Computer Vision — Lecture 7

Sliding-Window based Object Detection

13.05.2019

Bastian Leibe

Visual Computing Institute
RWTH Aachen University
http://www.vision.rwth-aachen.de/
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Course Outline

* Image Processing Basics

* Segmentation
> Segmentation and Grouping
> Segmentation as Energy Minimization

* Recognition & Categorization
> Sliding-Window Object Detection

* Local Features & Matching
* Deep Learning
* 3D Reconstruction



Recap: MRFs/CRFs for Image Segmentation

* MRF/CRF formulation

Unary
potentials
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Slide adapted from Phil Torr



Recap: Energy Formulation

o Energy function

Z¢ xzayz +Z¢ ZEMIEJ
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Unary Pairwise
potentials potentials

* Unary potentials ¢

> Encode local information about the given pixel/patch

> How likely is a pixel/patch to belong to a certain class
(e.g. foreground/background)?

* Pairwise potentials v Nl

> Encode neighborhood information

> How different is a pixel/patch’s label from that of its neighbor?

(e.g. based on intensity/color/texture difference, edges)
B. Leibe
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Recap: How to Set the Potentials?

* Unary potentials
> E.g. color model, modeled with a Mixture of Gaussians

— Learn color distributions for each label
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RWNTH
Recap: How to Set the Potentials?

* Pairwise potentials

> Potts Model
(i, 253 0p) = Opo(z; # T5)
— Simplest discontinuity preserving model.

— Discontinuities between any pair of labels are penalized equally.
— Useful when labels are unordered or number of labels is small.

> Extension: “Contrast sensitive Potts model”
(i, T4, Gi5(Y); 0p) = —043i5(y)0 (i # ;)
where
gij(y) = e Plvvil” g = % (ave (v —wsl1%)

= Discourages label changes except in places where there is also a
large change in the observations.
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RWNTH
Recap: Graph-Cuts Energy Minimization

* Solve an equivalent graph cut problem

1. Introduce extra nodes: source and sink

2. Weight connections to source/sink (t-links)
by ¢(z;, = s) and ¢(x, = t), respectively.

3. Weight connections between nodes (n-links)
by ¢(% xj)'

4. Find the minimum cost cut that separates
source from sink.

= Solution is equivalent to minimum of the energy.

* s-t Mincut can be solved efficiently
> Dual to the well-known max flow problem

> Very efficient algorithms available for regular
grid graphs (1-2 MPixels/s)
> Globally optimal result for 2-class problems
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RWTH
Recap: When Can s-t Graph Cuts Be Applied?

Unary potentials Pairwise potentials

E(L) Z E. (L) + > E(L,, L)

pgeN
t-links n-links I—p E{S’t}

* s-t graph cuts can only globally minimize binary energies
that are submodular. [Boros & Hummer, 2002, Kolmogorov & Zabih, 2004]

E(L) can be minimized | &= |E(S,S)+E(t,t) <E(S,t)+E(t,S)
by s-t graph cuts

Submodularity (“convexity”)

* Submodularity is the discrete equivalent to convexity.
> Implies that every local energy minimum is a global minimum.
= Solution will be globally optimal.
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Dealing with Non-Binary Cases

* Limitation to binary energies is often a nuisance.
= E.g. binary segmentation only...

* We would like to solve also multi-label problems.
> The bad news: Problem is NP-hard with 3 or more labels!

* There exist some approximation algorithms which extend
graph cuts to the multi-label case:

> a-Expansion
> affSwap

* They are no longer guaranteed to return the globally optimal
result.

> But a-Expansion has a guaranteed approximation quality
(2-approx) and converges in a few iterations.
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CHEN

. UNIVERSITY
o-Expansion Move
* Basic idea:
> Break multi-way cut computation into a sequence of
binary s-t cuts.
[, [, J.
% “'\\V ‘ ‘V
= 10

B. Leibe

Slide credit: Yuri Boykov
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Topics of This Lecture

* Object Recognition and Categorization
> Problem Definitions
> Challenges

* Sliding-Window based Object Detection
> Detection via Classification
> Global Representations
> Classifier Construction

* Classification with SVMs
> Support Vector Machines
> HOG Detector

* Classification with Boosting
> AdaBoost
> Viola-Jones Face Detection

B. Leibe
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Object Recognition: Challenges

* Viewpoint changes
> Translation
> Image-plane rotation
> Scale changes
> Out-of-plane rotation

* [[lumination
* Noise
 Clutter

* Occlusion ~—— " | 2Dimage

12
B. Leibe
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Appearance-Based Recognition

* Basic assumption

> QObjects can be represented
by a set of images
(“appearances”).

