

Voting: Practical Tips

- Minimize irrelevant tokens first (take edge points with significant gradient magnitude)
- Choose a good grid / discretization
 - Too coarse: large votes obtained when too many different lines correspond to a single bucket
 - Too fine: miss lines because some points that are not exactly collinear cast votes for different buckets
- Vote for neighbors, also (smoothing in accumulator array)
- Utilize direction of edge to reduce free parameters by 1
- To read back which points voted for "winning" peaks, keep tags on the votes.

Slide credit: Kristen Grauman

B Laibe

Hough Transform: Pros and Cons

Pros

- All points are processed independently, so can cope with occlusion
- Some robustness to noise: noise points unlikely to contribute consistently to any single bin
- · Can detect multiple instances of a model in a single pass

Cons

- Complexity of search time increases exponentially with the number of model parameters
- Non-target shapes can produce spurious peaks in parameter space
- Quantization: hard to pick a good grid size

Slide credit: Kristen Grauman

B. Leibe

Generalized Hough Transform • What if want to detect arbitrary shapes defined by boundary points and a reference point? At each boundary point, compute displacement vector: $\mathbf{r} = a - p_t$. For a given model shape: store these vectors in a table indexed by gradient orientation θ . [Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

Generalized Hough Transform

To detect the model shape in a new image:

- For each edge point
 - ightharpoonup Index into table with its gradient orientation heta
 - ightharpoonup Use retrieved r vectors to vote for position of reference point
- Peak in this Hough space is reference point with most supporting edges

Assuming translation is the only transformation here, i.e., orientation and scale are fixed.

e credit: Kristen Grauman

3. Leibe

