Computer Vision — Lecture 3

Gradients & Edges

23.04.2019

Bastian Leibe

Visual Computing Institute
RWTH Aachen University
http://www.vision.rwth-aachen.de/
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Course Outline

* Image Processing Basics
> Image Formation
> Binary Image Processing
> Linear Filters
> Edge & Structure Extraction

* Segmentation

Local Features & Matching

Object Recognition and Categorization

* Deep Learning

3D Reconstruction

B. Leibe
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Topics of This Lecture

Recap: Linear Filters

Multi-Scale representations
> How to properly rescale an image?

Filters as templates
> Correlation as template matching

Image gradients
> Derivatives of Gaussian

Edge detection
> Canny edge detector

B. Leibe
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Recap: Gaussian Smoothing

e Gaussian kernel
1 _ @242
Gy = e 202
2ol

* Rotationally symmetric

* Weights nearby pixels more
than distant ones

> This makes sense as
‘probabilistic’ inference
about the signal

* A Gaussian gives a good model
of a fuzzy blob
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B. Leibe Image Source: Forsyth & Ponce



RWNTH
Recap: Smoothing with a Gaussian

 Parameter o is the “scale” / “width” / “spread” of the
Gaussian kernel and controls the amount of smoothing.

2
Is
=
=
)
AN 0 10 20 30 0 10 20 30 0 10 20 30
(e
-8 for sigma=1:3:10
=S h = fspecial ('gaussian‘', fsize, sigma) ;
§ out = imfilter(im, h);
é imshow (out) ;
o) ause;
8 p
end 7

Slide credit: Kristen Grauman B. Leibe



Recap: Effect of Filtering

* Noise introduces high frequencies. To
remove them, we want to apply a “low- —O’J:’\_\

pass’ filter.

* The ideal filter shape in the frequency
domain would be a box. But this
transfers to a spatial sinc, which has S
Infinite spatial support.

* A compact spatial box filter transfers to
a frequency sinc, which creates N~ —0
artifacts. - -

* A Gaussian has compact support in
both domains. This makes it a
convenient choice for a low-pass filter. N 4

B. Leibe
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Recap: Low-Pass vs. High-Pass

Low-pass
filtered

High-pass
filtered
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B. Leibe Image Source: S. Chenney
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Topics of This Lecture

* Recap: Linear Filters

* Multi-Scale representations
> How to properly rescale an image?

* Filters as templates
> Correlation as template matching

* Image gradients
> Derivatives of Gaussian

* Edge detection
> Canny edge detector

B. Leibe
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Motivation: Fast Search Across Scales

[ran1 & Basri
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B. Leibe Image Source: Irani & Basri
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Image Pyramid

Low resolution
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High resolution 12
B. Leibe
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Image Pyramid

Low resolution

(@)
o
(D)
-
=
>
(0))
(s
S
D
>
o
9
>
o
=
(@)
@)

High resolution 13
B. Leibe



RWTH
Fourier Interpretation: Discrete Sampling

* Sampling in the spatial domain is like multiplying with a

spike function.
AN L
| |

* Sampling in the frequency domain is like...

N\

?
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B. Leibe Source: S. Chenney



RWNTH
Fourier Interpretation: Discrete Sampling

* Sampling in the spatial domain is like multiplying with a

spike function.
AN L
| |

* Sampling in the frequency domain is like convolving with a

]
Ji
* -nA-0ANY

B. Leibe
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Sampling and Aliasing

Founer _
.. Transform Magnitude
Signal - 4 Spectrum
T o - /-\ -
Sample Copy and
Shill
Y
Sampled Fourner
Signal Transform Magnitude
. Spectrum
(@))
T fitets N\ A
QLJ 1 o
e
e
)
L Cut out by
g multiplication
(7) Accurat El!,.' Inverse with box filter
S H':n..:u onstructed Fourier
o Signal Transform
= - Magnitude
o Specirum
&
8 ! i =i 1 L
16
B. Leibe

Image Source: Forsyth & Ponce
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Sampling and Aliasing

Magnitude

/-K Spectrum
:

Fourier
Transform
Signal
- -
Sample
Sam pled FFourier
{ Signal Transform
[

Copy and

Magnitude

F/XXT)OL(\HT
- -

* Nyquist theorem:

- In order to recover a certain frequency f, we need to sample with at least 2f.
> This corresponds to the point at which the transformed frequency spectra

start to overlap (the Nyquist limit)

