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Computer Vision — Lecture 2

Linear Filters

15.04.2019

Bastian Leibe

Visual Computing Institute
RWTH Aachen University
http://www.vision.rwth-aachen.de/
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Organizational Remarks

* Presenting today
> Istvan Sarandi (sarandi@vision.rwth-aachen.de)

* No lecture tomorrow
> Next lecture: Tue, 23.04.

Course Schedule

Date Title Content Material
Tue, 2019-04-09 |Introduction |Why vision? Applications, Challenges, Image 6on1
Formation fullpage
Mon, 2019-04-15 |Image Linear Filters, Gaussian Smoothing, Multi-scale |6on1
Processing| |Representations fullpage
Tue, 2019-04-16 |- no class
Mon, 2019-04-22 |- no class (Easter Monday)
Tue, 2019-04-23  |Image Image Derivatives, Edge detection, Canny
Processing Il

B. Leibe
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Course Outline

* Image Processing Basics
> Image Formation
> Linear Filters
> Edge & Structure Extraction
> Color

* Segmentation

Local Features & Matching

Object Recognition and Categorization

* Deep Learning

3D Reconstruction

B. Leibe
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* Noise reduction/image restoration
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Topics of This Lecture

* Linear filters
> What are they? How are they applied?
Application: smoothing
> Gaussian filter
> What does it mean to filter an image?

Y

 Nonlinear Filters
> Median filter

* Multi-Scale representations
> How to properly rescale an image?

* Filters as templates
> Correlation as template matching
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Common Types of Noise

* Salt & pepper noise

> Random occurrences of
black and white pixels

* Impulse noise

> Random occurrences of
white pixels

e (Gaussian noise

> Variations in intensity drawn
from a Gaussian (“Normal”)
distribution.

* Basic Assumption

> Noise is 1.i.d. (independent & ot s el A
identically distributed) Impulse noise Gaussian noise .
B. Leibe
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Source: Steve Seitz



Gaussian Noise

>> noise = randn(size(im)) .*sigma;
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E Ideal Image  Noise process Gaussian i.i.d. (“white") noise:
[0) fzy)= f(zy) + n(x,y) n(z,y) ~N(u, o)

a
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>> output = im + noise; 8
Slide credit: Kristen Grauman B. Leibe Image Source: Martial Hebert




First Attempt at a Solution

* Assumptions:
> EXxpect pixels to be like their neighbors

> EXpect noise processes to be independent from pixel to pixel
(“i.i.d. = independent, identically distributed”)

* Let's try to replace each pixel with an average of all the
values in its neighborhood...
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Moving Average in 2D

Flz, y] Glz, y.
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Source: S. Seitz
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Moving Average in 2D
Flz, y] Glz,y.

O“ 10
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Moving Average in 2D

Flz, y] Glz, y
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Moving Average in 2D

Flz, y] Glz, y
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Moving Average in 2D

Flz, y] Glz, y.
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Moving Average in 2D

Flz, y]
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Correlation Filtering

* Say the averaging window size IS 2k+1 2k+1.:

G[i, j] = Z Z u, § + ]
2 ?
(216 -I- 1) = .=
~ J\ v J
Attribute uniform Loop over all pixels in neighborhood
weight to each pixel around image pixel F[i,]]

* Now generalize to allow different weights depending on
neighboring pier S relative position:

Gli, j] = Z Z Hlu,v]F[i + u, 5 + v]

u=—kv=—k

J

Y
Non-uniform weights
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Correlation Filtering

k k
Gli,j1= >_ Y Hlu,v]F[i+ u,j+ v]

u=—kv=-—%k

* This is called cross-correlation, denoted G = H K F
* Filtering an image
> Replace each pixel by a 1 2| |(0,0)
weighted combination of H
its neighbors. 2 A
> The filter “kernel” or “mask” F
IS the prescription for the
weights in the linear
combination. ()

Slide credit: Kristen Grauman B. Leibe
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Convolution

e Convolution:

> Flip the filter in both dimensions (bottom to top, right to left)

> Then apply cross-correlation

Gli, 7] = Z Z Hlu,v]F[i —u,j — v]

u=—kv=—%k

G=H«F

T Z
Notation for

convolution
operator

Slide credit: Kristen Grauman B. Leibe

(0,0)

(N.N)
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Correlation vs. Convolution

* Correlation Matlab:
.. ) ) filter2
Glijl= Y S HluolFli+uj+o — fiees2
n=—kov=-—%k T
G=HKF
Note the differencel
. Convolution i
% Matlab:
o Gli, 7] = Z Z Hlu,v]F[i —u,j — v] conuD
£ u=—kv=-—=%k
(0))
§ G=HxF
>
= * Note
§ . If H[-u,-v] = H[u,V], then correlation = convolution.

