Computer Vision — Lecture 16

Camera Calibration & 3D Reconstruction

02.07.2019

Bastian Leibe

Visual Computing Institute
RWTH Aachen University
http://www.vision.rwth-aachen.de/
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Course Outline

* Image Processing Basics
* Segmentation & Grouping
* Object Recognition

* Local Features & Matching
* Deep Learning

* 3D Reconstruction
> Epipolar Geometry and Stereo Basics
> Camera calibration & Uncalibrated Reconstruction
> Structure-from-Motion

* Motion and Tracking
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Recap: What Is Stereo Vision?

* Generic problem formulation: given several images of the
same object or scene, compute a representation of its 3D
shape -
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B. Leibe

Slide credit: Svetlana Lazebnik, Steve Seitz
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* Basic Principle: Triangulation

> Glves reconstruction as intersection of two rays

> Requires
— Camera pose (calibration)
— Point correspondence

Slide credit: Steve Seitz B. Leibe
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AACHEN
_ UNIVERSITY
Recap: Epipolar Geometry

* Geometry of two views allows us to constrain where the
corresponding pixel for some image point in the first view
must occur in the second view.

epipolar line epipolar line

* Epipolar constraint:

.~ Correspondence for point p in I1 must lie on the epipolar line /" in IT’
(and vice versa).

> Reduces correspondence problem to 1D search along conjugate
epipolar lines.

Slide adapted from Steve Seitz B. Leibe



RWTH
Recap: Stereo Geometry With Calibrated Cameras

X world point

R
* Camera-centered coordinate systems are related by known

rotation R and translation T:

X' =RX+T

B. Leibe
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Slide credit: Kristen Grauman



RWNTH
Recap: Essential Matrix

/ X world point
X' (TxRX)=0
X'-(Tx RX)=0
P N
//Zc \\\\
0, — N
et E=T:R / P
XIT E)( . O " R

* This holds for the rays p and p’ that
are parallel to the camera-centered -
position vectors X and X', so we have: P Ep =0

* E is called the Essential matrix, which relates corresponding
Image points [Longuet-Higgins 1981]

B. Leibe
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Slide credit: Kristen Grauman



RWNTH
Recap: Essential Matrix and Epipolar Lines

T Epipolar constraint: if we observe point p
P Ep =0 in one image, then its position p’ in the
second image must satisfy this equation.

l = Ep is the coordinate vector representing
the eplpolar line for point p

(l.e., the line is given
by: ['"x =0)

[ = ET p' IS the coordinate vector representing the
epipolar line for point p’
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Slide credit: Kristen Grauman B. Leibe
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Recap: Stereo Image Rectification

* In practice, it is
convenient if image
scanlines are the
epipolar lines.

e Algorithm A’

> Reproject image planes onto a common
plane parallel to the line between optical
centers

> Pixel motion is horizontal after this transformation

> Two homographies (3x3 transforms), one for each
input image reprojection
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Slide adapted from Li Zhang C. Loop & Z. Zhang, Computing Rectifying Homographies for Stereo Vision. CVPR’99



http://research.microsoft.com/~zhang/Papers/TR99-21.pdf

RWTH
Recap: Dense Correspondence Search

T HON. ABRAIIAM LINCOLN] President of United States. =g
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* For each pixel in the first image
> Find corresponding epipolar line in the right image

> Examine all pixels on the epipolar line and pick the best match
(e.g. SSD, correlation)

> Triangulate the matches to get depth information

* This is easiest when epipolar lines are scanlines
= Rectify images first

adapted from Svetlana Lazebnik, Li Zhang
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RWTH
Alternative: Sparse Correspondence Search

T HON. ABRAIIAM LINCOLN] President of United States. =g

-~

. v VI
i, A,
V.o E e T £ s 3 VA

* |dea:
> Restrict search to sparse set of detected features

> Rather than pixel values (or lists of pixel values) use feature
descriptor and an associated feature distance

> Still narrow search further by epipolar geometry
What would make good features?