B. Leibe

17
Image Source: Forsyth & Ponce
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Sampling and Aliasing

RWTHAACHEN
UNIVERSITY

Fourier
i Transform Magnitude
Signal A Spectrum
T - - l .
Sample Copy and
Shift
Sam pled IFourer )
Signal Transform Magnitude
o Spectrum
I ) | )
Cut out by
multiplication
Inaccurately Inverse with box filter
Reconstructed Fourier
Nignal Transform
- 4 Magmtude
p— Spectrum
| r o - —
) 18
B. Leibe

Image Source: Forsyth & Ponce



Aliasing in Graphics

Disintegrating textures
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B. Leibe Image Source: Alexej Efros
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Resampling with Prior Smoothing

256 x 256 128 x 128 64 x 64 32 %32 16 x 16
ALLE R umnli LT TR

Artifacts!

no
smoothing

Gaussian
g=1

Gaussian
=2

* Note: We cannot recover the high frequencies, but we can
avoid artifacts by smoothing before resampling.
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Image Source: Forsyth & Ponce

B. Leibe
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The Gaussian Pyramid

Low resolution
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High resolution 21

B. Leibe Source: Irani & Basri



Gaussian Pyramid — Stored Information

-

-

All the extra
levels add very
little overhead for
memory or
computation!
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Source: Irani & Basri

B. Leibe
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Summary: Gaussian Pyramid

* Construction: create each level from previous one
> Smooth and sample

* Smooth with Gaussians, in part because

> a Gaussian*Gaussian = another Gaussian
> G(oy) * G(o,) = G(sart(c,2* 5, 2))

* Gaussians are low-pass filters, so the representation is
redundant once smoothing has been performed.

= There is no need to store smoothed images at the
full original resolution.

Slide credit; David Lowe B. Leibe
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The Laplacian Pyramid
L. =G, —expand(G;,,)

Gaussian Pyramid Laplacian Pyramid

Gi =L +expand(G;,;) _
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Laplacian ~ Difference of Gaussian

VAN

DoG = Difference of Gaussians
Cheap approximation — no derivatives needed.

25

B. Leibe
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Topics of This Lecture

* Filters as templates
> Correlation as template matching
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Note: Filters are Templates

* Applying a filter at some point * Insight
can be seen as taking a dot- . Filters look like the effects
product between the image and they are intended to find.
some vector. - Filters find effects they look
* Filtering the image is a set of dot like.
products.
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Where’s Waldo?

Template

28
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B. Leibe

Slide credit: Kristen Grauman
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Where's Waldo?

l%'i“- /“ﬁ PO e Pogt

:»
€

Template

(@)
o
()]
-
=
>
(0))
(s
S
D
>
o
9
>
o
=
(@)
@)

Detected template -
Slide credit: Kristen Grauman B. Leibe
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Where’s Waldo?
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Slide credit: Kristen Grauman B. Leibe
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Correlation as Template Matching

* Think of filters as a dot product of the filter vector with the
Image region
> Now measure the angle between the vectors

a-b=|al|b|cos@ COS 0 =

[allb]

> Angle (similarity) between vectors can be measured by normalizing

2 the length of each vector to 1 and taking the dot product.
o

S

£

U:'S) —
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: 0/p
@

5 Template

o

g

O Image region Vector interpretation

31
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Topics of This Lecture

* Image gradients
> Derivatives of Gaussian

B. Leibe
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Derivatives and Edges...

10
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Differentiation and Convolution

* For the 2D function f(X,y), the partial derivative is:

o (xy) o Fx+ey)—F(xy)
8)( e—0 E

* For discrete data, we can approximate this using finite
differences:

or(xy)  T(x+1Ly)-T(xY)
OX 1

* To implement the above as convolution, what would be the
associated filter?

1 -1

B. Leibe

(0))
3
£
£
=)
/)]
c
Q
D
>
8
=
Q
S
(@)
S

Slide credit: Kristen Grauman
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Partial Derivatives of an Image

Which one shows changes with respect to x?
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Slide credit: Kristen Grauman B. Leibe
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Assorted Finite Difference Filters

-1 10 111711
Prewitt: M, =1-1]0]1 M, = gl o] o
-1|a - -11]-1
-0l 1] 2] 1
Sobel: M, = [-2]0]2 | M, = ol o0
-l o]l -1 -2 ] -1
011 1
Roberts: M. = |3 v My = T

>> My = fspecial(‘sobel’);

>> outim = imfilter (double(im), My);
>> imagesc (outim) ;

>> colormap gray;
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Slide credit: Kristen Grauman B. Leibe



Image Gradient

* The gradient of an image:
— [9f 9Of
V= [856’ 8y]

* The gradient points in the direction of most rapid intensity change
d af o
vi= %0l _]_ . Vi =5 5]

* The gradient direction (orientation of edge normal) is given by:
— -1 (9f a_f)
* The edge strength is given by the gradient magnitude
9 2
VA= /(D7 + (D)

Slide credit: Steve Seitz B. Leibe
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Effect of Noise

* Consider a single row or column of the image
> Plotting intensity as a function of position gives a signal

0 200 400 600 800 1000 1200 1400 1600 1800 2000

A f(x)

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Where is the edge?