) 19
Slide credit: Kristen Grauman B. Leibe



Shift Invariant Linear System

* Shift invariant:

» Operator behaves the same everywhere, i.e. the value of the output
depends on the pattern in the image neighborhood, not the position
of the neighborhood.

* Linear:
. Superposition:  hx (f, + f)=(h*x f)+ (h* f)
. Scaling: h x (kf) = k(h * f)
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Slide credit: Kristen Grauman B. Leibe



Properties of Convolution

* Linear & shift invariant

 Commutative: fxg=0xf

* Associative: (fxg)xh=fx(gxh)

. Often apply several filters in sequence: (((a x by) x b,) x by)

. This is equivalent to applying one filter: a % (b; x b, % b,)

%’ * |dentity: fxe=f

cé . forunitimpulsee =1...,0,0, 1, 0,0, ...].
é * Differentiation: i(f*g) _ 5_f g
s oz ox

S

Slide credit: Kristen Grauman B. Leibe



Averaging Filter

* What values belong in the kernel H[u,Vv] for the moving
average example?

Flx, y] ® Hlu,v] = G|z, y]
1 1 1 0 |10] 20 3';1
1 el
“11]|?|1
= 11111
: “box filter”
@
%:
g G=HQ®F
S

Slide credit: Kristen Grauman B. Leibe
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Smoothing by Averaging

depicts box filter:
white = high value, black = low value

Original Filtered
“Ringing” artifacts!
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Slide credit: Kristen Grauman B. Leibe Image Source: Forsyth & Ponce
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Smoothing with a Gaussian

Original Filtered
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B. Leibe Image Source: Forsyth & Ponce
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Smoothing with a Gaussian — Comparison

Original Filtered
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B. Leibe Image Source: Forsyth & Ponce



Gaussian Smoothing

e Gaussian kernel
1 _ @242
Gy = e 202
2ol

* Rotationally symmetric

* Weights nearby pixels more
than distant ones

> This makes sense as
‘probabilistic’ inference
about the signal

* A Gaussian gives a good model
of a fuzzy blob
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B. Leibe Image Source: Forsyth & Ponce
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Gaussian Smoothing

* What parameters matter here?

e Variance o2 of Gaussian

> Determines extent of smoothing

o = 2 with 30x30
kernel

Slide credit: Kristen Grauman

B. Leibe

Effectof o

o =5 with 30x30
kernel

27
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Gaussian Smoothing

* What parameters matter here?

e Sjze of kernel or mask

> Gaussian function has infinite support, but discrete filters use finite
kernels

x 107

[}

[}

L]
L}

L L L
) S S — |
L} L} 1 1
L L]

o =5 with 10x10 o = 5 with 30x30
kernel kernel

> Rule of thumb: set filter half-width to about 30!

Slide credit: Kristen Grauman B. Leibe
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Gaussian Smoothing in Matlab

>> hsize = 10;
>> sigma = 5;
>> h = fspecial(‘gaussian’ hsize, sigma);

>> mesh(h),; ‘-

>> imagesc(h) ; n

>> outim = imfilter (im, h);
>> imshow (outim) ;
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Slide credit: Kristen Grauman B. Leibe
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Effect of Smoothing

More noise =2
0=0.05 g=0.1

& [duJay Buiyioows 1spIpn
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Slide credit: Kristen Grauman B. Leibe Image Source: Forsyth & Ponce
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Effect of Smoothing

More noise =2
0=0.05 g=0.1

B o

L =* smoothing

o=1 pixel

& [duJay Buiyioows 1spIpn

=2 pixels
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Slide credit: Kristen Grauman B. Leibe Image Source: Forsyth & Ponce