Slide credit: Kristen Grauman
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Dense vs. Sparse

* Sparse
> Efficiency

~ Can have more reliable feature matches, less sensitive to
Illumination than raw pixels

> But...
— Have to know enough to pick good features
— Sparse information

— Breaks down in textureless regions anyway
— Raw pixel distances can be brittle
— Not good with very different viewpoints 1

Slide credit: Kristen Grauman

28 ¢ Dense

“g . Simple process

= - More depth estimates, can be useful for surface
|5 reconstruction
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Untextured surfaces
Occlusions

FTTF T HON. ADRAIIAM LINCOLN, President of United States. =g
L i T - - T v —— = - |

Difficulties in Similarity Constraint

Slide credit: Kristen Grauman
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Summary: Stereo Reconstruction

* Main Steps
> Calibrate cameras
> Rectify images
> Compute disparity
> Estimate depth

* So far, we have only considered
calibrated cameras...

Left Right

* Today

> Uncalibrated cameras

> Camera parameters
Revisiting epipolar geometry
> Robust fitting

Y
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Slide credit: Kristen Grauman B. Leibe



Recap: A General Point
* Equations of the form

AX =0

* How do we solve them? (always!)
> Apply SVD

SVvD B I T
l d11 Vip o Vi

A=UDV' =U

dNN ] _VNl 0 M

Singular values Singular vectors

> Singular values of A = square roots of the eigenvalues of ATA.
> The solution of Ax=0 is the nullspace vector of A.
> This corresponds to the smallest singular vector of A.
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B. Leibe
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Topics of This Lecture

* Camera Calibration
» Camera parameters
> Calibration procedure

* Reuvisiting Epipolar Geometry
> Triangulation
> Calibrated case: Essential matrix
> Uncalibrated case: Fundamental matrix
> Weak calibration
> Epipolar Transfer

* Active Stereo
> Laser scanning
> Kinect sensor

B. Leibe

16



‘Y

image plane

i
- x
-7 C (o1 p -
principal axis f
1

(X.Y.Z) > (fX/Z, Y /Z)
YO
CEXY [ ol
| fY |= f 0
Lz 1 0

<<

X=PX
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Slide credit: Svetlana Lazebnik
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B. Leibe Images from Hartley & Zisserman



Pinhole Camera Model

A \
i . X
(fXY | f 1 O(Y\
fY |=|  f 1 0
Z
L Z 1 1 0

) o 1)
X = PX P =diag(f, f,1)[1|0]
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B. Leibe Images from Hartley & Zisserman

Slide credit: Svetlana Lazebnik



Camera Coordinate System
e

= 7
\ ’ AN
principal axis
camera ' '
centre Agc plane

* Principal axis:

> Line from the camera center perpendicular to the image plane
* Normalized (camera) coordinate system:

> Camera center is at the origin and the principal axis is the z-axis
* Principal point (p):

> Point where principal axis intersects the image plane (origin of
normalized coordinate system)
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Image from Hartley & Zisserman

Slide credit: Svetlana Lazebnik B. Leibe



Principal Point Offset

T Yeam

yo pe— Principal point: (px, py)

L cam

* Camera coordinate system: origin at the principal point
* Image coordinate system: origin is in the corner
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Image from Hartley & Zisserman

Slide credit: Svetlana Lazebnik B. Leibe



Principal Point Offset

T Yeam

v, - pe— Principal point: (px, py)

L cam

:

E (X - X
Z (fX+Zp,) |f p, O

S Y Y
Z , — fYJ;ZpX = f zy g ,
= \ ) L |

3 (1) (1)

21

B. Leibe Image from Hartley & Zisserman

Slide credit: Svetlana Lazebnik



Principal Point Offset

T Yeam

v, - pe — Principal point: (px, py)
Fi Xcam

|

x X, B - _/X\

(fX+2Zp,) |f p, |1 0 v

fY+2Zp, |= fp, 1 0 ,
A )| I 1 0] 1
_ _ \

K= f p, | Calibration matrix P = K[| | O]
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Slide credit: Svetlana Lazebnik B. Leibe Image from Hartley & Zisserman



Pixel size: X

m, m,

m, pixels per meter in horizontal direction,
m, pixels per meter in vertical direction
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Slide credit: Svetlana Lazebnik
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B. Leibe
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Camera Rotation and Translation

YC am

* |n general, the camera
z coordinate frame will be
related to the world
R.t coordinate frame by a
rotation and a translation

coords. of point
In camera frame

coords. of camera center

_ In world frame
coords. of a point

iIn world frame (nonhomogeneous)
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Image from Hartley & Zisserman

Slide credit: Svetlana Lazebnik B. Leibe



Camera Rotation and Translation

z In non-homogeneous
coordinates:

X =R(X-C)

