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RWTH//CHE
Recap: What Is Stereo Vision?
* Generic problem formulation: given several images of the

same object or scene, compute a representation of its 3D
shape
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ide credit- Sveilana | azebnik_Steve Seit B. Leibe

RWTH//CHE
Recap: Epipolar Geometry
* Geometry of two views allows us to constrain where the

corresponding pixel for some image point in the first view
must occur in the second view.

epipolar line ' epipolar line
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‘g * Epipolar constraint:

2 » Correspondence for point p in IT must lie on the epipolar line /”in TT°

g (and vice versa).

g » Reduces correspondence problem to 1D search along conjugate

3 epipolar lines. .
ide adapted from Steve Seit; B. Leibe

Course Outline

* Image Processing Basics
* Segmentation & Grouping
* Object Recognition
* Local Features & Matching
* Deep Learning
* 3D Reconstruction
» Epipolar Geometry and Stereo Basics

» Camera calibration & Uncalibrated Reconstruction
» Structure-from-Motion

* Motion and Tracking
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TRWTH/JCHEN
Recap: Depth with Stereo — Basic Idea

* Basic Principle: Triangulation
» Gives reconstruction as intersection of two rays
» Requires
— Camera pose (calibration)
— Point correspondence

Computer Vision Summer‘19

de credit Steve Seit B Leibe

RWTH CHET
Recap: Stereo Geometry With Calibrated Cameras

X world point
x| e .

* Camera-centered coordinate systems are related by known
rotation R and translation T:

X =RX+T

de credit Kristen Grauman B. Leibe
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Recap: Essential Matrix

X'-(TxRX)=0 T
X"( X RX)ZO p 5%
Lt E=T:R R
XTEX =0 "

* This holds for the rays p and p’ that
are parallel to the camera-centered

position vectors X and X', so we have:

¢ Eis called the Essential matrix, which relates corresponding
image points [Longuet-Higgins 1981]

ide credit- Kristen Grauman B. Leibe
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TRWTH/ACHEN
Recap: Stereo Image Rectification

* In practice, itis
convenient if image
scanlines are the
epipolar lines.

e Algorithm A’

Reproject image planes onto a common
plane parallel to the line between optical
centers

Pixel motion is horizontal after this transformation

Two homographies (3x3 transforms), one for each
input image reprojection

Computer Vision Summer‘19

de adapted from i Zhang, Coloon hang, Comouting Rectifving
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TRWTH/ACHEN
Alternative: Sparse Correspondence Search

Fresident of United Statos. 3
3 3 {
‘ '

T HON. ADRATIAM LN

* ldea:
» Restrict search to sparse set of detected features

» Rather than pixel values (or lists of pixel values) use feature
descriptor and an associated feature distance

» Still narrow search further by epipolar geometry
What would make good features?

ide credit Kristen Grauman,
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TRWTH/JCHEN
Recap: Essential Matrix and Epipolar Lines

T Epipolar constraint: if we observe point p
in one image, then its position p’ in the
second image must satisfy this equation.
l'= Ep is the coordinate vector representing
A the epipolar line for point p

(i.e., the line is given
by: I''x=0)

—

l= ET p' is the coordinate vector representing the
epipolar line for point p’

Computer Vision Summer19

de credit- Kristen Grauman B Leibe

RWTHACHE

Recap: Dense Correspondence Search

T HON. ADRATIAM LINCO!

* For each pixel in the firstimage
» Find corresponding epipolar line in the right image

» Examine all pixels on the epipolar line and pick the best match
(e.g. SSD, correlation)

» Triangulate the matches to get depth information

* This is easiest when epipolar lines are scanlines
= Rectify images first

adanted from Svetlana | azebnik, 1iZhang
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Dense vs. Sparse

* Sparse
» Efficiency
» Can have more reliable feature matches, less sensitive to
illumination than raw pixels
» But...
— Have to know enough to pick good features
— Sparse information

— Breaks down in textureless regions anyway
— Raw pixel distances can be brittle
— Not good with very different viewpoints

de credit Kristen Grauman,

= * Dense

E » Simple process

3 » More depth estimates, can be useful for surface
H reconstruction

% » But...
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http://research.microsoft.com/~zhang/Papers/TR99-21.pdf
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Difficulties in Similarity Constraint

T HON ADRATIAN .

