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Gradients & Edges
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Topics of This Lecture

* Recap: Linear Filters Lo H—

* Multi-Scale representations

» How to properly rescale an image?
* Filters as templates

» Correlation as template matching
* Image gradients

» Derivatives of Gaussian

* Edge detection
» Canny edge detector
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Recap: Smoothing with a Gaussian

* Parameter o is the “scale” / “width” / “spread” of the

Gaussian kernel and controls the amount of smoothing.

‘A B

for sigma=1:3:10
h = fspecial ('gaussian‘, fsize, sigma);
out = imfilter(im, h);
imshow (out) ;
pause;

end
lide credit: Kristen Grauman B. Leibe
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Course Outline

* Image Processing Basics
» Image Formation
» Binary Image Processing
» Linear Filters
» Edge & Structure Extraction

* Segmentation

* Local Features & Matching

* Object Recognition and Categorization
* Deep Learning

* 3D Reconstruction

Computer Vision Summer19
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Recap: Gaussian Smoothing

* Gaussian kernel
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* Rotationally symmetric
* Weights nearby pixels more
than distant ones

» This makes sense as
‘probabilistic’ inference
about the signal

* A Gaussian gives a good model
of a fuzzy blob

Computer Vision Summer‘19
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Recap: Effect of Filtering

* Noise introduces high frequencies. To

infinite spatial support.

* A Gaussian has compact support in
both domains. This makes it a
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B. Leibe

remove them, we want to apply a “low- ,_J\‘_ 0 i
pass” filter. B
The ideal filter shape in the frequency
domain would be a box. But this o
transfers to a spatial sinc, which has |
* A compact spatial box filter transfers to
a frequency sinc, which creates o
artifacts.
convenient choice for a low-pass filter. 7:2 N @ Z &
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Recap: Low-Pass vs. High-Pass

Low-pass
filtered

- High-pass
filtered

Original image
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Motivation: Fast Search Across Scales
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. UNIVERSITY
Image Pyramid

Low resolution

High resolution 13

B. Leibe
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73

Topics of This Lecture

* Multi-Scale representations
» How to properly rescale an image?
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Image Pyramid

Low resolution

High resolution 12
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Fourier Interpretation: Discrete Sampling

¢ Sampling in the spatial domain is like multiplying with a
spike function.

L

¢ Sampling in the frequency domain is like...

?

14

B. Leibe Souce: S, Chenny




Fourier Interpretation: Discrete Sampling

* Sampling in the spatial domain is like multiplying with a
spike function.

S e [
L]

* Sampling in the frequency domain is like convolving with a
spike function.

LELE
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Sampling and Aliasing

Fourier

Transform Magnitude
Signal _— /-R Speetrum
l““"‘f"“ l Copy and
Shift

Sampled Fouricr

Magnitude

Signal Transform
& P l Spectrum

* Nyquist theorem:
~In order to recover a certain frequency f, we need to sample with at least 2f.

» This corresponds to the point at which the transformed frequency spectra
start to overlap (the Nyquist limit)

Computer Vision Summer‘19
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Aliasing in Graphics

Disintegrating textures
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B. Leibe Jmage Source; Alexei Effg:

Sampling and Aliasing

Fourier

“Transform Magnitude
Signal _— J Spectrum
Sample Copy and
Shill

Sampled Touricr
Signal “Iransform Magnitude

£ Spectrum
S 1
=
=
5
@ Cut out by
S multiplication
] Aceurately T with box filter
> Reconstructed Fourier
5 Signal Transform
IS E— Magnitude
a L Spectrum
g
S
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Image Source: Forsvih & Ponc

Sampling and Aliasing

Fourier

Transform Magnitude
Signal _ [ Spectrum
Is"‘"‘l"‘ l Copy and
Shift

S Magnitusde
= > Spectrum
5}
£
£
g
1%2] Cut out by
g multiplication
B Inaccurately Inverse it box ity
3 Reconstructed Fourier
. Signal Transform
[} —_—
5 Magnitude
a f‘\- Spectrum
=
8 T
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Resampling with Prior Smoothing

256 x 256 128 x 128 64 x 64 32x 32 18 x 16
Artifacts!