Efficient Implementation

* Both, the BOX filter and the Gaussian filter are separable:
> First convolve each row with a 1D filter

v

Ox
exp(—x~ /(207)) I

1

g(x)= \/EO'

> Then convolve each column with a 1D filter

1 9y S
_ v /(252 I
g(y) [y exp(—y~/(207))

* Remember:
> Convolution is linear — associative and commutative

ga:*gy*lzgx*(gy*l) — (g:c*gy)*I
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Slide credit: Bernt Schiele B. Leibe



Filtering: Boundary Issues

* What is the size of the output?
 MATLAB: filter2 (g, £, shape)
> Shape = ‘full’; output size is sum of sizes of f and g

> shape = ‘same’: output size is same as f
> shape = ‘valid’: output size is difference of sizes of fand g

ol — full ] 9 same valid
= g g
2 g
£
E f f f
%
= : 0
= g
] —— g =
&)

Slide credit: Svetlana Lazebnik B. Leibe



Filtering: Boundary Issues

* How should the filter behave near the image boundary?
> The filter window falls off the edge of the image

> Need to extrapolate

> Methods:
— Clip filter (black)
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Source: S. Marschner
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Filtering: Boundary Issues

* How should the filter behave near the image boundary?
> The filter window falls off the edge of the image

> Need to extrapolate

> Methods:
— Clip filter (black)
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Source: S. Marschner
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Filtering: Boundary Issues

* How should the filter behave near the image boundary?
> The filter window falls off the edge of the image

> Need to extrapolate

> Methods:
— Clip filter (black)
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Source: S. Marschner
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Filtering: Boundary Issues

* How should the filter behave near the image boundary?
> The filter window falls off the edge of the image

> Need to extrapolate

> Methods:
— Clip filter (black)
— Wrap around
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37
Source: S. Marschner

B. Leibe
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Filtering: Boundary Issues

* How should the filter behave near the image boundary?
> The filter window falls off the edge of the image
> Need to extrapolate

> Methods: o
— Clip filter (black)
— Wrap around

(@]
3
£
S
-}
0p]
c
S
@
S
I3
>
o
£
(@)
O

38
Source: S. Marschner
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Filtering: Boundary Issues

* How should the filter behave near the image boundary?
> The filter window falls off the edge of the image
> Need to extrapolate

~ Methods: o
— Clip filter (black)
— Wrap around
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Source: S. Marschner
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Filtering: Boundary Issues

* How should the filter behave near the image boundary?
> The filter window falls off the edge of the image

> Need to extrapolate

> Methods:
— Clip filter (black)
— Wrap around
— Copy edge
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Source: S. Marschner
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Filtering: Boundary Issues

* How should the filter behave near the image boundary?
> The filter window falls off the edge of the image
> Need to extrapolate

> Methods: et - B
— Clip filter (black) l

— Wrap around
— Copy edge
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Filtering: Boundary Issues

* How should the filter behave near the image boundary?
> The filter window falls off the edge of the image
> Need to extrapolate

> Methods: - F— 3
— Clip filter (black) ' —

— Wrap around
— Copy edge
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Source: S. Marschner
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Filtering: Boundary Issues

* How should the filter behave near the image boundary?

> The filter window falls off the edge of the image
> Need to extrapolate
> Methods:

— Clip filter (black)

— Wrap around

— Copy edge

— Reflect across edge
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Source: S. Marschner
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Filtering: Boundary Issues

* How should the filter behave near the image boundary?
> The filter window falls off the edge of the image
> Need to extrapolate

> Methods: ‘
— Clip filter (black) v

— Wrap around
— Copy edge
— Reflect across edge
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Filtering: Boundary Issues

* How should the filter behave near the image boundary?
> The filter window falls off the edge of the image
> Need to extrapolate

> Methods: pr—
— Clip filter (black) ' “

— Wrap around
— Copy edge
— Reflect across edge
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Source: S. Marschner
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Filtering: Boundary Issues

* How should the filter behave near the image boundary?
> The filter window falls off the edge of the image

> Need to extrapolate
> Methods (MATLAB):
— Clip filter (black):
— Wrap around:
— Copy edge:

— Reflect across edge:

imfilter(f, g,
£,9,

£,9,
imfilter(f, g,

imfilter

imfilter

(
(
(
(

B. Leibe

0)

‘circular’)
‘replicate’)

‘symmetric’)

46
Source: S. Marschner



RWTHAACHEN
UNIVERSITY

Topics of This Lecture

* Linear filters
> What are they? How are they applied?
> Application: smoothing
> Gaussian filter
> What does it mean to filter an image?
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Why Does This Work?