 President of Umited Siaes

Occlusions N

ide credit. Kristen Grauman

Recap: A General Point

* Equations of the form
Ax=0

* How do we solve them? (always!)
» Apply SVD

SVD

dll Vll

A=UDV' =U ’ :

dNN VNl
Singular values Singular vectors
» Singular values of A = square roots of the eigenvalues of ATA.
» The solution of Ax=0 is the nullspace vector of A.
» This corresponds to the smallest singular vector of A.
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B. Leibe
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RWTHCHEN
Recall: Pinhole Camera Model
-
b ] Y z c "l -
/ : e R I— —‘
(X,Y,2)> (fX/Z,fY1Z)
X X
y f X f 0 v
| fY |= f 0 X =PX
z z
z 10
1 1
d it lana | azebnik. B. Leibe 17

Summary: Stereo Reconstruction

* Main Steps
» Calibrate cameras
» Rectify images
» Compute disparity
» Estimate depth

* So far, we have only considered
calibrated cameras...

Len Right

* Today
» Uncalibrated cameras
» Camera parameters
» Revisiting epipolar geometry
» Robust fitting

Computer Vision Summer19
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de credit- Kristen Grauman B Leibe

Topics of This Lecture

* Camera Calibration
» Camera parameters
» Calibration procedure

* Revisiting Epipolar Geometry
» Triangulation
» Calibrated case: Essential matrix
» Uncalibrated case: Fundamental matrix
» Weak calibration
» Epipolar Transfer

* Active Stereo
» Laser scanning
» Kinect sensor

Computer Vision Summer‘19
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B. Leibe

Pinhole Camera Model

cameta peincipal axis

cerize - image plane

fX f 1 0
fy |= f 1 0
0

X
Y
z
1

P =diag(f, f 1)[1]0]

de credit Svetlana | azebnik B. Leibe
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Camera Coordinate System Principal Point Offset

Principal point: (px, py)

* Principal axis:

o = * Camera coordinate system: origin at the principal point
E » Line from the camera center perpendicular to the image plane E * Image coordinate system: origin is in the corner
§ * Normalized (camera) coordinate system: (%
5 » Camera center is at the origin and the principal axis is the z-axis 5
@ . . . 2
= * Principal point (p): >
% » Point where principal axis intersects the image plane (origin of %
E normalized coordinate system) E
o [$}
19 20
ide credit- Svetlana | azebnik B. Leibe Image from Hartley & Zisserny de credit- Svetlana | azebnik B Leibe Image from Hartley & Zisserman)
RWTH/ACHEN RWTH/ACHEN

Principal Point Offset Principal Point Offset

Principal point: (P, P,) Principal point: (P,, Py)

X

. (X.Y,Z)> (FX/Z+p, fYIZ+p,) . i 8 Y

P, .

£ X X £ 1 10

3 fX+zp) [f p, 0 @ 1

s Y Y & f 1

£ | fY+Zp, |= f p, 0 g Px

g z 7 1 0 z - K= f p,| Calibration matrix P = K[| | 0]

g 1 1 g 1

= . B. Leibe 21 = . B B. Leibe 22
RWTH//CHE RWTH CHET

Pixel Coordinates: Non-Square Pixels Camera Rotation and Translation

* In general, the camera

1 1 z coordinate frame will be
. . ot related to the world
Pixel size: x ’ coordinate frame b
m, m e . va
x y ° rotation and a translation
Y
m, pixels per meter in horizontal direction, X
> m, pixels per meter in vertical direction ®
5 2
: : % _R(%-G
5 m, f p, a, Xo E Xem = R(X -C
5 K= m fop = a, s
S = o S -
2 Y y Y S coords. of point coords. of camera center
] 1 1 1 g in camera frame . in world frame
é . i é. coords. of a point
S [pixels/m] [m] [pixels] 3 in world frame (nonhomogeneous)
23 24
ide credit- Svetlana | azebnik, B. Leibe de credit Svetlana | azebnik B. Leibe Jmage from Hartley & Zisserman
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Camera Rotation and Translation