% :R—RC X:R—RCX
0 1

x=K[1]0]X,, =K|R|-RC|X P=K[R[t], t=-RC
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Note: C is the null space of the camera projection matrix (P C=0)

25
Image from Hartley & Zisserman

Slide credit: Svetlana Lazebnik B. Leibe
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Summary:. Camera Parameters
* Intrinsic parameters
> Principal point coordinates m, f s pl [, S x
> Focal length K= m, fop,|= a, Y,
~» Pixel magnification factors 1 1 1
> Skew (non-rectangular pixels)
> Radial distortion
D
3
=
=
-}
)]
S
%’ radial distortion linear image
-:CT-‘} correction
2 -
£
S
| 26
B. Leibe

Slide credit: Svetlana Lazebnik



Summary: Camera Parameters

* Intrinsic parameters

- Principal point coordinates m, f s p] [e, S X
> Focal length K{ m, ﬂ f py}{ a, yo}
» Pixel magnification factors 1

> Skew (non-rectangular pixels)
> Radial distortion

* EXxtrinsic parameters
> Rotation R

> Translation t
both relative to world coordinate system B 7
( ystem) P, P, Py B,

 Camera projection matrix ~ P=K[RI[t]=| Py P, Py P,
_P31 P32 P33 P34_
How many degrees of freedom does P have? -

Slide adapted from Svetlana Lazebnik
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Camera Parameters: Degrees of Freedom

* Intrinsic parameters DoF
> Principal point coordinates 2 & s px
> Focal length 1 K= o, py
. Pixel magnification factors 1 13
> Skew (non-rectangular pixels) 1
> Radial distortion

* EXxtrinsic parameters
. Rotation R 3
> Translation t 3

(both relative to world coordinate system)

* Camera projection matrix P=K[R|t]

= General pinhole camera: 9 DoF

= CCD Camera with square pixels: 10 DoF
= General camera: 11 DoF

28



Calibrating a Camera

* Compute intrinsic and extrinsic
parameters using observed camera
data.

Main idea

* Place “calibration object” with known
geometry in the scene

* Get correspondences

* Solve for mapping from scene to
Image: estimate P=P, P
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Slide credit: Kristen Grauman B. Leibe
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Camera Calibration

* Given n points with known 3D coordinates X; and known
Image projections x;, estimate the camera parameters
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B. Leibe

Slide credit: Svetlana Lazebnik



RWTH
Camera Calibration: Obtaining the Points

* For best results, it is important that the calibration points
are measured with subpixel accuracy.

* How this can be done depends on the exact pattern.

HAas s L

* Algorithm for checkerboard pattern messannnnE|
: ‘R R E B
1. Perform Canny edge detection. : SILAERN
2. Fit straight lines to detected linked edges. gunt :: : "N
3. Intersect lines to obtain corners. ns :: pit :: -
[ | . -alp e b

> If sufficient care is taken, the points can
then be obtained with localization accuracy < 1/10 pixel.

* Rule of thumb

> Number of constraints should exceed number of unknowns by a
factor of five.

= For 11 parameters of P, at least 28 points should be used.
B. Leibe
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RWNTH
Camera Calibration: DLT Algorlthm

(DLT = “Direct Linear Transform”)

| |hw Ry Ry R,
AX; =PX, AYi|=|Px Py Ps Py = PzT X

| | ><i 3 T
| 1 a | P31 P32 P33 P34 ] 1 _P3 |
X: xPX. =0
N R

X! 0 -—-xX [P,|=0
__YixiT XixiT 0 \ Psy

Only two linearly independent equations
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Slide adapted from Svetlana Lazebnik B. Leibe



Camera Calibration: DLT Algorithm
i OT XI - Y1XI |
X7 0" —xX] [P

P |=0 Ap=0

T T T D
0 Xy =V X, \Fs) Solve using... SVD!

* Notes
> P has 11 degrees of freedom (12 parameters, but scale is arbitrary).

> One 2D/3D correspondence gives us two linearly independent
equations.

> Homogeneous least squares (similar to homography est.)
= 5 % correspondences needed for a minimal solution.
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Slide adapted from Svetlana Lazebnik B. Leibe



Camera Calibration: DLT Algorithm
— —_ V .
0" X -y ) =
X7 0" —xX] [P

OT XE _ynxl— KDBJ
X, 00 —=x.X;

* Notes

» For coplanar points that satisfy I17X=0,
we will get degenerate solutions (I1,0,0), (0,I1,0), or (0,0,IT).