* A small excursion into the Fourier transform to talk about
spatial frequencies...

2 A

sty A % /‘\—/\

N N2 N
+1cos(3x) B A+B

+08 COS(SX) C 2 VaAVYVaVYVaVaVaVvava /\/\'/\/\A/W\A B C
+B+
+04cos(7x) D VIV W

A+B+C+D

+ ... : 48
B. Leibe Source: Michal Irani
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The Fourier Transform in Cartoons

* A small excursion into the Fourier transform to talk about
spatial frequencies... “high” “lqw” “high”
L

° '
I\ S\ . 1 .

Frequency spectrum

Joosx) A /-\/\
o
o VNV
GEJ + 1} cos(3x) B /\/\/\/\/\ A+B
£
wn
-5 +lo8 COS(5X) C AVAVAVAVAVAVAVA /\/\'/\/V\/w\
%’ A+B+C
o
= +l0.4 COS(7X) D AVAVAVAVAVAVAVAVAVAVA /M\/vv\/w\
= A+B+C+D
- e 49

- IFrequency coefficients B. Leibe Source: Michal Irani




Fourier Transforms of Important Functions

 Sine and cosine transform to...

UAVAVAUAVAVAYP% ? oiPVAVﬂUAUW\% ’
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B. Leibe Image Source: S. Chenney
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Fourier Transforms of Important Functions

* Sine and cosine transform to “frequency spikes”

‘ Tt ‘ Tt

-1 ‘ ‘
M ‘ 1 \ 1 1
1 T -TE 1

* A Gaussian transforms to...
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B. Leibe Image Source: S. Chenney
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Fourier Transforms of Important Functions

* Sine and cosine transform to “frequency spikes”

‘ Tt ‘ ‘ Tt ‘
0 _O -1 01 _O

“ ‘ 1 \ 1 1
1 T 1

e A Gaussian transforms to a Gaussian

ANV

* A box filter transforms to...

o)
3
£
S
S
/)]
c
Qo
D
>
8
S
Q
S
o
S

52

B. Leibe Image Source: S. Chenney
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Fourier Transforms of Important Functions

* Sine and cosine transform to “frequency spikes”

T ‘ ‘ Tt ‘
o1 . —0
‘ 1 \ -1 1
1o .1

e A Gaussian transforms to a Gaussian

} All of this Is
e symmetric!

* A box filter transforms to a sinc

. sin x
— 0 sinc(x) = T
//\\/ 7\

_ Vo o
B. Leibe Image Source: S. Chenney
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Duality

* The better a function is localized in one domain, the worse it
IS localized In the other.

A A

A A

* This is true for any function

Ll -~ sl
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Effect of Convolution

* Convolving two functions in the image domain corresponds
to taking the product of their transformed versions in the
frequency domain.

frg—F-G

* This gives us a tool to manipulate image spectra.

> A filter attenuates or enhances certain frequencies through this
effect.

B. Leibe
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Effect of Filtering

Noise introduces high frequencies. To

remove them, we want to apply a “low- —0 /-"\
pass’ filter. | = i

The ideal filter shape in the frequency
domain would be a box. But this

transfers to a spatial sinc, which has S
Infinite spatial support.

A compact spatial box filter transfers to
a frequency sinc, which creates N~ —0
artifacts. - -

A Gaussian has compact support in
both domains. This makes it a
convenient choice for a low-pass filter. N 4

56

B. Leibe
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Low-Pass vs. High-Pass

Low-pass
filtered

High-pass
filtered
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Image Source: S. Chenney
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Quiz: What Effect Does This Filter Have?

