

Computer Vision – Lecture 5

Segmentation

30.04.2019

Bastian Leibe
Visual Computing Institute
RWTH Aachen University
http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Course Outline

- Image Processing Basics
 - Recap: Structure Extraction
- Segmentation
 - Segmentation as Clustering
 - Graph-theoretic Segmentation
- Recognition
 - Global Representations
 - Subspace representations
- Local Features & Matching
- Object Categorization
- 3D Reconstruction

Recap: Hough Transform

- How can we use this to find the most likely parameters (m,b) for the most prominent line in the image space?
 - Let each edge point in image space vote for a set of possible parameters in Hough space
 - Accumulate votes in discrete set of bins; parameters with the most votes indicate line in image space.

Recap: Hough Transf. Polar Parametrization

- Usual (m, b) parameter space problematic:
 - Can take on infinite values, undefined for vertical lines.

 Point in image space
 ⇒ Sinusoid segment in Hough space d: perpendicular distance from line to origin

 θ : angle the perpendicular makes with the x-axis

Recap: Hough Transform for Circles

• Circle: center (a, b) and radius r

$$(x_i - a)^2 + (y_i - b)^2 = r^2$$

For an unknown radius r, unknown gradient direction

5

Recap: Generalized Hough Transform

 What if we want to detect arbitrary shapes defined by boundary points and a reference point?

At each boundary point, compute displacement vector:

$$r = a - pi$$
.

For a given model shape: store these vectors in a table indexed by gradient orientation θ .

[Dana H. Ballard, Generalizing the Hough Transform to Detect Arbitrary Shapes, 1980]

Recap: Generalized Hough Transform

To detect the model shape in a new image:

- For each edge point
 - Index into table with its gradient orientation θ
 - Use retrieved r vectors to vote for position of reference point
- Peak in this Hough space is reference point with most supporting edges

Displacement vectors based on model shape

Voting locations for test points

Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image Segmentation
- Segmentation as clustering
 - k-Means
 - Feature spaces
- Probabilistic clustering
 - Mixture of Gaussians, EM
- Model-free clustering
 - Mean-Shift clustering

Examples of Grouping in Vision

Determining image regions

Shot 1 Shot 2 Shot 3 Shot 4 Shot 5 Shot 6 Shot 7 Shot 8

Part of the short of the s

Grouping video frames into shots

Object-level grouping

What things should be grouped?

What cues indicate groups?

Figure-ground

Slide credit: Kristen Grauman

B. Leibe

The Gestalt School

- Grouping is key to visual perception
- Elements in a collection can have properties that result from relationships
 - "The whole is greater than the sum of its parts"

http://en.wikipedia.org/wiki/Gestalt_psychology

Gestalt Theory

- Gestalt: whole or group
 - Whole is greater than sum of its parts
 - Relationships among parts can yield new properties/features
- Psychologists identified series of factors that predispose set of elements to be grouped (by human visual system)

"I stand at the window and see a house, trees, sky.
Theoretically I might say there were 327 brightnesses
and nuances of colour. Do I have "327"? No. I have sky,
house, and trees."

Max Wertheimer (1880-1943)

Untersuchungen zur Lehre von der Gestalt, Psychologische Forschung, Vol. 4, pp. 301-350, 1923 http://psy.ed.asu.edu/~classics/Wertheimer/Forms/forms.htm

11

Gestalt Factors

 These factors make intuitive sense, but are very difficult to translate into algorithms.

Continuity, explanation by occlusion

The Ultimate Gestalt?

Image Segmentation

Goal: identify groups of pixels that go together

The Goals of Segmentation

Separate image into coherent "objects"

Image

Human segmentation

Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image Segmentation
- Segmentation as clustering
 - k-Means
 - Feature spaces
- Probabilistic clustering
 - Mixture of Gaussians, EM
- Model-free clustering
 - Mean-Shift clustering

Image Segmentation: Toy Example

- These intensities define the three groups.
- We could label every pixel in the image according to which of these primary intensities it is.
 - i.e., segment the image based on the intensity feature.
- What if the image isn't quite so simple?

RWTHAACHEN UNIVERSITY

Slide credit: Kristen Grauman

- Now how to determine the three main intensities that define our groups?
- We need to cluster.

- Goal: choose three "centers" as the representative intensities, and label every pixel according to which of these centers it is nearest to.
- Best cluster centers are those that minimize SSD between all points and their nearest cluster center c_i :

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

24

Clustering

- With this objective, it is a "chicken and egg" problem:
 - If we knew the *cluster centers*, we could allocate points to groups by assigning each to its closest center.

If we knew the *group memberships*, we could get the centers by computing the mean per group.