= We need calibration points in more than one plane! EEEsEsEEEcN
gEEENEEEEN

guuifiEEnp

# 1)
LR
pt ! -ll«l:!_.‘
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Slide credit: Svetlana Lazebnik B. Leibe



Camera Calibration

* Once we've recovered the numerical form of the camera
matrix, we still have to figure out the intrinsic and extrinsic
parameters

* This is a matrix decomposition problem, not an estimation
problem (see F&P sec. 3.2, 3.3)
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Slide credit: Svetlana Lazebnik B. Leibe



RWTH
Camera Calibration: Some Practical Tips

* For numerical reasons, it is important to carry out some data
normalization.

> Translate the image points x; to the (image) origin and scale them
such that their RMS distance to the origin is /2.

> Translate the 3D points X; to the (world) origin and scale them such
that their RMS distance to the origin is /3.

> (This is valid for compact point distributions on calibration objects).

* The DLT algorithm presented here is easy to implement, but
there are some more accurate algorithms available (see
H&Z sec. 7.2).

* For practical applications, it is also often needed to correct
for radial distortion. Algorithms for this can be found in H&Z
sec. 7.4, or F&P sec. 3.3.
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Topics of This Lecture

* Reuvisiting Epipolar Geometry
> Triangulation
> Calibrated case: Essential matrix
> Uncalibrated case: Fundamental matrix
> Weak calibration
> Epipolar Transfer
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Two-View Geometry

* Scene geometry (structure):

> Given corresponding points in two or more images, where is the
pre-image of these points in 3D?

* Correspondence (stereo matching):

> Given a point in just one image, how does it constrain the position
of the corresponding point x’ in another image?

* Camera geometry (motion):

> Given a set of corresponding points in two images, what are the
cameras for the two views?

Slide credit: Svetlana Lazebnik B. Leibe
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Revisiting Triangulation

* Given projections of a 3D point in two or more images (with
known camera matrices), find the coordinates of the point

X2
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Slide credit: Svetlana Lazebnik B. Leibe



Revisiting Triangulation

* We want to intersect the two visual rays corresponding to x,
and X,, but because of noise and numerical errors, they will
never meet exactly. How can this be done?

/R
XX?

X2
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Slide credit: Svetlana Lazebnik B. Leibe
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Triangulation: 1) Geometric Approach

* Find shortest segment connecting the two viewing rays and
let X be the midpoint of that segment.

Slide credit: Svetlana Lazebnik

B. Leibe

—

Xy

41



RWNTH
Triangulation: 2) Linear Algebraic Approach

A X, =PX X, xP,X=0 [X, JP,X=0
LX,=P,X  x,xPX=0 [X,]P,X=0

Cross product as matrix multiplication:

0 -a, a, |[b
axb=| a, 0 -—a |b (=[a]b
—-a, @, 0 |b,_
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Slide credit: Svetlana Lazebnik B. Leibe
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RWNTH
Triangulation: 2) Linear Algebraic Approach

X, =PX X, xPX=0 [X,]JPX=0
LX,=P,X  x,xPX=0 [X,]P,X=0

L]

Two independent equations each in terms of
three unknown entries of X

— Stack them and solve using SVD!

* This approach is often preferable to the geometric

approach, since it nicely generalizes to multiple cameras.

Slide credit: Svetlana Lazebnik B. Leibe
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Triangulation: 3) Nonlinear Approach

* Find X that minimizes

d% (%, P.X)+d?(%,, P,X)

B. Leibe

Slide credit: Svetlana Lazebnik

44



(0))
3
£
£
=)
/)]
c
Q
D
>
8
=
Q
S
(@)
S

RWNTH
Triangulation: 3) Nonlinear Approach

* Find X that minimizes

d%(x,, P,X)+d% (%, P,X)

* This approach is the most accurate, but unlike the other two
methods, it doesn’t have a closed-form solution.

* [terative algorithm
> Initialize with linear estimate.

> Optimize with Gauss-Newton or Levenberg-Marquardt
(see F&P sec. 3.1.2 or H&Z Appendix 6).

45
B. Leibe
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Revisiting Epipolar Geometry

* Let's look again at the epipolar constraint
> For the calibrated case (but in homogenous coordinates)
> For the uncalibrated case
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Epipolar Geometry: Calibrated Case

X

In the first one.

D

3

=

=

% Camera matrix: [1]0] Camera matrix: [RT| —R't]
@) .