> [For recognition, it is
sufficient to just compare
the 2D appearances.

> No 3D model is needed.

3D object

— Fundamental paradigm shift in the 90’s

B. Leibe
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Global Representation

* |dea
> Represent each object (view) by a global descriptor.

> For recognizing objects, just match the descriptors.
> Some modes of variation are built into the descriptor, the others have

(0))

g to be incorporated in the training data.

E — E.g., a descriptor can be made invariant to image-plane rotations.
%) — Other variations:

:é Viewpoint changes lllumination

> — Translation Noise

= — Scale changes Clutter

& — Out-of-plane rotation Occlusion

(@)
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Appearance based Recognition

* Recognition as feature vector matching

Test image
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Known objects
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Appearance based Recognition

* With multiple training views

Test image \

B. Leibe
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ldentification vs. Categorization

(@)
o
(D)
&
=
>
(0))
(s
S
D
>
o
9
>
o
=
(@)
@)

17

B. Leibe



RWTHAACHEN
UNIVERSITY

ldentification vs. Categorization

* Find this particular object o

* Recognize ANY cow
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RWNTH
Object Categorization — Potential Applications

There is a wide range of applications, including...

Autonomous robots Navigation, driver safety

wverage
Se: 890/9

Web Images Video News Maps Desktop more » You Tuhe gf{sg%ggmm
GOL)gle ‘ferriswheel ) ‘ Search ﬁ:":::cﬁl:sge& €

Images Moderate SafeSearch is on Broadcast Yourself ™ Videos Categories

Images Showing: | Allimage sizes v |

Videos being watched right now...

AR RN (O I | [®
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Content-based retrieval and analysis for
Images and videos

Medical image
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Slide adapted from Kristen Grauman
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Topics of This Lecture

* Sliding-Window based Object Detection
> Detection via Classification
> Global Representations
> Classifier Construction
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Detection via Classification: Main Idea

* Basic component: a binary classifier

Slide credit: Kristen Grauman

B. Leibe
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Car/non-car
Classifier
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RWTHAACHEN
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Detection via Classification: Main Idea

* |f the object may be in a cluttered scene, slide a window
around looking for it.

[ )

Car/non-car

Classifier
\_ )

* Essentially, this is a brute-force approach with many local
decisions.
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Slide credit: Kristen Grauman B. Leibe



e Search over space and scale

JU DYBATS

uWhpyBATS

EAS

What is a Sliding Window Approach?
=) o

&ﬁ o JUDYBAj

* Detection as subwindow classification problem

* “In the absence of a more intelligent strategy, any global
Image classification approach can be converted into a
localization approach by using a sliding-window search.”
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Detection via Classification: Main Ildea
Fleshing out this
pipeline a bit more, we
need to:

1. Obtain training data
2. Define features
3. Define classifier

Training examples

vl
N

~ ™
—>»| Car/non-car
\’ Classifier

\_ y,
Feature
\_ extraction )
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Slide credit: Kristen Grauman B. Leibe
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B. Leibe

sensitive to illumination and intra
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Feature Extraction: Global Appearance
* Pixel-based representations are sensitive to small shifts
* Color or grayscale-based appearance description can be

Slide credit: Kristen Grauman
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Gradient-based Representations

* |dea
> Consider edges, contours, and (oriented) intensity gradients

Slide credit: Kristen Grauman B. Leibe

26
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Gradient-based Representations

* |dea
> ConS|der edges contours, and (oriented) intensity gradlents

* Summarize local distribution of gradients with histograms
> Locally orderless: offers invariance to small shifts and rotations

> Localized histograms offer more spatial information than a single
global histogram (tradeoff invariant vs. discriminative)

> Contrast-normalization: try to correct for variable illumination
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Slide credit: Kristen Grauman B. Leibe



| | R\NTH
Gradient-based Representations:

Histograms of Oriented Gradients (HoG)

Orientation Voting

S Overlapping Blocks

e
S
=7 e

—__Local Normalization

* Map each grid cell in the input window
to a histogram counting the gradients
per orientation.

