in 2D

Computer Vision Summer‘19

Flz, y] Glz, y]
5. Lebe W
RWTH//CHE
Correlation Filtering
* Say the averaging window size is 2k+1 x 2k+1:
k
1
Glijl= s > 3 Fli+uj+1]
9 N 2 b
(Qk + 1) u=—kv=—k
%(—/
Attribute uniform Loop over all pixels in neighborhood
weight to each pixel around image pixel F[i,j]
* Now generalize to allow different weights depending on
neighboring pixel’s relative position:
k k
Gli.jl= Y Y HuvF[i+u,j+v]
u=—kv=—k
\_v_/
Non-uniform weights 16
lide credit; Kristen Grauman B. Leibe
RWTH//CHE

Convolution
* Convolution:

» Flip the filter in both dimensions (bottom to top, right to left)
» Then apply cross-correlation

k k
Gli,j1= > Y Hu,v]F[i—u,j—v]

u=—kv=—k
v g [©0)
G=Hx+F H
T Z L
Notation for F
convolution
operator

(N.N)

18

ide credit, Kristen Grauman B. Leibe
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Moving Average in 2D

Computer Vision Summer19
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Correlation Filtering
k k
Gli.jl= Y Y HuvF[i+u,j+v]
u=—kv=—k
e This is called cross-correlation, denoted G = H ® F
* Filtering an image
» Replace each pixel by a it 2| |00
weighted combination of H
its neighbors.
» The filter “kernel” or “mask” F
is the prescription for the
weights in the linear
combination. )
ide credit; Kristen Grauman B. Leibe Y
RWTH CHET
Correlation vs. Convolution
* Correlation . Matlab:
. , . filter2
G[i, j] = ZL Zk Hlu,v]F[i + u,j + v] i:nfiif:er
U=—KRVv=—K
G=HQ®F
Note the difference!
¢ Convolution
k k Matlab
C ] — o P atlab:
Glijl= 3 3 Hlwuflizwj=o G5
u=—kv=—
G=Hx«F
* Note
> If H[-u,-v] = H[u,V], then correlation = convolution.
ide credit; Kristen Grauman B. Leibe *
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Shift Invariant Linear System

* Shift invariant:

» Operator behaves the same everywhere, i.e. the value of the output
depends on the pattern in the image neighborhood, not the position
of the neighborhood.

* Linear:
» Superposition:

hx(fi+ f)=(hx f)+ (hx )
hx(kf)=k(h* f)

» Scaling:

’ 20
lide credit; Kristen Grauman B. Leibe

Averaging Filter

* What values belong in the kernel H[u,v] for the moving
average example?

Flz,y] X Huwv] = Glz.y]
111 DREE i
Tl L) T
90 90| 90 [ 90 | 90 9
90 90 | 90 | 90 1 1
% “box filter”
G=H®VF
22
lide credit; Kristen Grauman B. Leibe

Filtered

Original

24

B. Leibe Jmage Source: Forsyih & Poncs
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Properties of Convolution

* Linear & shift invariant

* Commutative: fxg=gxf

* Associative: (fxg)xh="fx(g«h)

(((@%by)  by) x bs)
» This is equivalent to applying one filter: @ (b; x b, x bg)

» Often apply several filters in sequence:
* Identity: frxe=f

» for unitimpulse e =[..., 0,0, 1, 0,0, ...].

=~ xg

. N | af
* Differentiation: —
dz (f*9) dzx

21

ide credit; Kristen Grauman B. Leibe

Smoothing by Averaging

depicts box filter:
white = high value, black = low value

Original Filtered

“Ringing” artifacts!
23

lmage Source: Forsvih & Pong

ide credit; Kristen Grauman B Leibe

Original Filtered

25

B. Leibe Image Sowce: Forsyih & PonG




Gaussian Smoothing

* Gaussian kernel 0. o
1 (=t
— e K—E—EQ

p— {eh
2702

a

* Rotationally symmetric
* Weights nearby pixels more
than distant ones

» This makes sense as
‘probabilistic’ inference
about the signal

* A Gaussian gives a good model
of a fuzzy blob

Computer Vision Summer19

26

B. Leibe Image Source: Forsyih & Ponc

Gaussian Smoothing

* What parameters matter here?
* Size of kernel or mask

» Gaussian function has infinite support, but discrete filters use finite
kernels

o =5 with 10x10 o =5 with 30x30
kernel kernel

> Rule of thumb: set filter half-width to about 30!