2.0
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B. Leibe Source: D. Lowe
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Sharpening Filter

Original

2.0

B. Leibe

CHEN
UNIVERSITY

Sharpening filter
— Accentuates differences
with local average

59
Source: D. Lowe
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Sharpening Filter
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B. Leibe Source: D. Lowe
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Application: High Frequency Emphasis

High pass Filte

Original

nghﬁFreqency

Hih Frequency mphasis
Emphasis +
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Histogram Equalization 61

Slide credit: Michal Irani B. Leibe
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Topics of This Lecture

* Linear filters
> What are they? How are they applied?
Application: smoothing
Gaussian filter
> What does it mean to filter an image?

\

\

* Nonlinear Filters
> Median filter

* Multi-Scale representations
> How to properly rescale an image?

* Image derivatives
> How to compute gradients robustly?

B. Leibe
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Non-Linear Filters: Median Filter

* Basic idea
> Replace each pixel by the ol15120
median of its neighbors. A RRIEL
2319027
- R Sort
Median value 3313130 l
--_‘___‘_'_
* Properties 10 15 20 23 |27|30 31 33 90
. Doesn't introduce new pixel 10115120 l Replace
values 23]27]27
> Removes spikes: good for 3313130
Impulse, salt & pepper noise
> Linear?
63

Slide credit: Kristen Grauman B. Leibe



Median Filter

Saltand .~ Median
pepper filtered
noise /

Plots of the center column of the image
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_ 64
Slide credit; Kristen Grauman B. Leibe Image Source: Martial Hebert
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Median Filter

* The Median filter is edge preserving.
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Slide credit: Kristen Grauman

cesss sus .‘- INPUT
MEDIAN
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Median vs. Gaussian Filtering

Gaussian

Median

Slide credit: Svetldna Laze
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Topics of This Lecture

* Linear filters
> What are they? How are they applied?
Application: smoothing
Gaussian filter
> What does it mean to filter an image?

\

\

* Nonlinear Filters
> Median filter

* Multi-Scale representations
> How to properly rescale an image?

* Filters as templates
> Correlation as template matching

B. Leibe
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Motivation: Fast Search Across Scales

[ran1 & Basri
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B. Leibe Image Source: Irani & Basti
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Image Pyramid

Low resolution
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High resolution 69
B. Leibe



RWTH
How Should We Go About Resampling?

Let’'s resample the
checkerboard by taking
one sample at each circle.

In the top left board, the
new representation is
reasonable. Top right also
yields a reasonable
representation.

Bottom left is all black
(dubious) and bottom right
has checks that are too
big.

70
Image Source: Forsyth & Ponce

B. Leibe



RWTH
Fourier Interpretation: Discrete Sampling

* Sampling in the spatial domain is like multiplying with a

spike function.
N L
| |

e Sampling in the frequency domain is like...
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B. Leibe Source: S. Chenney



RWNTH
Fourier Interpretation: Discrete Sampling

* Sampling in the spatial domain is like multiplying with a

spike function.
N L
| |

 Sampling in the frequency domain is like convolving with a

]
Ji
* -nA-0ANY

B. Leibe
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Sampling and Aliasing

Founer _
.. Transform Magnitude
Signal - 4 Spectrum
T o - /-\ -
Sample Copy and
Shill
Y
Sampled Fourner
Signal Transform Magnitude
. Spectrum
(@))
T fitets N\ A
‘G_J 1 o
&
e
)
@ Cut out by
g multiplication
CT) Accurat El!,.' Inverse with box filter
S H':n..:u onstructed Fourier
o Signal Transform
= - Magnitude
o Specirum
&
8 ! i =i 1 L
73
B. Leibe

Image Source: Forsyth & Ponce



(@]
3
£
S
-}
0p]
c
S
@
S
o
>
o
£
(@)
O

Sampling and Aliasing

Magnitude

/-K Spectrum
:

Fourier
Transform
Signal
- -
Sample
Sam pled FFourier
{ Signal Transform
[

Copy and

Magnitude

F/XXT)OL(\HT
- -

* Nyquist theorem:

- In order to recover a certain frequency f, we need to sample with at least 2f.
> This corresponds to the point at which the transformed frequency spectra

start to overlap (the Nyquist limit)