Slide credit; Steve Seitz B. Leibe
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Solution: Smooth First

Sigma = 50

+
Signal

0 200 400 600 800 1000 1200 1400 1600 180 2000

= :
h £
@
b
1800 2000

c S
o = ;
.!q_) h * f E B R Sl S B e e _
£ S 2 VS DS SURS SO SO
E |
> 1800 2000
CD c T T T T T T T T T
= 2 5

5]
‘O 0 (h =
Kz * )
= ox f E
9 o0 | | | | | I I I
>
o
-
(@)
@)

. . o
Where is the edge? Look for peaksin - (h * f)

. 39
Slide credit: Steve Seitz B. Leibe
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RWNTH
Derivative Theorem of Convolution
ge(hx [) = (55h)  f
* Differentiation property of convolution.

Sigma = 50

.................................................

| | | |
1200 1400 1600 1800 2000

| | | | |
0 200 400 600 800 1000

| | | | | | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Convolution

(Zh)* f

| | | | |
0 200 400 600 800 1000 1200 1400 1600 1800 2000

Slide credit: Steve Seitz B. Leibe
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Derivative of Gaussian Filter
g*h)*l

o°(ne1) (1

0.0030 0.0133 0.0219 0.0133 0.0030
0.0133 0.0596 0.0983 0.0596 0.0133

1 e 1 * 0.0219 0.0983 0.1621 0.0983 0.0219
0.0133 0.0596 0.0983 0.0596 0.0133

0.0030 0.0133 0.0219 0.0133 0.0030

Why is this preferable?
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Slide adapted from Kristen Grauman
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Derivative of Gaussian Filters
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Source: Svetlana Lazebnik

B. Leibe
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Laplacian of Gaussian (LoG)

Sigma = 50

. 2
e Consider %(h*f)

+
Signal

] ] ] ] ] ] ] ]
400 600 800 1000 1200 1400 1600 1800 2000

................

400 600 800 1000 1200 1400 1600 1800 2000

1] 200

2 g
(Wh) * f g“‘ """" -
0 2[i][}

Where is the edge?
Slide credit: Steve Seitz

400 600 800 1000 1200 1400 1600 1800 2000

Zero-crossings of bottom graph
B. Leibe
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RWNTH
Summary: 2D Edge Detection Filters

I N
A
AN
i B
A, Laplacian of Gaussian
A i
A AR AN ==
?ﬁ%’%’:“:’:‘:‘%‘:““:‘ i ‘W’lg"‘.'."““*%\ :%.:’:%"00 <25
A AN
R ’W”'O"‘O’O‘O“‘ R
S SN

T (oo
LSS

Gaussian

1 _ulte?

haolu. vy = ——¢ 202
O'( ’ ) 27_[_0_2

¢ VZis the Laplacian operator:

o2 92
v2f — 8:13]; | 8y£

. 44
Slide credit: Kristen Grauman B. Leibe



Topics of This Lecture

* Edge detection
> Canny edge detector
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Edge Detection

* Goal: map image from 2D array of pixels to a set of curves
or line segments or contours.

* Why?
——— \
.c: v Q;f_ﬂ.‘;

Figure from J. Shotton et al., PAMI 2007

* Main idea: look for strong gradients, post-process
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Slide credit: Kristen Grauman, David Lowe B. Leibe



Designing an Edge Detector

* Criteria for an “optimal” edge detector:

> Good detection: the optimal detector should minimize the probability
of false positives (detecting spurious edges caused by noise), as well
as that of false negatives (missing real edges).

> Good localization: the edges detected should be as close as
possible to the true edges.

> Single response: the detector should return one point only for each
true edge point; that is, minimize the number of local maxima around

% the true edge.