Computer Vision Summer19
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lide credit; Kristen Grauman B Leibe

Effect of Smoothing

More noise >
o=0.05 o0=0.1
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lide credit; Kristen Grauman B. Leibe Jmage Source: Forsyih & Ponc

Gaussian Smoothing

¢ What parameters matter here?
* Variance o? of Gaussian
» Determines extent of smoothing

o

s

=

=

=

1%2]

c

2

=

- =2 with 30x30 =5 with 30x30
5| kernel kernel

a

=

S

i 27
ide credit; Kristen Grauman B. Leibe

Gaussian Smoothing in Matlab
>> hsize = 10;
>> sigma = 5;

>> h = fspecial(‘gaussian’ hsize, sigma);

-

g

>> imagesc(h) ; E

>> mesh (h) ;

>> outim = imfilter (im, h);
>> imshow (outim) ;

Computer Vision Summer19

ide credit; Kristen Grauman B Leibe

outim 29

Effect of Smoothing

More noise >
0=0.05 o=0.1
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RWTH//THE
Efficient Implementation

* Both, the BOX filter and the Gaussian filter are separable:
» First convolve each row with a 1D filter

Lo H—

g0 = ﬁ exp(—x* /(257 [
! I~ ’
o I I
$)* ore
* Remember:

» Convolution is linear — associative and commutative

» Then convolve each column with a 1D filter

exp(—y*/(207))

Gox Gy x I =gp % (gy*I) = (ga*gy) *x I

32
lide credit; Bernt Schiele B. Leibe

RWTH/THE
Filtering: Boundary Issues

* How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
» Methods:
— Clip filter (black)

34

B. Leibe ouice. S, Marschoel
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TRWTH/ACHEN
Filtering: Boundary Issues

* How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
» Methods:

— Clip filter (black)

36

B. Leibe ouice: S, Marschoel
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Filtering: Boundary Issues

* Whatis the size of the output?
* MATLAB: filter2 (g, f, shape)
» shape = ‘full': output size is sum of sizes of fand g

» shape = ‘same’: output size is same as f
» shape = ‘valid’: output size is difference of sizes of f and g
same valid

[¢] 9 Q \i

f f

ol [g]

33

ide credit; Svetlana Lazebnik B Leibe

TRWTH/JCHEN
Filtering: Boundary Issues

* How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
» Methods:
— Clip filter (black)

35

ouice: S, Marschne

B. Leibe
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TOWTHACHET]
Filtering: Boundary Issues

* How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
» Methods:
— Clip filter (black)
— Wrap around

37

ouice: S, Marschne

B. Leibe
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RWTH//THE
Filtering: Boundary Issues

* How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
» Methods:
— Clip filter (black)
— Wrap around

’ 38
B. Leibe

ource: S, Marschig

RWTH/THE
Filtering: Boundary Issues

* How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
» Methods:
— Clip filter (black)
— Wrap around
— Copy edge

40

B. Leibe ouice. S, Marschoel
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TRWTH/ACHEN
Filtering: Boundary Issues

* How should the filter behave near the image boundary?

» The filter window falls off the edge of the image

» Need to extrapolate

» Methods: n o
— Clip filter (black) '
— Wrap around
— Copy edge

42

B. Leibe ouice. S, Marschoel
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RWTH//CHEN
Filtering: Boundary Issues

* How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
» Methods:
— Clip filter (black)
— Wrap around

39

ource: S, Marschne
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TRWTH/JCHEN
Filtering: Boundary Issues

* How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
» Methods: ad o B
— Clip filter (black) J
— Wrap around
— Copy edge

41

ouice: S, Marschne

B. Leibe
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TOWTHACHET]
Filtering: Boundary Issues

* How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
» Methods:

— Clip filter (black)

— Wrap around

— Copy edge

— Reflect across edge

43

ouice: S, Marschne

B. Leibe
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RWTH//THE
Filtering: Boundary Issues

* How should the filter behave near the image boundary?

» The filter window falls off the edge of the image
» Need to extrapolate
» Methods:

— Clip filter (black)

— Wrap around

— Copy edge

— Reflect across edge

.