* Code available:
http://pascal.inrialpes.fr/soft/olt/
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Slide credit: Kristen Grauman [Dalal & Triggs, CVPR 2005]


http://pascal.inrialpes.fr/soft/olt/

RWTHAACHEN

- . UNIVERSITY
Classifier Construction
* How to compute a decision for each subwindow?
car non-car car non-car car non-car

Image feature
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Slide credit: Kristen Grauman B. Leibe
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Discriminative Methods

* Learn a decision rule (classifier) assigning image features to
different classes

---------------------------
-----
.
‘e

.
-----
.
o

Decision \"/Zebra
boundary — Non-zebra
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Slide adapted from Svetlana Lazebnik



(0))
3
£
£
=)
/)]
c
Q
D
>
8
=
Q
S
(@)
S

Classifier Construction:

Nearest Neighbor

e
o™

- L L]
on '.
.
L » -
" .

Berg, Berg, Malik 2005,
Chum, Zisserman 2007,
Boiman, Shechtman, Irani 2008, ...

Many Choices...

IIIII

Neural networks

C1: feature maps

ps 18@10x10
S4:1 maps 16@5x5

Rowley, Baluja, Kanade 1998

Boosting

Viola, Jones 2001,
Torralba et al. 2004,
Opelt et al. 2006,
Benenson 2012, ...

Slide adapted from Kristen Grauman

Support Vector Machines

Vapnik, Scholkopf 1995,

Papageorgiou, Poggio ‘01,

Dalal, Triggs 2005,
Vedaldi, Zisserman 2012

B. Leibe

Randomizedeorests
E‘/\H

Amit, Geman 1997,

Breiman 2001,

Lepetit, Fua 2006,
Gall, Lempitsky 2009,...

31




Linear Classifiers
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Slide adapted from: Kristen Grauman B. Leibe
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Linear Classifiers

* Find linear function to separate positive and negative
examples

@ .
o x, positive: wix + b >0
® x, hegative: wix, +b <0
@
@
@
® o e o
@ ® \
@
@
° @
Which line
® IS best?
@

Slide credit: Kristen Grauman B. Leibe
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Support Vector Machines (SVMs)

Slide credit: Kristen Grauman

B. Leibe

Discriminative classifier
based on optimal
separating hyperplane
(i.e. line for 2D case)

Maximize the margin
between the positive and
negative training
examples

34
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Support Vector Machines Maching SCturs
Leafn/hg,
* Want line that maximizes the margin.
2
N )
4, 6 °N x_positive (¢, = 1) wix +b>1
-+ VD \) n n n
%. © | ® x, negative (t, =-1): w'x, +b <-1

For support, vectors, w'x, +b= +1

- O
"‘é O Quadratic optimization problem

% Minimize %WTW

é Subjectto  tn(W!x, +0b) > 1
Eéi Support vectors ° Margin Packages available for that...
G

O

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, 35
Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Finding the Maximum Margin Line

N
* Solution: W = Z AntnXn,
—

Learned Support

weight vector
‘CE
@
S
S
>
n
o
ie.
(L
=
)
5
Q
=
& C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, 36

Data Mining and Knowledge Discovery, 1998


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

RWNTH
Finding the Maximum Margin Line

N
* Solution: W = Z AntnXn
n=1

* (Classification function:
If f(x) < O, classify as neg.,

o T
f(x) = sign(w'x+0b) if f(x) > 0, classify as pos.
N
= sign Z ant, XZX + b
n=1

> Notice that this relies on an inner product between the test point x
and the support vectors x,,

> (Solving the optimization problem also involves computing the inner
products x,’x between all pairs of training points)
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C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, 37
Data Mining and Knowledge Discovery, 1998



http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf

Extension: Non-Linear SVMs

* General idea: The original input space can be mapped to
some higher-dimensional feature space where the training
set is separable:

r & :
o
o o N °
o ) o O X—>(X) .
o ® - 7
."‘-‘ .......... .
= ° y L e 7 o ® ‘ O
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= ® . > o @ °
£ ®
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cg ° ® o © o . °
S |
cz) ® e . o
>
’CI_J o
2
£ More on that in the Machine Learning lecture...
O