- z In non-homogeneous
o pim coordinates:

% -R(%-8)

oy TS T

x =K[110]X,, =K[R|-RC]X

P=K[RIt],

Note: C is the null space of the camera projection matrix (PC=0)

ide credit Svetlana | azebnik B. Leibe Image from Hartley & Zi

t=-RC

25
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Summary: Camera Parameters

¢ Intrinsic parameters
» Principal point coordinates
» Focal length
» Pixel magnification factors
» Skew (non-rectangular pixels)
» Radial distortion

¢ Extrinsic parameters

» Rotation R
» Translation t
(both relative to world coordinate system) P, B, P, P,
« Camera projection matrix ~ P=K[RIt]=| Py Py Py Py

Pp P Py PRy

How many degrees of freedom does P have?

ide adapted from Svetlana | azebnik.

Calibrating a Camera

* Compute intrinsic and extrinsic
parameters using observed camera
data.

Main idea

* Place “calibration object” with known
geometry in the scene

* Get correspondences

* Solve for mapping from scene to
image: estimate P=P;Pq

ide credit- Kristen Grauman B. Leibe
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Summary: Camera Parameters

* Intrinsic parameters
Principal point coordinates

v

» Skew (non-rectangular pixels)
» Radial distortion

eadial distortion

@

etlana | azebnik.

linear image

]

conestion

jde credit- B Leibe

m, s p] [a o
» Focal length K= m, fop|= a, Y,
» Pixel magnification factors 1 1 1

26

Camera Parameters: Degrees of Freedom

2 & sp
1 K= f, py,
1 1
1

* Intrinsic parameters
» Principal point coordinates
» Focal length
» Pixel magnification factors
» Skew (non-rectangular pixels)
» Radial distortion

¢ Extrinsic parameters

. Rotation R 3
» Translation t 3
(both relative to world coordinate system)
* Camera projection matrix P=K[R|t]
= General pinhole camera: 9 DoF
= CCD Camera with square pixels: 10 DoF
= General camera: 11 DoF 28

Camera Calibration

* Given n points with known 3D coordinates X; and known
image projections x;, estimate the camera parameters

de credit Svetlana | azebnik B. Leibe
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RWTH/THE
Camera Calibration: Obtaining the Points

* For best results, it is important that the calibration points
are measured with subpixel accuracy.

* How this can be done depends on the exact pattern.

* Algorithm for checkerboard pattern
1. Perform Canny edge detection.
2. Fit straight lines to detected linked edges.
3. Intersect lines to obtain corners.

» If sufficient care is taken, the points can
then be obtained with localization accuracy < 1/10 pixel.

* Rule of thumb

> Number of constraints should exceed number of unknowns by a
factor of five.

= For 11 parameters of P, at least 28 points should be used.
B. Leibe

Computer Vision Summer19
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RWTH/ACHEN
Camera Calibration: DLT Algorithm %
0" Xi -wX{
X7 0" —xX] [P, P
P, |=0 Ap=0
0" XT =YX [\Ps Solve using... SVD!

XT 0T —xX]

* Notes
» P has 11 degrees of freedom (12 parameters, but scale is arbitrary).

» One 2D/3D correspondence gives us two linearly independent
equations.

» Homogeneous least squares (similar to homography est.)
= 5 % correspondences needed for a minimal solution.