@ X=(u,v,w, 17 Vector X’ in second coord.
> _ - : :
= X=(u,v,w) system has coordinates Rx
3

£

(@)

O

The vectors x, 1, and Rx’ are coplanar

Slide credit;: Svetlana Lazebnik
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Epipolar Geometry: Calibrated Case

X

[

P N\

e ec

!J

O 0’

x-[tx(Rx)]=0 mE) x'Ex'=0 with E=[t]R

8

Essential Matrix
(Longuet-Higgins, 1981)
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Slide credit: Svetlana Lazebnik B. Leibe
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RWNTH
Epipolar Geometry: Calibrated Case

o \ 0’
x-[tx(Rx)]=0 ®mE) Xx'Ex'=0 with E=[t]R
* E X’ iIs the epipolar line associated with x’ (/ = E x))
* E'X is the epipolar line associated with x (I’ = ETX)
e Ee’=0 and E'e=0 Why?
* E is singular (rank two) Why?

E has five degrees of freedom (up to scale)

Slide credit: Svetlana Lazebnik B. Leibe
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RWNTH
Epipolar Geometry: Uncalibrated Case

X

[

o \E “
* The calibration matrices K and K’ of the two cameras
are unknown

* We can write the epipolar constraint in terms of unknown
normalized coordinates:

LER =0 X=KX, X =K%

OJ
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Slide credit: Svetlana Lazebnik B. Leibe
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Epipolar Geometry: Uncalibrated Case

X

!J

e ec .
OJ

(@)) O

% R'EX =0 mm) x'Fx'=0 with F=KTEK'"
: ' 1

4 X=KX

z , A Fundamental Matrix

= X = KX (Faugeras and Luong, 1992)

&

S

51

Slide credit: Svetlana Lazebnik B. Leibe
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RWNTH
Epipolar Geometry: Uncalibrated Case

o \E ¢
)’ZTE)’Z’:O - XTFX’:O with F:K—TEKr—l

* Fx’ is the epipolar line associated with x’ (/ = F x’)
* FTx is the epipolar line associated with x (I’= F'X)
* Fe'=0 and F'e=0

* Fis singular (rank two)

* F has seven degrees of freedom

B. Leibe

OJ

Slide credit: Svetlana Lazebnik
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RWNTH
Estimating the Fundamental Matrix

* The Fundamental matrix defines the epipolar geometry
between two uncalibrated cameras.

* How can we estimate F from an image pair?
> We need correspondences...

/. X;
X; /’\ be.
y = A“\"‘X*\\

P? P'?

B. Leibe
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The Eight-Point Algorithm

Slide adapted from Svetlana Lazebnik
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Fy Fy Fy )\ 1 Fas
F3
: _ Fo
i Taklng 8 CorreSpOndenceS. L Fas
m / / / / / = | F11 m A B -
wjup  uwijvy uwyp wpvyp wvivp vy uwp vy 1 o 0
wiuo wve ul wovi wovl v we wvo 1 12 0
o U2 UV Uy UVH; VaVy Uy U2 V9 P
% UsUz  URV3  Us  UIVs V3V Vs uz vz 1 F3 0
= |ujug ujvg wy ugvy vgvy vy ug vy 1 F21 10
= lulus  ulve  ul wsvl o vevh vl o wus owvs 1 21 = g
=N (UsUus  UsUs  Us  UsVs  UsUs U5 Us Vs Py
(2 UGl  UgVe Ug  UsVg  Vels Vg Ug Vg 1 I3 0
b |urur  wivr uh  wgv, wvrvn vl oup wr 1 31 0 . .. .
[e o ]
%’ _ugu8 UGUs UG  UKVg  UVgVs Vg U Vg 1] Fii 10 This minimizes:
o) - N
2 Af=0 (XT E XI)Z
S Solve using... SVD! 2 (5 Fx
olve using... ! _
O 1=1
_ 54
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Excursion: Properties of SVD

* Frobenius norm
> Generalization of the Euclidean norm to matrices

m min(m,n)

(22l = 3 e

* Partial reconstruction property of SVD

- Let g;i=1,...,N be the singular values of A.

Al =

> Let A = UprVpT be the reconstruction of A when we set

Op+1--+» Oy 1O Zero.

» Then Ap = UprVpT is the best rank-p approximation of A in the

sense of the Frobenius norm

(i.e. the best least-squares approximation).
B. Leibe
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The Eight-Point Algorithm

* Problem with noisy data

> The solution will usually not fulfill the constraint that F only has
rank 2.