B. Leibe

74
Image Source: Forsyth & Ponce
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Sampling and Aliasing

RWTHAACHEN
UNIVERSITY

Fourier
i Transform Magnitude
Signal A Spectrum
T - - l .
Sample Copy and
Shift
Sam pled IFourer )
Signal Transform Magnitude
o Spectrum
I ) | )
Cut out by
multiplication
Inaccurately Inverse with box filter
Reconstructed Fourier
Nignal Transform
- 4 Magmtude
p— Spectrum
| r o - —
) 75
B. Leibe

Image Source: Forsyth & Ponce



Aliasing in Graphics

Disintegrating textures
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B. Leibe Image Source: Alexej Efros
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Resampling with Prior Smoothing
256 x 256 128 x 128 64 x 64 32 %32 16 x 16
no
e smoothing
.. ..C.I‘l'l‘l'l
= Gaussian
== g=:1
_
- Gaussian
E g = 2

* Note: We cannot recover the high frequencies, but we can
avoid artifacts by smoothing before resampling.
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B. Leibe Image Source: Forsyth & Ponce
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The Gaussian Pyramid

Low resolution
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High resolution 78

B. Leibe Source: Irani & Basri
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Gaussian Pyramid — Stored Information
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B. Leibe Source: Irani & Basri
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Summary: Gaussian Pyramid

* Construction: create each level from previous one
> Smooth and sample

* Smooth with Gaussians, in part because
> a Gaussian x Gaussian = another Gaussian

> G(oy) x G(o,) = G(sqrt(c, 2+ 5,7))

* Gaussians are low-pass filters, so the representation is
redundant once smoothing has been performed.

= There is no need to store smoothed images at the
full original resolution.

Slide credit: David Lowe B. Leibe
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The Laplacian Pyramid
L. =G, —expand(G;,,)

Gaussian Pyramid Laplacian Pyramid

Gi =L +expand(G;,;) _
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Laplacian ~ Difference of Gaussian

N

DoG = Difference of Gaussians
Cheap approximation — no derivatives needed.

82

B. Leibe
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Topics of This Lecture
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* Filters as templates
> Correlation as template matching ﬁ

B. Leibe
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Note: Filters are Templates

* Applying a filter at some point * Insight
can be seen as taking a dot- . Filters look like the effects
product between the image and they are intended to find.
some vector. - Filters find effects they look
* Filtering the image is a set of dot like.
products.
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Where's Waldo?
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Detected template o6
Slide credit: Kristen Grauman B. Leibe
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Where’s Waldo?
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Slide credit: Kristen Grauman B. Leibe



RWTHAACHEN
UNIVERSITY

Correlation as Template Matching

* Think of filters as a dot product of the filter vector with the
Image region
> Now measure the angle between the vectors

a-b=|al|lb|cosé COSd =
|al|b]

> Angle (similarity) between vectors can be measured by normalizing
length of each vector to 1.
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Image region Vector interpretation
B. Leibe
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Summary: Mask Properties

* Smoothing
> Values positive
> Sum to 1 = constant regions same as input
> Amount of smoothing proportional to mask size
> Remove “high-frequency” components; “low-pass” filter

* Filters act as templates
> Highest response for regions that “look the most like the filter”
> Dot product as correlation

Slide credit: Kristen Grauman B. Leibe
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Summary Linear Filters

* Linear filtering: Examples:
> Form a new image whose * Smoothing with a box filter
pixels are a weighted sum of * Smoothing with a Gaussian
original pixel values .

Finding a derivative

* Searching for a template
* Properties

> Output is a shift-invariant Pvramid renr tations
function of the input (same at yramid represe

each image location) * Important for describing and
searching an image at all
scales

B. Leibe
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References and Further Reading

* Background information on linear filters and their connection
with the Fourier transform can be found in Chapter 3 of the
Szeliski book or Chapters 7 and 8 of Forsyth & Ponce.

Lo o o R. Szeliski
Computer Vision Computer Vision — Algorithms and Applications Computer
Algorithms and Applications Sprlnger’ 2010 ViSion

A MODERN APPROACH

D. Forsyth, J. Ponce, B,
Computer Vision — A Modern Approach. %=
Prentice Hall, 2003
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