Computer Vision Summer‘19
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de adapted from Svetlana | azebnik. B Leibe

RWTH LGN
Camera Calibration

* Once we've recovered the numerical form of the camera
matrix, we still have to figure out the intrinsic and extrinsic
parameters

* This is a matrix decomposition problem, not an estimation
problem (see F&P sec. 3.2, 3.3)

®
s
£
E
£
(2]
c
9o
2
>
=
k5
2
E
£
o
o

35

de credit Svetlana | azebnik B. Leibe

RWTH CHET
Camera Calibration: DLT Algorithm

(DLT = “Direct Linear Transform”)

xi‘l T

Xi Pll PlZ P13 P14 X Pl

AX; =PX; AYi|=|Pp Pp Py Py lez = PzT X;
1 P31 PSZ P33 P34 ]i-‘s PST
X; xPX; =0

>
5 T T
2 0 =X X (R
5 T T
3 X 0 -xX|P,|=0
c
3 T T
= Vi Xi %X 0 P,
g
2 . ; )
E Only two linearly independent equations
- P? 32
de adapted from Sveflana | azebnik B. Leibe
RWTH CHET

Camera Calibration: DLT Algorithm ~
X -

X[ 0 -xX] [P
P, |=0 Ap=0
D e

XT 0 —x X

* Notes

» For coplanar points that satisfy I[1"X=0,
we will get degenerate solutions (I1,0,0), (0,I1,0), or (0,0,IT).
= We need calibration points in more than one plane!

Computer Vision Summer‘19

ide credit Svetlana L azebnik B. Leibe

TOWTHACHET]
Camera Calibration: Some Practical Tips

* For numerical reasons, it is important to carry out some data
normalization.

Translate the image points x; to the (image) origin and scale them

such that their RMS distance to the origin is 2.

Translate the 3D points X; to the (world) origin and scale them such
that their RMS distance to the origin is /3.

» (This is valid for compact point distributions on calibration objects).

v

v

* The DLT algorithm presented here is easy to implement, but
there are some more accurate algorithms available (see
H&Z sec. 7.2).

* For practical applications, it is also often needed to correct
for radial distortion. Algorithms for this can be found in H&Z
sec. 7.4, or F&P sec. 3.3.
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Topics of This Lecture

* Revisiting Epipolar Geometry
Triangulation

Calibrated case: Essential matrix
Uncalibrated case: Fundamental matrix
Weak calibration

Epipolar Transfer

Yoy oy v

v

Computer Vision Summer19
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RWTH//CHEN
Revisiting Triangulation

* Given projections of a 3D point in two or more images (with
known camera matrices), find the coordinates of the point

Computer Vision Summer‘19
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ide credit- Svetlana | azebnik B. Leibe

TRWTH/ACHEN
Triangulation: 1) Geometric Approach

* Find shortest segment connecting the two viewing rays and
let X be the midpoint of that segment.
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de credit Svetlana | azebnik B. Leibe
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Two-View Geometry

* Scene geometry (structure):
» Given corresponding points in two or more images, where is the
pre-image of these points in 3D?
* Correspondence (stereo matching):
» Given a point in just one image, how does it constrain the position
of the corresponding point x’ in another image?
* Camera geometry (motion):

» Given a set of corresponding points in two images, what are the
cameras for the two views?

38

de credit- Svetlana | azebnik B Leibe

TWTH/ /T
Revisiting Triangulation

* We want to intersect the two visual rays corresponding to x,
and x,, but because of noise and numerical errors, they will
never meet exactly. How can this be done?

R, i_&'?Rl
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TRWTH/ T
Triangulation: 2) Linear Algebraic Approach
Ax, =PX X, xPX=0 [x, JPX=0
X, =PX X, xP,X=0 [X,]P,X=0

Cross product as matrix multiplication:

0 -a a, |b

y X
axb=| a, 0 -a b, |=[alo
-a, a 0 |b

y X z

42

de credit Svetlana | azebnik B. Leibe




RWTH//CHE
Triangulation: 2) Linear Algebraic Approach

TWTH/ /T
Triangulation: 3) Nonlinear Approach
Ax, =PX X, xP,X=0 [x, JP,X=0
LX,=P,X  x,xP,X=0 [x,]JP,X=0

* Find X that minimizes

d*(x, RX)+d*(x,, P,X)

Two independent equations each in terms of
three unknown entries of X

= Stack them and solve using SVD!