K-Means Clustering

- Basic idea: randomly initialize the k cluster centers, and iterate between the two steps we just saw.
 - 1. Randomly initialize the cluster centers, c₁, ..., c_k
 - 2. Given cluster centers, determine points in each cluster
 - For each point p, find the closest c_i. Put p into cluster i
 - Given points in each cluster, solve for c_i
 - Set c_i to be the mean of points in cluster i
 - 4. If c_i have changed, repeat Step 2

Properties

- Will always converge to some solution
- Can be a "local minimum"
 - Does not always find the global minimum of objective function:

$$\sum_{\text{clusters } i} \sum_{\text{points p in cluster } i} ||p - c_i||^2$$

Segmentation as Clustering


```
img_as_col = double(im(:));
cluster_membs = kmeans(img_as_col, K);

labelim = zeros(size(im));
for i=1:k
   inds = find(cluster_membs==i);
   meanval = mean(img_as_column(inds));
   labelim(inds) = meanval;
end
```


K-Means++

- Can we prevent arbitrarily bad local minima?
- Randomly choose first center.
- 2. Pick new center with prob. proportional to $||p c_i||^2$
 - (Contribution of p to total error)
- Repeat until k centers.
- Expected error = O(log k) * optimal

Arthur & Vassilvitskii 2007

Feature Space

- Depending on what we choose as the feature space, we can group pixels in different ways.
- Grouping pixels based on intensity similarity

Feature space: intensity value (1D)

Feature Space

 Depending on what we choose as the feature space, we can group pixels in different ways.

 Grouping pixels based on color similarity

Feature space: color value (3D)

Segmentation as Clustering

- Depending on what we choose as the feature space, we can group pixels in different ways.
- Grouping pixels based on texture similarity

Feature space: filter bank responses (e.g., 24D)

Smoothing Out Cluster Assignments

Assigning a cluster label per pixel may yield outliers:

 How can we ensure they are spatially smooth?

Segmentation as Clustering

- Depending on what we choose as the feature space, we can group pixels in different ways.
- Grouping pixels based on intensity+position similarity

- ⇒ Simple way to encode both *similarity* and *proximity*.
- ⇒ What could be a problem with this solution?

Summary K-Means

Pros

- Simple, fast to compute
- Converges to local minimum of within-cluster squared error

Cons/issues

- Setting k?
- Sensitive to initial centers
- Sensitive to outliers
- Detects spherical clusters only
- Assuming means can be computed

(A): Undesirable clusters

(B): Ideal clusters

(A): Two natural clusters

(B): k-means clusters

Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image Segmentation
- Segmentation as clustering
 - k-Means
 - Feature spaces
- Probabilistic clustering
 - Mixture of Gaussians, EM
- Model-free clustering
 - Mean-Shift clustering

Probabilistic Clustering

- Basic questions
 - What's the probability that a point x is in cluster m?
 - What's the shape of each cluster?
- K-means doesn't answer these questions.
- Basic idea
 - Instead of treating the data as a bunch of points, assume that they are all generated by sampling a continuous function.
 - This function is called a generative model.
 - Defined by a vector of parameters heta

Mixture of Gaussians

- One generative model is a mixture of Gaussians (MoG)
 - ightarrow K Gaussian blobs with means μ_j , cov. matrices $\mathbf{\Sigma}_j$, dim. D

$$p(\mathbf{x}|\theta_j) = \frac{1}{(2\pi)^{D/2} |\mathbf{\Sigma}_j|^{1/2}} \exp\left\{-\frac{1}{2} (\mathbf{x} - \boldsymbol{\mu}_j)^{\mathrm{T}} \mathbf{\Sigma}_j^{-1} (\mathbf{x} - \boldsymbol{\mu}_j)\right\}$$

- ightharpoonup Blob j is selected with probability π_i
- ightarrow The likelihood of observing ${f x}$ is a weighted mixture of Gaussians

$$p(\mathbf{x}| heta) = \sum_{j=1}^{n} \pi_j p(\mathbf{x}| heta_j)$$
 $heta = (\pi_1, oldsymbol{\mu}_1, oldsymbol{\Sigma}_1, \dots, \pi_M, oldsymbol{\mu}_M, oldsymbol{\Sigma}_M)$

Expectation Maximization (EM)

- Goal
 - \triangleright Find blob parameters θ that maximize the likelihood function:

$$p(data|\theta) = \prod_{n=1}^{N} p(\mathbf{x}_n|\theta)$$

- Approach:
 - 1. E-step: given current guess of blobs, compute ownership of each point
 - 2. M-step: given ownership probabilities, update blobs to maximize likelihood function
 - 3. Repeat until convergence

EM Algorithm

- See lecture

 Machine Learning!
- Expectation-Maximization (EM) Algorithm
 - E-Step: softly assign samples to mixture components

$$\gamma_j(\mathbf{x}_n) \leftarrow \frac{\pi_j \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_j, \boldsymbol{\Sigma}_j)}{\sum_{k=1}^K \pi_k \mathcal{N}(\mathbf{x}_n | \boldsymbol{\mu}_k, \boldsymbol{\Sigma}_k)} \quad \forall j = 1, \dots, K, \quad n = 1, \dots, N$$