B. Leibe

ource: S, Marschig

RWTH/THE
Filtering: Boundary Issues

* How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
» Methods (MATLAB):
— Clip filter (black):
— Wrap around:
— Copy edge:
— Reflect across edge:

imfilter (£f,q,0)

imfilter (f,qg, ‘circular’)
imfilter (f,qg, ‘replicate’)
imfilter (£, g, ‘symmetric’)

46

B. Leibe ouice. S, Marschoel
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TRWTH/ACHEN
Why Does This Work?

* A small excursion into the Fourier transform to talk about
spatial frequencies...

A

3cos(x) A N4

+1cos(3) B VA Va Vave

/'\/\
W

A+B+C+D

+.. 48
B. Leibe ouce: Michal I

+0800s(5x) C VWIS

+04cos(TX) D VVVVVAANANAS
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RWTH//CHEN
Filtering: Boundary Issues

* How should the filter behave near the image boundary?
» The filter window falls off the edge of the image
» Need to extrapolate
» Methods: r—
— Clip filter (black) ' "
— Wrap around
— Copy edge
— Reflect across edge ¢
B. Leibe 45

ource: S, Marschne

Topics of This Lecture

* Linear filters
» What are they? How are they applied?
» Application: smoothing
» Gaussian filter
» What does it mean to filter an image?

47
B. Leibe

TWTH G
The Fourier Transform in Cartoons

* A small excursion into the Fourier transform to talk about
spatial frequencies... “high” “lqw” “high”
° 1 ’ ‘ i

- FrequencJ spectrum

AUA T AN
B NN /\r\l\/\,\ B
[VV\’V\/VV\M&C
W

A+B+C+D
49

ouice: Michal lran|

K cos(x)
+ 1 cos(3x)

Hodcossr) © VAN

todeos D VA

L IFrequency coefficients B. Leibe
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RWTH//ACHEN
Fourier Transforms of Important Functions

* Sine and cosine transform to...

—a ? —a ?

50

B. Leibe Image Source: S, Chenn

RWTH//CHEN
Fourier Transforms of Important Functions

* Sine and cosine transform to “frequency spikes”

* A Gaussian transforms to a Gaussian

ANGVAN

* A box filter transforms to...

52

lmage Source. S, Chenn

B. Leibe
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TRWTH/ACHEN
Duality

* The better a function is localized in one domain, the worse it
is localized in the other.

\
/

5/ |\e _E[B

e 5 | \e

* This is true for any function

Computer Vision Summer19
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RWTH//ACHET]
Fourier Transforms of Important Functions

* Sine and cosine transform to “frequency spikes”

* A Gaussian transforms to...

PANG

51

B. Leibe Image Source: S. Chenn

TWTH/ /T
Fourier Transforms of Important Functions

* Sine and cosine transform to “frequency spikes”

Vbﬁvﬂv%ﬂvﬁ“ W}W‘Q

* A Gaussian transforms to a Gaussian

: All of this is
| © ‘ symmetric!

* A box filter transforms to a sinc

. sinx
o sinc(x) =——
X
53
B. Leibe

lmage Souice. S, Chenn
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RWTH/ACHEN
Effect of Convolution
* Convolving two functions in the image domain corresponds

to taking the product of their transformed versions in the
frequency domain.

frg—oF-G

* This gives us a tool to manipulate image spectra.

» Afilter attenuates or enhances certain frequencies through this
effect.

55

B. Leibe
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Effect of Filtering Low-Pass vs. High-Pass
* Noise introduces high frequencies. To
remove them, we want to apply a “low- J-J\‘_ =
pass” filter. ———
Low-pass
* The ideal filter shape in the frequency filtered
domain would be a box. But this -
transfers to a spatial sinc, which has |
infinite spatial support.
=8« A compact spatial box filter transfers to o
g a frequency sinc, which creates o g
E artifacts. 5 E
@ 2 High-pass
=l * A Gaussian has compact support in 2 S filtered
S both domains. This makes it a S Original image
2 convenient choice for a low-pass filter. | ° 2
£ £
& 56 © . 57
B. Leibe B. Leibe Image Source: S Chenn
RWTH/CHET RWTH CHET
. R UNIVERSITY} . . UNIVERSITY]
Quiz: What Effect Does This Filter Have? Sharpening Filter
20 20
0.33 ?
E E Original
(7] 2]
2 g Sharpening filter
& 5 — Accentuates differences
£ g e with local average
) 58 = 59
B. Leibe quice: D ow B. Leibe ource: D1 ow
RWTH/CHET RWTH CHET
. . UNIVERSITY| L . . UNIVERSITY|
Sharpening Filter Application: High Frequency Emphasis