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html



http://www.autonlab.org/tutorials/svm.html
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Nonlinear SVMs

* The kernel trick: instead of explicitly computing the lifting
transformation ¢(x), define a kernel function K such that
K(x;, Xj) = o(x;) - (P(Xj)

* This gives a nonlinear decision boundary in the original
feature space:

Z antnK(Xpn,x) + b

n

* Since the optimization formulation uses the data points only
In the form of inner products ¢(x,)’p(x, ), we never need to

actually compute the lifting transformation ¢(x).

C. Burges, A Tutorial on Support Vector Machines for Pattern Recognition, 39
Data Mining and Knowledge Discovery, 1998


http://www.umiacs.umd.edu/~joseph/support-vector-machines4.pdf
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Some Often-Used Kernel Functions

* Linear:
K(Xi,%;)=X; TX;

* Polynomial of power p:
K (X, X;)= (1+ X; ;)P

* Gaussian (Radial-Basis Function): ,
x|

20~

)

K(Xi’xj) — eXp(_

Slide from Andrew Moore’s tutorial: http://www.autonlab.org/tutorials/svm.html

40


http://www.autonlab.org/tutorials/svm.html

Summary: SVMs for Recognition

1. Define your representation for each
example.

NON-FACES

2. Select a kernel function. n gD g0

3. Compute pairwise kernel values
between labeled examples

4. Pass this “kernel matrix” to SVM
optimization software to identify
support vectors & weights.

5. To classify a new example: compute
kernel values between new input and
support vectors, apply weights, check
sign of output.
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Slide credit: Kristen Grauman B. Leibe
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Topics of This Lecture

* Classification with SVMs
> Support Vector Machines
> HOG Detector
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HOG Descriptor Processing Chain
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Image Window

43
Slide adapted from Navneet Dalal
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HOG Descriptor Processing Chain

* Optional: Gamma compression

> Goal: Reduce effect of overly
strong gradients

> Replace each pixel color/intensity
by its square-root

T T

— Small performance improvement

Slide adapted from Navneet Dalal

Gamma compression

T
Image Window

44
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RWNTH
HOG Descriptor Processing Chain

* Gradient computation

> Compute gradients on all color
channels and take strongest one

> Simple finite difference filters
work best (no Gaussian smoothing)

oER
-1 0 1] 0
- 1 —
Compute gradients
?
Gamma compression
T

Image Window

Slide adapted from Navneet Dalal

45
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HOG Descriptor Processing Chain

e Spatial/Orientation binning

> Compute localized histograms of
oriented gradients

> Typical subdivision:
8:><8 cells with 8 or 9 orientation bins

Slide adapted from Navneet Dalal

Weighted vote in spatial &
orientation cells

?

Compute gradients

?

Gamma compression

T
Image Window

46
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HOG Descriptor Processing Chain

e 2-Stage contrast normalization

> L2 normalization, clipping, L2 normalization

Slide adapted from Navneet Dalal

Contrast normalize over
overlapping spatial cells

?

Weighted vote in spatial &
orientation cells

?

Compute gradients

?

Gamma compression

T
Image Window

49



RWTH
HOG Descriptor Processing Chain

* Feature vector construction
> Collect HOG blocks into vector

Collect HOGSs over
detection window

?

Contrast normalize over
overlapping spatial cells

Image Window

o 1

o Weighted vote in spatial &
E orientation cells

)

% t

I5 Compute gradients
= )

5 Gamma compression
5 1

o

£

(@)

O

Slide adapted from Navneet Dalal



RWTH
HOG Descriptor Processing Chain

* SVM Classification ObJeCUNOTn-ObJect

> Typically using a linear SVM Linear SVM

Collect HOGSs over
detection window

[y ey e, ] -

T

Contrast normalize over
overlapping spatial cells

Image Window

o 1

o Weighted vote in spatial &
E orientation cells

)

% t

I5 Compute gradients
= )

5 Gamma compression
5 1

o

£

(@)