= There will be no epipoles through which all epipolar lines pass!

* Enforce the rank-2 constraint using SVD

Setdj; to
- - ol
SVD d,, Vy; -0 Vi3 | 1 Zeroand

v . reconstruct F
FIubv'=u| d, /
@J 31 V33_

* As we have just seen, this provides the best least-squares
approximation to the rank-2 solution.
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* In practice, this often looks as follows:

UquUq
UsU2
Usus
Uy Uy
UsUs
UgUp
Urur
Ugusg

Slide adapted from Svetlana Lazebnik

Uy
UsV2
U3U3
Uy Vg
Ug Vs
Ug Ve
Uu-vr
UgUsg

u)  urvf
uh U
w5 uzvh
Uy Ugvy
U UsUL
ug UG
un,  uzvr
ug  UgUg
B. Leibe

V104
V2V,
V3Vqg
Vq4Uy
U5y
Vg Vg
(rdd
VgVg

Ui
U2
usz
Uy
Us
U6
ur
us

RWTH
Problem with the Eight-Point Algorithm

U1
V2
U3
Vg
Us
Ve
U7
U8

—t e e e e et

SO OO OO oo
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* In practice, this often looks as follows:

RWTH
Problem with the Eight-Point Algorithm

250906, 36| 153269.57 Bz21.8l1 200%31.10) 146766.13 138,21 272,18 195,481
2692, 258 131633.03 176,27 6196.73 302975, 58 405,71 15.27 746,78
416374, 23] 871684, 30 835.47 408110.589 5854354, 92 216,590 445,10 931.481

1 191133.600 171759.40 410,27 4led3h.62) 374125.90 893.65 465,98 415.65
45935, 686) 30401.76 57,89 296604, 57 185309, 58 352.87 od6, 22 525,15
led7aa. 04 546559.67 B813.17 1993, 37 boZd. 15 9.386 alzZ. a5 672,14
116407, 01 2TET.75 138.89 169941, 27 3982, 21 202,77 838,12 19.64
1535384, 58] 75411.13 193,72 411350.03) 229127.73 603,79 651,28 379,48

= Poor numerical conditioning
— Can be fixed by rescaling the data

Slide adapted from Svetlana Lazebnik

B. Leibe
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The Normalized Eight-Point Algorithm

1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data

points is 2 pixels.

2. Use the eight-point algorithm to compute F from the

normalized points.

3. Enforce the rank-2 c_onstraint usi_ng SVD. Set d,, to
SO d,, Vi, - V|~ zeroand
F=UDV'=U

) . reconstruct F
d,, : ' :
@‘ 31 0 Va3 ]

4. Transform fundamental matrix back to original units: if T
and T’ are the normalizing transformations in the two
Images, than the fundamental matrix in original coordinates

ISTTFT.

Slide credit: Svetlana Lazebnik

_ 59
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The Eight-Point Algorithm

* Meaning of error Z:(X,T Fx/)*:
i=1
Sum of Euclidean distances between points x; and epipolar
lines Fx’ (or points x’; and epipolar lines Fx;), multiplied by
a scale factor

* Nonlinear approach for refining the solution: minimize

i[dz(xi, Fx)+d2(x, F"x)]

> Similar to nonlinear minimization
approach for triangulation.

> Iterative approach (Gauss-Newton,
Levenberg-Marquardt,...)
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Slide credit: Svetlana Lazebnik B. Leibe
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Comparison of Estimation Algorithms

Normalized 8-point

Nonlinear least squares

Slide credit: Svetlana Lazebnik

Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel
B. Leibe
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RWNTH
3D Reconstruction with Weak Calibration

* \Want to estimate world geometry without requiring
calibrated cameras.

* Many applications:
> Archival videos

> Photos from multiple unrelated users
> Dynamic camera system

* Main idea:

> Estimate epipolar geometry from a (redundant) set of
point correspondences between two uncalibrated
cameras.

Slide credit: Kristen Grauman B. Leibe
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Stereo Pipeline with Weak Calibration

* S0, where to start with uncalibrated cameras?

> Need to find fundamental matrix F and the correspondences
(pairs of points (u’,v’) « (u,v)).