Original

High pass Filter

before after

h Frequency
Emphasis

Computer Vision Summer‘19
Computer Vision Summer19

High Frequency Emphasis
+
60

Souce. D Lo

Histogram Equalization 61
B. Leibe

ide credit; Michal lrani B. Leibe




* Nonlinear Filters
» Median filter

Computer Vision Summer19

Topics of This Lecture

Computer Vision Summer19

lide credit; Kristen Grauman

B. Leibe

’ 62
B. Leibe
. - / s 1l
Median Filter
Median
filtered
Plots of the center column of the image

64

lmage Source: Martial Hebel

Median vs. Gaussian Filtering

3x3

Gaussian

5x5

Computer Vision Summer19
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Non-Linear Filters: Median Filter

* Basic idea

» Replace each pixel by the
median of its neighbors.

* Properties

» Doesn't introduce new pixel

Median value

10 15 20 23 30 31 33 90

Y
10[15]20
23190|27
s
33[31]30 [ ort

[10[15]20] l Replace

Computer Vision Summer19

values [23[27]27]
» Removes spikes: good for {33]31 ,m\
impulse, salt & pepper noise
» Linear?
’ 63
ide credit; Kristen Grauman B. Leibe
. ) )
Median Filter
* The Median filter is edge preserving.
. .
sssss sas L INPUT
seee
.
LR t. MEDIAN
.’
cene
ceatree . MEAN
" ]
65
ide credit; Kristen Grauman B. Leibe
. . )
Topics of This Lecture
* Multi-Scale representations
» How to properly rescale an image?
67
B. Leibe
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Motivation: Fast Search Across Scales

RWTH/AACHET]

&3] search &=
TF o & _
.search

* W % IX

+r N
ey —E

[ram & Basri

68
B. Leibe

Image Source: lrani & Basi|

How Should We Go About Resampling?

RWTHAACHE

Let's resample the
checkerboard by taking
one sample at each circle.

In the top left board, the
new representation is
reasonable. Top right also
yields a reasonable
representation.

Bottom left is all black
(dubious) and bottom right
has checks that are too
big.

70

lmage Source: Forsvih & Ponc:

B. Leibe

spike function.

spike function.

L

Fourier Interpretation: Discrete Sampling

* Sampling in the spatial domain is like multiplying with a

/SN

* Sampling in the frequency domain is like convolving with a

RWTHAACHE

M- L

72

B. Leibe ouice. S, Chenny

spike function.

SN
ol

®
‘g * Sampling in the frequency domain is like...
=
5
12
s
g ?
g
3
&
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B. Leibe

RWTHACHE
Image Pyramid
Low resolution n
]
£
@ \
é- N N
=1 High resolution B. Leibe -
RWTHACHE

Fourier Interpretation: Discrete Sampling

* Sampling in the spatial domain is like multiplying with a

71

ouice: S, Chenn;

Sampling and Aliasing

Fourier
Transform Magnitude

Signal —_ J Spectrum
Sample Capy and
Still

Sampled Tourier

I Magnitude
Signal 1 8
] igna Transform oo

Cut out by
multiplication
with box filter

Magnitude
Spectrum

'

Computer Vision Summer19

B. Leibe

lmage Source: Forsvih & Ponc

73
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Sampling and Aliasing

Fourier

Transform Magnitude
Signal _— /-R Speetrum
Shift

Sampled Fouricr

Magnitude

[ Sigul Transfo
g ramsform S,

* Nyquist theorem:
~ In order to recover a certain frequency f, we need to sample with at least 2f.