no
smoothing
AL R

Gaussian
o=1

AL S
L -
=

Gaussian
o=2

* Note: We cannot recover the high frequencies, but we can
avoid artifacts by smoothing before resampling.
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The Gaussian Pyramid
G, = (G, *gaussian) 4 2
(R ~dow

AVCHI AN 2

Low resolution

RWTH/ACHEN
UNIVERSITY
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High resolution

B. Leibe

ource: lrani & Basi]

RWTH/ACHE
. . UNIVERSITY
Summary: Gaussian Pyramid

* Construction: create each level from previous one
» Smooth and sample

* Smooth with Gaussians, in part because
» a Gaussian*Gaussian = another Gaussian
» G(oy) * G(o,) = G(sart(c, 2* 5, %))

* Gaussians are low-pass filters, so the representation is
redundant once smoothing has been performed.

= There is no need to store smoothed images at the
full original resolution.

Computer Vision Summer‘19
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lide credit, David Lowe B. Leibe

UNIVERSITY

Laplacian ~ Difference of Gaussian

N

DoG = Difference of Gaussians
Cheap approximation — no derivatives needed.
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TOWTHACHET]
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Gaussian Pyramid — Stored Information

All the extra
levels add very
little overhead for
memory or
computation!

Computer Vision Summer19
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The Laplacian Pyramid

Li = G; —expand(G;.,)

Gaussian Pyramid Laplacian Pyramid
G = L; +expand(G;,,) _

L =Cn

= -

G ———

L
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Why is this useful?
N B

RWTH/ACHEN
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Topics of This Lecture
* Filters as templates =1
» Correlation as template matching R
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Note: Filters are Templates

RWTH/ACHEN
UNIVERSITY

* Applying a filter at some point * Insight
can be seen as taking a dot- . Filters look like the effects
product between the image and they are intended to find.
some vector. . Filters find effects they look
* Filtering the image is a set of dot like.
products.
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Where’s Waldo?
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= Detected template 2
lide credit; Kristen Grauman B. Leibe
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Correlation as Template Matching

¢ Think of filters as a dot product of the filter vector with the
image region
» Now measure the angle between the vectors b
a-
a-balb|cos@ cosf =
lalib]
» Angle (similarity) between vectors can be measured by normalizing
the length of each vector to 1 and taking the dot product.
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Template
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Image region Vector interpretation

31
B. Leibe
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ide credit; Kristen Grauman B. Leibe

UNIVERSITY
Where’s Waldo?

Correlation map

Computer Vision Summer19

30
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Topics of This Lecture

¢ Image gradients
~ Derivatives of Gaussian
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Derivatives and Edges... Differentiation and Convolution

* For the 2D function f(x,y), the partial derivative is:
AC3) 10602011

| &0
1st derivative | J €
. I
| Maxima of first . i i i ing fini
i /dmwm F_or discrete data, we can approximate this using finite
" - N i differences:
2 P 2 axy)  fx+Ly)-f(xy)
) .‘ £ ox 1
(3 B i | [ | (?]
S| . I | 2nd derivative ’ Il 5 . )
| R “zera crossings” /i/ _/‘, = To |mp|emer_1t the above as convolution, what would be the
z ofsecond | i £ associated filter?
E‘ derivative ‘-' ' E‘ 1 1
Q ST e e Q -
® . 33 © i 34
B. Leibe ide credit; Kristen Grauman B. Leibe
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Partial Derivatives of an Image Assorted Finite Difference Filters
Sobel: M,
Roberts:
@ @
B 5
= =
= =
@ 3
5 = >> My = fspecial(‘sobel’);
E g >> outim = imfilter(double(im), My);
5 2 5 >> imagesc (outim) ;
é Which one shows changes with respect to x? E- >> colormap gray;
o o
[§) 5 © 36
lide credit. Kristen Grauman B. Leibe lide credit. Kristen Grauman B. Leibe
RWTH//CHE RWTH CHET
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Image Gradient Effect of Noise
* The gradient of an image: * Consider a single row or column of the image
Vf —_ [3107 3f] » Plotting intensity as a function of position gives a signal
dy
« The gradient points in the direction of most rapid intensity change @) [ e————————
> or o f@y
I =l T .14 vr= (.5
. vi=[0.%] . ST % v %o % o e e Em
E * The gradient direction (orientation of edge normal) is given by: E
: f =tan~1 3
2 (35/35) 2 IO
% * The edge strength is given by the gradient magnitude %
Q Q
£ 972 YN £ 6 20 @0 W0 B0 100 1200 i T80 100 2000
VA =/ GD™ + D .
g g Where is the edge?
lide credit; Steve Seitz B. Leibe ide credit; Steve Seit B. Leibe »