* Procedure
1. Find interest points in both images
2. Compute correspondences
3. Compute epipolar geometry
4. Refine

Slide credit: Kristen Grauman
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Stereo Pipeline with Weak Calibration

1. Find interest points (e.g. Harris corners)
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Stereo Pipeline with Weak Calibration

2. Match points using only proximity
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Putative Matches based on Correlation Search

* Many wrong matches (10-50%), but enough to compute F
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RWNTH
RANSAC for Robust Estimation of F

* Select random sample of correspondences

e Compute F using them

> This determines epipolar constraint

* Evaluate amount of support — number of inliers
within threshold distance of epipolar line

* [terate until a solution with sufficient support
has been found (or for max #iterations)

* Choose F with most support (#inliers)
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Slide credit: Kristen Grauman B. Leibe
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Putative Matches based on Correlation Search

* Many wrong matches (10-50%), but enough to compute F
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Pruned Matches

* Correspondences consistent with epipolar geometry
3 E——— i e 7 -
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Resulting Epipolar Geometry
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Epipolar Transfer

* Assume the epipolar geometry is known

* Given projections of the same point in two images, how can
we compute the projection of that point in a third image?

71

Slide credit: Svetlana Lazebnik B. Leibe
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Extension: Epipolar Transfer

* Assume the epipolar geometry is known

* Given projections of the same point in two images, how can
we compute the projection of that point in a third image?

: L >
X1 Xy X3
|3 |5,
— T
I3, = Flis X,
— T
I3, = F'ys X%,

When does epipolar transfer fail?

B. Leibe
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Topics of This Lecture

* Active Stereo
> Laser scanning
> Kinect sensor
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Microsoft Kinect — How Does It Work?

KINECT

for &R

o

* Built-in IR
projector

* IR camera for
depth

* Regular camera
for color
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Recall: Optical Triangulation

3D Scene point & X?

\

Image plane
X1

O

b, Camera center
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Recall: Optical Triangulation

3D Scene point 2 X

— —

Image plane
X1

O O

b, Camera center A

* Principle: 3D point given by intersection of two rays.
> Crucial information: point correspondence
> Most expensive and error-prone step in the pipeline...
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Active Stereo with Structured Light

3D Scene point

Image plane

Camera center

Projector

* |dea: Replace one camera by a projector.
> Project “structured” light patterns onto the object
> Simplifies the correspondence problem
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RWNTH
3D Reconstruction with the Kinect

SIGGRAPH Talks 2011
KinectFusion:

Real-Time Dynamic 3D Surface
Reconstruction and Interaction

Shahram lzadi 1, Richard Newcombe 2, David Kim 1,3, Otmar Hilliges 1,
David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1,
Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1

1 Microsoft Research Cambridge 2 Imperial College London
3 Newcastle University 4 Lancaster University
5 University of Toronto

_ 79
B. Leibe



Laser Scanning
Object

Direction of travel
——

%\ CCD image plane

& Y Cylindrical lens Q)
Laser CCD

Laser sheet

Digital Michelangelo Project
http://graphics.stanford.edu/projects/mich/

* Optical triangulation
> Project a single stripe of laser light
> Scan it across the surface of the object
> This is a very precise version of structured light scanning
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Slide credit: Steve Seitz B. Leibe


http://graphics.stanford.edu/projects/mich/
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Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.
B. Leibe

Slide credit: Steve Seitz
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Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seitz B. Leibe
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Laser Scanned Models

R\WNTH

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seitz B. Leibe
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Laser Scanned Models

The Digital Michelangelo Project, Levoy et al.

Slide credit: Steve Seitz B. Leibe
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Laser Scanned Models
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Poor Man’s Scanner

Desk
Lamp

Stick or
pencil [

Camera
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../../../Local Settings/ANGEL.WRL
../../../Local Settings/ANGEL.WRL

RWTHAACHEN
lgNIVERSITY

Slightly More Elaborate (But Still Cheap

-

Software freely available from Robotics Institute TU Braunschweig

http://www.david-laserscanner.com/
B. Leibe
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http://www.david-laserscanner.com/

References and Further Reading

* Background information on camera models and calibration
algorithms can be found in Chapters 6 and 7 of

R. Hartley, A. Zisserman
Multiple View Geometry in Computer Vision
2nd Ed., Cambridge Univ. Press, 2004

Richard Hactley and Andrew Zisserman

* Also recommended: Chapter 9 of the same book on
Epipolar geometry and the Fundamental Matrix and
Chapter 11.1-11.6 on automatic computation of F.
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