O

Slide adapted from Navneet Dalal



Pedestrian Detection with HOG

* Intuition
> Train a pedestrian template using a linear SVM
> At test time, convolve feature map with learned template w

HOG feature map Template Detector response map

144
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b o W
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e, e WS

N. Dalal and B. Triggs, Histograms of Oriented Gradients for Human Detection,
CVPR 2005
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Slide credit: Svetlana Lazebnik


http://lear.inrialpes.fr/pubs/2005/DT05

RWTHAACHEN
UNIVERSITY

Non-Maximum Suppression

Clip detection score

After multi-scale dense scan

m Map each detection to 3D
[x,y,scale] space
Goal
o \ .
\.L \l o []
5 \/ — Q .
S S| |- .
: ©.
) .
/)] . o o
5 -
)
o Apply robust mode detection,
é. e.g. mean shift
8 Fusion of multiple detections Non-maximum suppression
_ 53
B. Leibe

Image source: Navneet Dalal, PhD Thesis



RWNTH
Pedestrian detection with HoOGs & SVMSs

* N. Dalal, B. Triggs, Histograms of Oriented Gradients for Human Detection, CVPR 2005.

Computer Vision Summer‘19

54

Slide credit: Kristen Grauman B. Leibe


http://lear.inrialpes.fr/pubs/2005/DT05/

RWNTH
Classifier Construction: Many Choices...

Nearest Neighbor Neural networks

ps 18@10x10
S4:1 maps 16@5x5

C1: feature maps

IIIII

Shakhnarovich, Viola, Darrell 2003

Berg, Berg, Malik 2005, Rowley, Baluja, Kanade 1998
Boiman, Shechtman, Irani 2008, ...

8 | Boosting Support Vector Machines| | Randomized Forests
- H
’g Ej/.\.ﬂ
)
w
S
g’ Viola, Jones 2001, Vapnik, Scholkopf 19_95’ Amit, Geman 1997,
5 | Torralba et al. 2004, | | Papageorgiou, Poggio ‘01, | Breiman 2001,
=1 | Opelt et al. 20086, Dalal, Triggs 2005, Lepetit, Fua 2006,
= | Benenson 2012, ... Vedaldi, Zisserman 2012 Gall, Lempitsky 2009,...
O
B. Leibe >

Slide adapted from Kristen Grauman
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Boosting

* |dea

-~ Build a strong classifier H by combining a number of “weak
classifiers” h,...,h,;, which need only be better than chance.

> Sequential learning process: at each iteration, add a weak classifier

* Flexible to choice of weak learner
> Including fast simple classifiers that alone may be inaccurate

* We'll look at Freund & Schapire’s AdaBoost algorithm
> Easy to implement
> Base learning algorithm for Viola-Jones face detector

Y. Freund and R. Schapire, A short introduction to boosting, Journal of Japanese
Society for Atrtificial Intelligence, 14(5):771-780, 1999.

B. Leibe

56
Slide credit: Kristen Grauman


http://www.cs.princeton.edu/~schapire/uncompress-papers.cgi/FreundSc99.ps
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AdaBoost: Intuition

O O
Weak P O o
Classifier 1 “""*-..H__ ________
® o
@0

Figure adapted from Freund and Schapire

Slide credit: Kristen Grauman

Consider a 2D feature space
with positive and negative
examples.

Each weak classifier splits
the training examples with at
least 50% accuracy.

Examples misclassified by a
previous weak learner are
given more emphasis at
future rounds.

B. Leibe
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AdaBoost: Intuition

Weak
Classifier 1

—
— -
i
—

Slide credit: Kristen Grauman

Weights
Increased

Weak
Classifier 2

B. Leibe
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AdaBoost: Intuition

Weights

Increased ® .:
\.:_\’.
Weak }.__': O
Classifier 2 q

O O
Weak P O o
Classifier 1 “""\-H__ ________
© o
® 0
Weak

classifier 3

Final classifier is
combination of the weak
classifiers

Slide credit: Kristen Grauman
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AdaBoost — Formalization

) @
* 2-class classification problem ~-3——--.?‘;"
- Given: training set X = {x, ..., Xy} °e
with targetvalues T ={t, ...,ty }. t, € {-1,1}. X, 0%,
- Associated weights W={wj, ..., w,} for each training point.