Computer Vision Summer19

Computer Vision Summer‘19

>
B
€
3
5
2]
c
S
2
S
-
2
S
2
3
o
o

Solution: Smooth First

Sigma = 50

Signal
[
H

>
Kernel
Iy

o ¢ i
600 800 1000 1200 1400 1600 1800 2000

hx f

Convalution

0 200 400 600 800 1000 1200 1400 1600 1800 2000

) 5 '
sa(hx f) &
Bobo t d S i i |
° L] 200 400 600 BOO 1000 1200 1400 1600 1800 2000
. R B
Where is the edge? Look for peaks in m(h *f) 39

lide credit; Steve Seitz, B. Leibe

Derivative of Gaussian Filter

gh)=l

0.0133 0.0219 0.0133 0.0030

0.0133 0.0596 0.0983 0.0596 0.0133

1 —_ 1 %k 0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133

0.0030 0.0133 0.0219 0.0133 0.0030

Why is this preferable?

a1

lide adapted from Kristen Grauman

Laplacian of Gaussian (LoG)

52
* Consider 5’72(}1 *f)

Sigma = 50

-
Signal

H I H i L i L L i
0 200 400 600 800 1000 1200 1400 1600 1800 2000

S
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o 200 400 600 A00 1000 1200 1400 1600 1800 2000

L

Convolution

(5h) « f

\

0 200 400 60D 80D 1000 1200 1400 1600 1800 2000

Where is the edge? Zero-crossings of bottom graph 43

lide credit, Steve Seitz B. Leibe
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Derivative Theorem of Convolution
L(hrf) = (Zh)+f
* Differentiation property of convolution.

Sigma = 50

200 400 600  B00 1000 1200 1400 1600 1800 2000

s
Signal

©
=
Keme!
pd
.
-

0 200 400 600 GO0 1000 1200 1400 1600 1800 2000

0 200 400 600 6800 1000 1200 1400 1600 1800 2000

Comvolution

(Lh)* f

o

40

ide credit: Steve Seit; B. Leibe

Derivative of Gaussian Filters

y-direction

A -

B. Leibe

x-direction

ouice: Svetlana | azebnil

Summary: 2D Edge Detection Filters

I~

Laplacian of Gaussian

Gaussian Derivative of Gaussian
1 _ﬁv; 1] (u,v)
he(u,v) = e 20 —he(u,v
ou0) = 5 i

. V2is the Laplacian operator:
2, 0%f 4 ?f
vef = 922 + a2

44

ide credit; Kristen Grauman B. Leibe
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Topics of This Lecture

* Edge detection
» Canny edge detector

B. Leibe

Designing an Edge Detector

* Criteria for an “optimal” edge detector:

» Good detection: the optimal detector should minimize the probability
of false positives (detecting spurious edges caused by noise), as well
as that of false negatives (missing real edges).

Good localization: the edges detected should be as close as
possible to the true edges.

Single response: the detector should return one point only for each
true edge point; that is, minimize the number of local maxima around
the true edge.

v

v

[ | | [ | [ 1]

| | [ | (11

] | | |

[ | i

| | i EEE

True Poor robustness Foor Too many

edge to noise: lacalization responses a7
B. Leibe auce- LiFelboil

RWTH/ACHEN

Scale: Effect of ¢ on Derivatives

o =1 pixel

o = 3 pixels

* The apparent structures differ depending on Gaussian’s
scale parameter.

= Larger values: larger-scale edges detected
= Smaller values: finer features detected

50

ide credit, Kristen Grauman B. Leibe

TOWTHACHET]
Edge Detection

* Goal: map image from 2D array of pixels to a set of curves
or line segments or contours.

© Why?