* This approach is often preferable to the geometric
approach, since it nicely generalizes to multiple cameras.

Computer Vision Summer19
Computer Vision Summer19
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de credit- Svetlana | azebnik B Leibe
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ide credit- Svetlana | azebnik B. Leibe

RWTH//CHEN
Triangulation: 3) Nonlinear Approach Revisiting Epipolar Geometry

* Find X that minimizes

d*(x, RX)+d*(x,, P,X)

* This approach is the most accurate, but unlike the other two
methods, it doesn’t have a closed-form solution.

* |terative algorithm
» Initialize with linear estimate.

~ Optimize with Gauss-Newton or Levenberg-Marquardt

* Let’s look again at the epipolar constraint
(see F&P sec. 3.1.2 or H&Z Appendix 6).

» For the calibrated case (but in homogenous coordinates)
» For the uncalibrated case

Computer Vision Summer‘19
Computer Vision Summer‘19

45

46
B. Leibe B. Leibe

RWTHAACHE RWTHACHE

Epipolar Geometry: Calibrated Case Epipolar Geometry: Calibrated Case

in the first one. (Longuet-Higgins, 1981)

5 S x[tx(RX)]=0 ==y X'Ex'=0 with E=[t]R
E = l

g Camera matrix: [1|0] Camera matrix: [RT | -RTt] ‘g

@ X=(u,v,w, 1)7 Vector x’ in second coord. @2 E tial Matri
; X =(u, v, w)T system has coordinates Rx ’ ; ssental Matrix
2 2

s 3

o o

The vectors x, {, and Rx’ are coplanar

ide credit- Svetlana | azebnik

a7 48
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Epipolar Geometry: Calibrated Case

o — I | - o
X[tx(Rx)]=0 =2 Xx"Ex'=0 with E=[t]R
E x’ is the epipolar line associated with x’ (I = E x))

ETx is the epipolar line associated with x (I’=E™x)
Ee’=0 and ETe=0 Why?

E is singular (rank two) Why?

* E has five degrees of freedom (up to scale)

ide credit- Svetlana | azebnik B. Leibe

RWTHAACHE

49

Epipolar Geometry: Uncalibrated Case

o Al |- o

LKTER =0 =mm) xX'Fx'=0 with F=KTEK'™*
x =KX 1

' "t Fundamental Matrix
X' =KX (Faugeras and Luong, 1992)

ide credit- Svetlana | azebnik B. Leibe

RWTHAACHE

51

Estimating the Fundamental Matrix

* The Fundamental matrix defines the epipolar geometry
between two uncalibrated cameras.

* How can we estimate F from an image pair?
» We need correspondences...

B. Leibe

RWTHAACHE
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TRWTH/JCHEN
Epipolar Geometry: Uncalibrated Case