* Basic steps

- In each iteration, AdaBoost trains a new weak classifier h_,(x) based
on the current weighting coefficients W™,

> We then adapt the weighting coefficients for each point

— Increase w,, if x,, was misclassified by h, (x). f

— Decrease w,, if x,, was classified correctly by h, (x).

R

> Make predictions using the final combined model

H(x) = sign (Z amhm(x)>

B. Leibe
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l\“" |
AdaBoost: Detailed Training Algoritt* aoh,,,e L%re 4

a"’?/n |
L 1 < ¥

1. Initialization: Set w{!) = Nfor n=1,.,N. ‘ J &
2. Form=1,....M iterations {x,,....x,}

a) Train a new weak classifier h, (x) using the current weighting
coefficients W (™) py minimizing the weighted error function

Z w(m)]' Xn # / ) I(A) = {1. if A is true

0, else
b) Estimate the weighted error of this classifier on X:

S W (e (%) # )
m o ZN (m)

n 1wn

c) Calculate a weighting coefficient for h, (x):
1—e€
o, = In { m }

€m

d) Update the weighting coefficients:
wf,bmﬂ) = wflm) exp {aml (hm(X,) #tn)}

B. Leibe
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AdaBoost: Recognition

 Evaluate all selected weak classifiers on test data.
hi(x),..., hxn(X)

* Final classifier is weighted combination of selected
weak classifiers:

H(x) = sign (Z amhm(x)>

* Very simple procedure!
> Less than 10 lines in Matlab!
> But works extremely well in practice...
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Example: Face Detection

* Frontal faces are a good example of a class where
global appearance models + a sliding window detection
approach fit well:

> Regular 2D structure
> Center of face almost shaped like a “patch”/window

* Now we’ll take AdaBoost and see how the Viola-Jones

face detector works

Slide credit: Kristen Grauman B. Leibe
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Feature extraction

“Rectangular” filters

Efficiently computable
with integral image: any
sum can be computed in
constant time

Avoid scaling images -
scale features directly for
same cost

Slide credit: Kristen Grauman

Feature output is difference between
adjacent regions

Value at (X,y) is
sum of pixels

| to
(’y) A B
1 2
C D
3 “

Integral image D=1+4—-(2+3)
=A+(A+B+C+D)—(A+C+A+B)
=D

_ _ 64
B. Leibe [Viola & Jones, CVPR 2001]
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Example

Slide credit: Svetlana Lazebnik

B. Leibe
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Image
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RWTHAACTEN

Large Library of Features

Considering all
m— 1T E .: = possible filter
parameters:
position, scale, and
| fYPE:

180,000+ possible
features associated

]
B ]
with each 24 x 24
window
- . =

Use AdaBoost both to select the informative features
and to form the classifier

Weak classifier: feature output > 6?
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Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]



RWNTH
AdaBoost for Feature+Classifier Selection

Want to select the single rectangle feature and threshold that
best separates positive (faces) and negative (non-faces)
training examples, in terms of weighted error.

I : 0, : O, Resulting weak classifier:
e
S P 6 6 S 10660666
| | R L
i hex) =< T1 it fi(x)> 6,
‘[(X) o . :
2 I -1 otherwise
2 ebeoeoec ooe o
A o
= | . For next round, reweight the
I5 t examples according to errors,
= Outputs of a choose another filter/threshold
ko possible rectangle combo.
é feature on faces
S and non-faces.

| | 67
Slide credit: Kristen Grauman B. Leibe [Viola & Jones, CVPR 2001]



RWTH
Cascading Classifiers for Detection

* Even if the filters are fast to compute, each new image has
a lot of possible windows to search.