M-Step: re-estimate the parameters (separately for each mixture component) based on the soft assignments

$$\begin{split} \hat{N}_j &\leftarrow \sum_{n=1}^N \gamma_j(\mathbf{x}_n) = \text{soft number of samples labeled } j \\ \hat{\pi}_j^{\text{new}} &\leftarrow \frac{\hat{N}_j}{N} \\ \hat{\mu}_j^{\text{new}} &\leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^N \gamma_j(\mathbf{x}_n) \mathbf{x}_n \\ \hat{\Sigma}_j^{\text{new}} &\leftarrow \frac{1}{\hat{N}_j} \sum_{n=1}^N \gamma_j(\mathbf{x}_n) (\mathbf{x}_n - \hat{\boldsymbol{\mu}}_j^{\text{new}}) (\mathbf{x}_n - \hat{\boldsymbol{\mu}}_j^{\text{new}})^{\text{T}} \end{split}$$

41

Applications of EM

- Turns out this is useful for all sorts of problems
 - Any clustering problem
 - Any model estimation problem
 - Missing data problems
 - Finding outliers
 - Segmentation problems
 - Segmentation based on color
 - Segmentation based on motion
 - Foreground/background separation
 - **.** . . .

Segmentation with EM

Original image

EM segmentation results

Summary: Mixtures of Gaussians, EM

Pros

- Probabilistic interpretation
- Soft assignments between data points and clusters
- Generative model, can predict novel data points
- Relatively compact storage

Cons

- Local minima
 - k-means is NP-hard even with k=2
- Initialization
 - Often a good idea to start with some k-means iterations.
- Need to know number of components
 - Solutions: model selection (AIC, BIC), Dirichlet process mixture
- Need to choose generative model
- Numerical problems are often a nuisance

Topics of This Lecture

- Segmentation and grouping
 - Gestalt principles
 - Image segmentation
- Segmentation as clustering
 - k-Means
 - Feature spaces
- Probabilistic clustering
 - Mixture of Gaussians, EM
- Model-free clustering
 - Mean-Shift clustering

Finding Modes in a Histogram

- How many modes are there?
 - Mode = local maximum of the density of a given distribution
 - Easy to see, hard to compute

Mean-Shift Segmentation

 An advanced and versatile technique for clustering-based segmentation

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

D. Comaniciu and P. Meer, <u>Mean Shift: A Robust Approach toward Feature Space Analysis</u>, PAMI 2002.

Mean-Shift Algorithm

Iterative Mode Search

- Initialize random seed, and window W
- Calculate center of gravity (the "mean") of W: $\sum xH(x)$ $x \in W$
- Shift the search window to the mean
- Repeat Step 2 until convergence

Slide by Y. Ukrainitz & B. Sarel

with windows

Real Modality Analysis

The blue data points were traversed by the windows towards the mode.

Mean-Shift Clustering

- Cluster: all data points in the attraction basin of a mode
- Attraction basin: the region for which all trajectories lead to the same mode

Mean-Shift Clustering/Segmentation

- Find features (color, gradients, texture, etc)
- Initialize windows at individual pixel locations
- Perform mean shift for each window until convergence
- Merge windows that end up near the same "peak" or mode

Mean-Shift Segmentation Results

http://www.caip.rutgers.edu/~comanici/MSPAMI/msPamiResults.html

Slide credit: Svetlana Lazebnik

B. Leibe

More Results

More Results

B. Leibe

Problem: Computational Complexity

- Need to shift many windows...
- Many computations will be redundant.

Speedups: Basin of Attraction

1. Assign all points within radius r of end point to the mode.

Speedups

2. Assign all points within radius r/c of the search path to the mode.

Summary Mean-Shift

Pros

- General, application-independent tool
- Model-free, does not assume any prior shape (spherical, elliptical, etc.) on data clusters
- Just a single parameter (window size h)
 - h has a physical meaning (unlike k-means)
- Finds variable number of modes
- Robust to outliers

Cons

- Output depends on window size
- Window size (bandwidth) selection is not trivial
- Computationally (relatively) expensive
- Does not scale well with dimension of feature space

Segmentation: Caveats

- We've looked at bottom-up ways to segment an image into regions, yet finding meaningful segments is intertwined with the recognition problem.
- Often want to avoid making hard decisions too soon
- Difficult to evaluate; when is a segmentation successful?

Generic Clustering

- We have focused on ways to group pixels into image segments based on their appearance
 - Find groups; "quantize" feature space
- In general, we can use clustering techniques to find groups of similar "tokens", provided we know how to compare the tokens.
 - E.g., segment an image into the types of motions present
 - E.g., segment a video into the types of scenes (shots) present

References and Further Reading

- Background information on segmentation by clustering can be found in Chapter 14 of
 - D. Forsyth, J. Ponce,
 Computer Vision A Modern Approach.
 Prentice Hall, 2003
- More on the EM algorithm can be found in Chapter 16.1.2.