o
| « The calibration matrices K and K’ of the two cameras
(% are unknown
'3 * We can write the epipolar constraint in terms of unknown
2 normalized coordinates:
5
g AT = a7 5 ’ 5!
g X'EX'=0 x=KX, X =KX
o
© 50
de credit: Svetlana | azebnik B. Leibe
RWTH CHET
Epipolar Geometry: Uncalibrated Case
X
=) o ) L - o
2 R"ERX'=0 mm) xX'Fx'=0 with F=KTEK'™*
=
7 « Fx’ is the epipolar line associated with x’ (/ = F x)
o . . . . .
| + FTx is the epipolar line associated with x (I’ = FTx)
o * Fe’=0 and Fle=0
5| ¢ Fis singular (rank two)
o
¢ F has seven degrees of freedom 5
de credit Svetlana | azebnik B. Leibe
RWTH CHET
The Eight-Point Algorithm
Fll
x=(u v, )T, x’= @’ v, )T Fis
X § X B iz
Fy Fip Fig) fu Fy
(w,v,1)| For Foa Fy ||V | =0 ‘ [u'u, u'v, o u v v uy v, 1] | Faa | =0
Fp Fp Fyg/\1 Fg
Fy
. Fo
* Taking 8 correspondences: ) Fis
R R R Y WAL I [
B |z whz oy ugeh ey vy we we 1[R[ [0
S | whug whus ul vk ous vy 1 !,” 0
g ugry, vy v 1 1,“ 0
E u v 1 I,‘"*‘ “lo
23
» g 1 : 0
S 7 1| |4 0 —
2 | ¥ AN A A S A Y | I This minimizes:
: aoo | <
E = > (X Fx)?
S Solve using... SVD! H( i FX)
ide adanted from Svetlana | azebnik B. Leibe >
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Excursion: Properties of SVD

Frobenius norm
» Generalization of the Euclidean norm to matrices

m n 2 min(m,n) )
IAl. = ;§|3u| = ; 0

Partial reconstruction property of SVD

» Let g;i=1,...,N be the singular values of A.

- LetAy = UprVpT be the reconstruction of A when we set
Op+1, -+ Oy t0 Zero.

» Then Ay = UprVpT is the best rank-p approximation of A in the
sense of the Frobenius norm
(i.e. the best least-squares approximation).

55
B. Leibe
Problem with the Eight-Point Algorithm
* In practice, this often looks as follows:
Fy
wuy whvr u) wv] vivp o wg v 1 F“ 0
/ / / J 7 ! 12
UpUz UV Uy UVy  Vh vy uz vy 1 F 0
’ / / g ! 7 13
whus vy wh ougvh vl vhowg v 1) | 0
! / / g ! ! 21
wyuy whvg uh owgv) vevh o) oug vy 1 Fl = 0
ul P Y S S S 22| =
whus ujvs uf ousv vsvh v ous vs 1| |7 0
ugug Uugve Uy ugUy Ugvy Vg ug ve 1 F“ 0
’ /. ’ J ! ! 31
upuy  upvr  uwy  ugvy  vpvp vy up vy 1 F 0
ugus  ufus ug usvg vsvgy vk us vs 1 FM 0
33,
57
de adapted from Svetlana | azebnik. B Leibe

The Normalized Eight-Point Algorithm
1.

59
ide credit Svetlana | azebnik B. Leibe [Hartley, 19951

. Transform fundamental matrix back to original units: if T

Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data
points is 2 pixels.

Use the eight-point algorithm to compute F from the
normalized points.

Enforce the rank-2 constraint using SVD. Set dyg 10
SYD dy . [ zero and
F=UDV'™ =U d,, reconstruct F

and T’ are the normalizing transformations in the two
images, than the fundamental matrix in original coordinates
isTTFT.

Computer Vision Summer19
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The Eight-Point Algorithm

* Problem with noisy data

» The solution will usually not fulfill the constraint that F only has
rank 2.

= There will be no epipoles through which all epipolar lines pass!

* Enforce the rank-2 constraint using SVD
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Setdg to
zero and
reconstruct F
* As we have just seen, this provides the best least-squares
approximation to the rank-2 solution.
56
B. Leibe
Problem with the Eight-Point Algorithm
* In practice, this often looks as follows:
1| 0
250906.36/ 183269.57 921.81| 200931.10| 146766.13 738. 21| 272.19, 198.81 FIZ
2692.28) 131633.03) 176,27 6196.73| 302975, 59 405,71 15.27 746. 79| 1 F3 0
416374.23) 871684, 30, 935.47 408110.89 854384.92) 916. 90 445.10) 931, 81| 1 F;l 0
4 191183.60/ 171759.40, 410.27| 416435.62| 374125.90, 893. 65| 465.99 418.65 1 };x22 0
43988.86| 3040L.76 57,89 298604.57| 185309, 58 352.87) 846.22) 525.15) 1 an 0
164786.04) 546559.67) 813.17 1998.37) 6625, 15| 9. 86| 202.65) 672,14 1 F. 0
116407.01] 2727.75 138.89| 169941.27, 3982.21 202.77| B838.12, 19.64| 1 F}: 0
135384.58)  75411.13) 199,72 411350.03| 229127.78) 603.79) 661,28 379. 48| 1 F; 0
= Poor numerical conditioning
= Can be fixed by rescaling the data
58
ide adanted from Svetlana | azebnik B. Leibe