: B C C 1

2 [] B [] 11

1z B B O O

= B I EN

2 [ = i HiER

g True Poor robustness Poor Too many

O edge to noise localization responses 47

B. Leibe Source: Li Fei-Fei



Gradients — Edges

Primary edge detection steps
1. Smoothing: suppress noise
2. Edge enhancement: filter for contrast

3. Edge localization

> Determine which local maxima from filter output are actually
edges vs. noise

> Thresholding, thinning

* Two Issues
> At what scale do we want to extract structures?
> How sensitive should the edge extractor be?
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adapted from Kristen Grauman B. Leibe



Scale: Effect of o on Derivatives

o = 1 pixel o = 3 pixels

* The apparent structures differ depending on Gaussian’s
scale parameter.

— Larger values: larger-scale edges detected
— Smaller values: finer features detected
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Slide credit: Kristen Grauman B. Leibe
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Sensitivity: Compare to Thresholding

e Choose a threshold t

* Set any pixels less than 1
to zero (off).

* Set any pixels greater than
or equal T to one (on).

1, ifF[i,j]Zt
0, otherwise

il

B. Leibe
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Original Image

\

Computer Vision Summer‘19

Slide credit: Kristen Grauman



Gradient Magnitude Image
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RWNTH
Thresholding with a Lower Threshold

) { V- \
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Slide credit: Kristen Grauman B. Leibe
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Thresholding with

RWNTH
a Higher Threshold

/ N ) |

[
\ .
/
\ N, p
Sy

Slide credit: Kristen Grauman

B. Leibe
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Canny Edge Detector

* A very widely used edge detector in computer vision

* Theoretical model: step-edges corrupted by additive
Gaussian noise

* Canny has shown that the first derivative of the Gaussian
closely approximates the operator that optimizes the product
of signal-to-noise ratio and localization.

J. Canny, A Computational Approach To Edge Detection, IEEE Trans.
Pattern Analysis and Machine Intelligence, 8:679-714, 1986.
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B. Leibe Source: Li Fei-Fel



http://www.graphics.pku.edu.cn/members/chenyisong/lectures/readings/Canny86pami.pdf

RWTHAACHEN

UNIVERSITY
The Canny Edge Detector
% Original image
@)
57

Slide credit: Kristen Grauman B. Leibe
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The Canny Edge Detector

Gradient magnitude

Slide credit: Kristen Grauman B. Leibe
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RWTH
The Canny Edge Detector

How to turn
these thick
regions of the
gradient into
single-pixel
curves?
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Slide credit: Kristen Grauman B. Leibe



Non-Maximum Suppression

* Check if pixel is local maximum along gradient direction,
select single max across width of the edge
> l.e., keep q iff Mag(q) > Mag(p) and Mag(q) > Mag(r).
> Requires checking interpolated pixels p and r
= Linear interpolation based on gradient direction
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The Canny Edge Detector

Slide credit: Kristen Grauman

Thinning

(non-maximum suppression)
B. Leibe

R\WNTH

Problem: pixels
along this edge
didn’t survive the
thresholding.
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Solution: Hysteresis Thresholding

* Hysteresis: A lag or momentum factor
* Idea: Maintain two thresholds %, and k,,,
- Use ky,;,, to find strong edges to start edge chain
- Use k,,, to find weak edges which continue edge chain

* Typical ratio of thresholds is roughly
khigh / klow = 2
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B. Leibe Source: D. Lowe, S. Seitz



R\WNTH

Hysteresis Thresholding

l khlll 1‘

2
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% - esyof

3 High threshold Low threshold Hysteresis threshold

3 (strong edges) (weak edges) o
B. Leibe

Source: L. Fei-Fei



Summary: Canny Edge Detector

1. Filter image with derivative of Gaussian
2. Find magnitude and orientation of gradient

3. Non-maximum suppression:
> Thin multi-pixel wide “ridges” down to single pixel width

4. Linking and thresholding (hysteresis):
> Define two thresholds: low and high

> Use the high threshold to start edge curves and the low threshold to
continue them

* MATLAB:

>> edge (1mage, ‘canny'’);
>> help edge
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B. Leibe Source: D. Lowe, L. Fei-Fei




Object Boundaries vs. Edges
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Background Texture Shadows

Slide credit: Kristen Grauman B. Leibe
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"""

Human segmentation

* Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

Edge Detection is Just the Beginning...

Gradient magnitude
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Computer Vision Summer‘19
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References and Further Reading

e Background information on linear filters and edge detection
can be found in Chapter 3 of the Szeliski book or in
Chapters 7 and 8 of Forsyth & Ponce.

Lo o o R. Szeliski
Computer Vision Computer Vision — Algorithms and Applications Computer
Algorithms and Applications Sp”nger, 2010 ViSiDI'l

A MODERN APPROACH

D. Forsyth, J. Ponce,
Computer Vision — A Modern Approach. S}
Prentice Hall, 2003
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