)

"
L]

~
V3 ! g:’f:"_}
P ooy

Figure from J. Shotton et al., PAMI 2007

(¢

* Main idea: look for strong gradients, post-process

Computer Vision Summer19

46

ide credit; Kristen Grauman, David Lowe B. Leibe

Gradients — Edges

Primary edge detection steps

1. Smoothing: suppress noise

2. Edge enhancement: filter for contrast
3. Edge localization

»  Determine which local maxima from filter output are actually
edges vs. noise

»  Thresholding, thinning

*  Two issues
» At what scale do we want to extract structures?
» How sensitive should the edge extractor be?

Computer Vision Summer‘19
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adapted from Kristen Grauman B. Leibe

TOWTHACHET]
Sensitivity: Compare to Thresholding

* Choose athreshold t

* Set any pixels less than t
to zero (off).

* Set any pixels greater than
or equal t to one (on).

IS |
FT[i,j]:{l’ ifF[i, j]>t

0, otherwise
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Original Image

lide credit; Kristen Grauman
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Thresholding with a Lower Threshold

L

- ‘,/‘/f R

54
lide credit; Kristen Grauman B Leibe
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TRWTH/ACHEN
Canny Edge Detector

¢ Avery widely used edge detector in computer vision

* Theoretical model: step-edges corrupted by additive
Gaussian noise

* Canny has shown that the first derivative of the Gaussian
closely approximates the operator that optimizes the product
of signal-to-noise ratio and localization.

J. Canny, A Computational Approach To Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

56
B. Leibe Source: Li Fei-Feil
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Gradient Magnitude Image

de credit. Kristen Grauman
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Thresholding with a Higher Threshold

RWTHACHE
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Original image

lide credit, Kristen Grauman B. Leibe
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http://www.graphics.pku.edu.cn/members/chenyisong/lectures/readings/Canny86pami.pdf

The Canny Edge Detector

Gradient magnitude

Computer Vision Summer19
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lide credit; Kristen Grauman B. Leibe

Non-Maximum Suppression

L] L] q L]
Gradient /

¢ Check if pixel is local maximum along gradient direction,
select single max across width of the edge
» le., keep q iff Mag(q) > Mag(p) and Mag(q) > Mag(r).
» Requires checking interpolated pixels p and r
= Linear interpolation based on gradient direction

Computer Vision Summer19
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Source: Forsyth & Ponce

Solution: Hysteresis Thresholding

¢ Hysteresis: A lag or momentum factor
* Idea: Maintain two thresholds k,;,,, and k;,,,

> Use ky,,, to find strong edges to start edge chain

» Use k,,, to find weak edges which continue edge chain
* Typical ratio of thresholds is roughly

khiyh / klouv =2
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B. Leibe Source: D. Lowe, S Seitz]

The Canny Edge Detector
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How to turn
these thick
regions of the
gradient into

The Canny Edge Detector

) didn’t survive the

% thresholding.
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g Thinning

8 (non-maximum suppression) o
ide credit;, Kristen Grauman B. Leibe

single-pixel
curves?
sl
e
\
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ide credit; Kristen Grauman, B. Leibe

Problem: pixels
along this edge

Hysteresis Thresholding

lLl"""“‘

|'m = -'\“
|

ol

Original image

High threshold
(strong edges)

Low threshold
(weak edges)
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courtesy of G. Loy

Hysteresis threshold

64
Source. | Fei-Fei
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Summary: Canny Edge Detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient
3. Non-maximum suppression:
> Thin multi-pixel wide “ridges” down to single pixel width
4. Linking and thresholding (hysteresis):
» Define two thresholds: low and high

» Use the high threshold to start edge curves and the low threshold to
continue them

*  MATLAB:
>> edge (image, ‘canny’);
>> help edge

65
B. Leibe Source: D. Lowe, L. Fei-Fei

Edge Detection is Just the Beginning...

Image Human segmentation Gradient magnitude

* Berkeley segmentation database:
http://www.eecs berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

67
B. Leibe Source: L. Lazebnik
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Object Boundaries vs. Edges

Background Texture Shadows o

ide credit; Kristen Grauman B. Leibe

References and Further Reading

¢ Background information on linear filters and edge detection
can be found in Chapter 3 of the Szeliski book or in
Chapters 7 and 8 of Forsyth & Ponce.

R. Szeliski 5
Computer Vision — Algorithms and Applications Computer
Springer, 2010 Vision

AMODERN APPROACH

D. Forsyth, J. Ponce, |
Computer Vision — A Modern Approach.
Prentice Hall, 2003
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