The Eight-Point Algorithm
N
* Meaning of error z“(X,T Fx)?:
i=1
Sum of Euclidean distances between points x;and epipolar

lines Fx (or points x} and epipolar lines FTx;), multiplied by
a scale factor

* Nonlinear approach for refining the solution: minimize

i[dz(xi, FX)+d*(X,FTx)]

» Similar to nonlinear minimization
approach for triangulation.

» lterative approach (Gauss-Newton,
Levenberg-Marquardt,...)

de credit Svetlana | azebnik B. Leibe

10



RWTHACHEN
. . ) - UNIVERSITY]
3D Reconstruction with Weak Calibration

RWTH/THE
. o . UNIVERSITY
Comparison of Estimation Algorithms

* Want to estimate world geometry without requiring
calibrated cameras.
* Many applications:
» Archival videos
» Photos from multiple unrelated users
» Dynamic camera system

° =) * Main idea:
E 'g » Estimate epipolar geometry from a (redundant) set of
E E point correspondences between two uncalibrated
2 2 cameras.
o o
@ 2
> >
E 8-point Normalized 8-point Nonlinear least squares E
é Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel é‘
S| | Av Dist 2 2.18 pixels 0.85 pixel 0.80 pixel 8
62
ide credit Svetlana | azebnik. B. Leibe . ide credit: Kristen Grauman B. Leibe
RWTH/CHET RWTH CHET
UNIVERSITY] UNIVERSITY|

Stereo Pipeline with Weak Calibration Stereo Pipeline with Weak Calibration

* S0, where to start with uncalibrated cameras?

» Need to find fundamental matrix F and the correspondences
(pairs of points (U',v’) < (u,v)).

o

1. Find interest points (e.g. Harris corners)

© \ l | o
] 2 ]
£ P 3 ‘ £
£ 3
5 5
28 ¢ Procedure 2
E 1. Find interest points in both images é
g 2. Compute correspondences &
é 3. Compute epipolar geometry E‘
s ) 5
o 4. Refine 63 © 64
de credit Kristen Grauman B. Leibe Example from Andrew Zisserma de credit Kristen Grauman B. Leibe Example from Andrew Zisserman|
UNIVERSITY| UNIVERSITY]

Stereo Pipeline with Weak Calibration Putative Matches based on Correlation Search

2. Match points using only proximity

* Many wrong matches (10-50%), but enough to compute F

Computer Vision Summer‘19
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Example from Andrew Zisserman)

B. Leibe

B. Leibe
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RANSAC for Robust Estimation of F

* Select random sample of correspondences
e Compute F using them
» This determines epipolar constraint

* Evaluate amount of support — number of inliers
within threshold distance of epipolar line

* lterate until a solution with sufficient support
has been found (or for max #iterations)

* Choose F with most support (#inliers)

67

ide credit- Kristen Grauman B. Leibe

RWTH/ACHEN
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RWTHZCE
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Pruned Matches

* Correspondences consistent with epipolar geometry
RV . i N

69
Example from Andrew Zissermay
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Epipolar Transfer

¢ Assume the epipolar geometry is known

* Given projections of the same point in two images, how can
we compute the projection of that point in a third image?