» This corresponds to the point at which the transformed frequency spectra
start to overlap (the Nyquist limit)

74

B. Leibe Image Source: Forsyih & Pong

Aliasing in Graphics

=

Disintegrating textures

76
B. Leibe

lmage Source: Alexei Efo;

The Gaussian Pyramid

Low resolution G, =(G,

ssian) 4 2
- 5. dow

SHIANTC2

High resolution
B. Leibe

Quice. liani & Bas]

Sampling and Aliasing

Fourier

Transform Magnitude
Signal [ Spectrum
Is"‘"‘l"‘ l Copy and
Shift

Sampled Touricr .
Signal Transform Magnitude
—_—

L

Magnitude
Spectrum

Spectrum
g ittty m
5}

=

=

£

n Cut out by

g multiplication

B Inaccurately Inverse it box ity

S Reconstructed Fourier

. Signal Transform

o -—

=3

(=%

=

o

o

75

B Leibe Image Source: Forsth & Pongs

Resampling with Prior Smoothing

256 x 256 128 x 128 64 x 64 32x 32 16 x 16

.IHHII - “llI'III - IIIIIIIII lllllill a1l .

no
smoothing

Gaussian
o=1

Gaussian
=2

* Note: We cannot recover the high frequencies, but we can
avoid artifacts by smoothing before resampling.

B. Leibe

Computer Vision Summer19

7
lmage Source: Forsvih & Pong

UNI
Gaussian Pyramid — Stored Information

B
il

B. Leibe

Computer Vision Summer19
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UNIVERSITY UNIVERSITY]

Summary: Gaussian Pyramid The Laplacian Pyramid

Li = G; —expand(G; )
Gaussian Pyramid Laplacian Pyramid

G; = L; +expand(G;,;) _ L, =G,

W -
L

* Construction: create each level from previous one
» Smooth and sample G
nlid
* Smooth with Gaussians, in part because
» a Gaussian x Gaussian = another Gaussian
-+ G(oy) » G(oy) = G(sart(s; 2+ 5, 2))

* Gaussians are low-pass filters, so the representation is
redundant once smoothing has been performed.

= There is no need to store smoothed images at the
full original resolution.

Computer Vision Summer19
Computer Vision Summer19

Why is this useful?
e B

80

lide credit; David Lowe B. Leibe

81

RWTH/CHET RWTH CHET
. . . UNIVERSITY| . . UNIVERSITY]
Laplacian ~ Difference of Gaussian Topics of This Lecture
DoG = Difference of Gaussians
Cheap approximation — no derivatives needed.
5 £
(7] 2]
2 3 ) .-
S | * Filters as templates e
% % . Correlation as template matching R
= =
) 82 = 83
B. Leibe B. Leibe
RWTH/CHET
. UNIVERSITY| UNIVERSITY]
Note: Filters are Templates
* Applying a filter at some point ¢ Insight
can be seen as taking a dot- ~ Filters look like the effects
product between the image and they are intended to find.

some vector. . Filters find effects they look
* Filtering the image is a set of dot like.

products.
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Where’s Waldo?
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Correlation as Template Matching Summary: Mask Properties

* Think of filters as a dot product of the filter vector with the
image region
» Now measure the angle between the vectors

¢ Smoothing
» Values positive
» Sum to 1 = constant regions same as input

a-b > Amount of smoothing proportional to mask size
a-b=alb|coso cosf = 9 prop
| a ” b | » Remove “high-frequency” components; “low-pass” filter
» Angle (similarity) between vectors can be measured by normalizing * Filters act as templates
© length of each vector to 1. 2 » Highest response for regions that “look the most like the filter”
E E » Dot product as correlation
5 é s
%%
o o
5 Template =
(=3 (=3
§ £
[} Image region Vector interpretation a8 (8] 89
B. Leibe ide credit: Kristen Grauman B. Leibe
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Summary Linear Filters References and Further Reading
* Linear filtering: Examples: * Background information on linear filters and their connection
. Form a new image whose « Smoothing with a box filter with the Fourier transform can be found in Chapter 3 of the
pixels are a weighted sum of « Smoothing with a Gaussian Szeliski book or Chapters 7 and 8 of Forsyth & Ponce.

original pixel values * Finding a derivative

* Searching for a template

R. Szeliski
Computer Vision —Algorithms and Applications

Computer
Springer, 2010 /i

ision

* Properties
» Output is a shift-invariant

function of the input (same at Pyramid representations
each image location) * Important for describing and
searching an image at all D. Forsyth, J. Ponce,
scales Computer Vision — A Modern Approach.

Prentice Hall, 2003
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