"

_ g N
* For efficiency, apply less NS/
accurate but f_aster cl_assmers ST T T T, (Futrer
first to immediately discard \I; \I;” \I; \I; DN 4
windows that clearly appear to A
. ' Reject Sub-window D}
> be negative; e.g., (L fefeetsubuindow
’g > Filter for promising regions with an initial inexpensive classifier
S > Build a chain of classifiers, choosing cheap ones with low false
2 negative rates early in the chain
(@)
iz
>
= [Fleuret & Geman, IJCV 2001]
=| [Rowley et al., PAMI 1998]
% [Viola & Jones, CVPR 2001] o
Slide credit: Kristen Grauman B. Leibe Figure from Viola & Jones CVPR



RWTH
Viola-Jones Face Detector: Summary

4 N

Train cascade of

classifiers with
AdaBoost

o

= gl (|
—

.| =

e b, Wl Selected features,
Non-faces thresholds, and weights

* Train with 5K positives, 350M negatives
* Real-time detector using 38 layer cascade

* 6061 features in final layer

* [Implementation available in OpenCV:
http://sourceforge.net/projects/opencvlibrary/]
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Slide credit: Kristen Grauman B. Leibe


http://sourceforge.net/projects/opencvlibrary/
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RWNTH
Viola-Jones Face Detector: Results

B. Leibe

Slide credit: Kristen Grauman
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B. Leibe

Slide credit: Kristen Grauman
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You Can Try It At Home...

* The Viola & Jones detector was a huge success
> First real-time face detector available
> Many derivative works and improvements

* C++ implementation available in OpenCV |[Lienhart, 2002]
> http://sourceforge.net/projects/opencvlibrary/

* Matlab wrappers for OpenCV code available, e.g. here
> http://www.mathworks.com/matlabcentral/fileexchange/19912

P. Viola, M. Jones, Robust Real-Time Face Detection, IJCV, Vol. 57(2), 2004

Slide credit: Kristen Grauman B. Leibe
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http://sourceforge.net/projects/opencvlibrary/
http://www.mathworks.com/matlabcentral/fileexchange/19912
http://www.springerlink.com/content/q70v4h6715v5p152/fulltext.pdf

Example Application

Frontal faces
detected and
then tracked,
character name:
inferred with
alignment of
script and
subtitles.

038296

Everingham, M., Sivic, J. and Zisserman, A.

"Hello! My name is... Buffy" - Automatic naming of characters in TV video,
BMVC 2006.

http://www.robots.ox.ac.uk/~vga/research/nface/index.html
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Slide credit: Kristen Grauman B. Leibe


http://www.robots.ox.ac.uk/~vgg/research/nface/index.html
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Summary: Sliding-Windows

* Pros

Simple detection protocol to implement

> Good feature choices critical

» Past successes for certain classes

> Good detectors available (Viola & Jones, HOG, etc.)

Y

* Cons/Limitations

> High computational complexity

— For example: 250,000 locations x 30 orientations x 4 scales =
30,000,000 evaluations!

— This puts tight constraints on the classifiers we can use.

— If training binary detectors independently, this means cost increases
linearly with number of classes.

> With so many windows, false positive rate better be low

Slide credit: Kristen Grauman B. Leibe
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Limitations (continued)

* Not all objects are “box” shaped

"}'\ '_" _.f‘ *
-

1 -,41“'4
> gpersonTruno

S

i 3 '
i ﬁ&ﬁ - 5 Iy,
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Slide credit: Kristen Grauman B. Leibe
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UNIVERSITY

Limitations (continued)

* Non-rigid, deformable objects not captured well with
representations assuming a fixed 2D structure; or must
assume fixed viewpoint

* Objects with less-regular textures not captured well with
holistic appearance-based descriptions

T T 0 ue
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Limitations (continued)

* |f considering windows in isolation, context is lost

= BB
5h i

—

- It
111 lII Il
Il I

1 ' ]
4 Wk Mgl
: ‘?V .

I iy U LS | 3
." / }

Sliding window Detector S V|ew
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Figure credit: Derek Hoiem B. Leibe
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Limitations (continued)

* In practice, often entails large, cropped training set
(expensive)

* Requiring good match to a global appearance description
can lead to sensitivity to partial occlusions
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Image credit: Adam, Rivlin, & Shimshoni K. Grauman, B. Leibe



References and Further Reading

* Read the HOG paper
> N. Dalal, B. Triggs,
Histograms of Oriented Gradients for Human Detection,
CVPR, 2005.

* HOG Detector
> Code available: http://pascal.inrialpes.fr/soft/olt/
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https://lear.inrialpes.fr/people/triggs/pubs/Dalal-cvpr05.pdf
http://pascal.inrialpes.fr/soft/olt/