X1 X2

71
de credit Svetlana | azebnik B. Leibe
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RWTHTHEN
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Putative Matches based on Correlation Search

* Many wrong matches (10-50%), but enough to compute F

" 68
B. Leibe

Example from Andrew

TOWTHACHET]
. . UNIVERSITY
Resulting Epipolar Geometry
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Example from Andrew Zisserman)
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Extension: Epipolar Transfer

¢ Assume the epipolar geometry is known

* Given projections of the same point in two images, how can
we compute the projection of that point in a third image?

° ° ><
X1 X2 | X3 |
31 32
lsy = FTigX;
Iy, = FTysX;

When does epipolar transfer fail?

72
de credit Svetlana | azebnik B. Leibe
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Topics of This Lecture

¢ Active Stereo
» Laser scanning
» Kinect sensor

Computer Vision Summer19

73
B. Leibe

Active Stereo with Structured Light

3D Scene point

Image plane

Projector

b, Camera center

* ldea: Replace one camera by a projector.
» Project “structured” light patterns onto the object
» Simplifies the correspondence problem
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77

B. Leibe

RWTH//CHE
Recall: Optical Triangulation
3D Scene point & X?
Image plane
E b, Camera center
2
%
g
8
B. Leibe I
RWTH//CHE
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TWTH G
Microsoft Kinect — How Does It Work?

KINECT

wem

E L; ‘

* Built-in IR
projector

* IR camera for
depth

* Regular camera
for color

, !‘fﬂL
! ?fj

B. Leibe

Recall: Optical Triangulation
3D Scene point (X

Image plane

o

O
b Camera center A

* Principle: 3D point given by intersection of two rays.
» Crucial information: point correspondence
» Most expensive and error-prone step in the pipeline...

76
B. Leibe

What the Kinect Sees...

78

B. Leibe
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3D Reconstruction with the Kinect

SIGGRAPH Talks 2011
KinectFusion:

Real-Time Dynamic 3D Surface
Reconstruction and Interaction

David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1,

Computer Vision Summer19

Shahram Izadi 1, Richard Newcombe 2, David Kim 1,3, Otmar Hilliges 1,

Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1
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Laser Scanned Models
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The Digital Michelangelo Project, Levoy et al.

ide credit- Steve Seit B. Leibe

79
B. Leibe
Laser Scanned Models
The Digital Michelangelo Project, Levoy et al. 0
de credit: Steve Seit B Leibe

84

Laser Scanning

Object

Direction of travel

Laser sheet

CCD image plane

& Y Cylindrical lens 4 §
Laser [¢e)) LA
E Digital Michelangelo Project
2 hitp: iics.stanford
£
5
4| + Optical triangulation
E » Project a single stripe of laser light
g » Scan it across the surface of the object
g » This is a very precise version of structured light scanning
© 81
de credit: Steve Sei; B. Leibe
Laser Scanned Models
2}
s
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3
o The Digital Michelangelo Project, Levoy et al. .
de credit Steve Seit B Leibe
Laser Scanned Models
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B
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5
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5
o The Digital Michelangelo Project, Levoy et al. a5
de credit: Steve Seit: B. Leibe
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http://graphics.stanford.edu/projects/mich/
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Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.
jde credi- Steve Seit B. Leibe
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RWTHAACHE

Slightly More Elaborate (But Still Cheap)

)

Software freely available from Robotics Institute TU Braunschweig

http://www.david-laserscanner.com/
B. Leibe
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Poor Man’s Scanner

Desk N 2
Lamp Stickor
pengil

TRWTH/JCHEN
References and Further Reading

* Background information on camera models and calibration
algorithms can be found in Chapters 6 and 7 of

R. Hartley, A. Zisserman
Multiple View Geometry in Computer Vision
2nd Ed., Cambridge Univ. Press, 2004

* Also recommended: Chapter 9 of the same book on
Epipolar geometry and the Fundamental Matrix and
Chapter 11.1-11.6 on automatic computation of F.

95
B. Leibe
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