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Computer Vision — Lecture 17

Uncalibrated Reconstruction & SfM

08.07.2019

Bastian Leibe

Visual Computing Institute
RWTH Aachen University
http://www.vision.rwth-aachen.de/

leibe@vision.rwth-aachen.de

Recap: A General Point

* Equations of the form
Ax=0

* How do we solve them? (always!)
» Apply SVD

SVD

dll Vll

A=UDV' =U ’ :

dNN Vni

Singular values Singular vectors
» Singular values of A = square roots of the eigenvalues of ATA.
» The solution of Ax=0 is the nullspace vector of A.
» This corresponds to the smallest singular vector of A.

B. Leibe

Recap: Calibrating a Camera

* Goal

» Compute intrinsic and extrinsic parameters
using observed camera data.

* Main idea

Place “calibration object” with known
geometry in the scene

» Get correspondences

» Solve for mapping from scene to image:

estimate P=P; P

v

ide credit: Kriten Grauman B. Leibe
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Course Outline

* Image Processing Basics

* Segmentation & Grouping

* Object Recognition

* Local Features & Matching

* Deep Learning

* 3D Reconstruction
» Epipolar Geometry and Stereo Basics
» Camera calibration & Triangulation

» Uncalibrated Reconstruction & Active Stereo
» Structure-from-Motion

Recap: Camera Parameters

m, s p|fa S %
K= m, fop|= a, Yo
1 1 1

* Intrinsic parameters
» Principal point coordinates
» Focal length
» Pixel magnification factors
» Skew (non-rectangular pixels)
» Radial distortion

* Extrinsic parameters
» Rotation R

» Translation t
(both relative to world coordinate system)

* Camera projection matrix P=K[R|t]
= General pinhole camera: 9 DoF
= CCD Camera with square pixels: 10 DoF
= General camera: o e 11 DoF
RWTH CHET

Recap: Camera Calibration (DLT Algorithm) /%
X -y 4
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0 Xn - yan
T T T
X, 0 =xX,
* P has 11 degrees of freedom.
* Two linearly independent equations per independent 2D/3D
correspondence.
. ‘similar to homography estimation)
» Solution corresponds to smallest singular vector.
* 5% correspondences needed for a minimal solution.

e

ide adapted from Svetlana | azebnik 5. Leibe
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Recap: Triangulation — Linear Algebraic Approach Topics of This Lecture
* Revisiting Epipolar Geometry
» Calibrated case: Essential matrix
» Uncalibrated case: Fundamental matrix
» Weak calibration
» Epipolar Transfer
[ .
* Active Stereo
A%, =PX X, xPX=0 [x, JPX=0 . Kinect sensor
© o » Structured Light sensing
g A X, =P, X X, X PZX =0 [x,.JP,X=0 g . Laser scanning
= =
3 =3 ° :
/4 + Two independent equations each in terms of 2 Structure from Motion (SfM)
< three unknown entries of X. 2 - Motivation
T i i T > Ambiguity
£| © Stack equations and solve with SVD. g . Projective factorization
§ * This approach nicely generalizes to multiple cameras. § » Bundle adjustment
Slide credit: Svetlana | azebnik B. Leibe 7 B. Leibe ¢
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Recap: Epipolar Geometry — Calibrated Case Epipolar Geometry: Calibrated Case

o ~2 | | b= e

x-[tx(Rx)]=0 ﬁ X'ExX'=0 with E=[t]R

o ] \' ' o

x-[tx(Rx)]=0 ﬁ x"Ex'=0 with E=[t]R

@ =
s s
£ £
@ I 7| + Ex isthe epipolar line associated with x’ (I = E x)
2 E tial Matri 5| * E™x is the epipolar line associated with x (I’= ETx)
= ssential Matrix S IR . _
3 L +-Higains. 1981 % E_e —_O and ETe=0 Why?
2 (Longuet-Higgins, ) - * Eissingular (rank two) Why?
g % * E has five degrees of freedom (up to scale)
ide credit Svetlana | azebnik B. Leibe ° de credit Svetlana | azebnik B. Lelte o

TRWTH/ACHEN
Epipolar Geometry: Uncalibrated Case

TOWTHACHET]
Epipolar Geometry: Uncalibrated Case

o

] -

o

- > X ”
i « The calibration matrices K and K’ of the two cameras 2 R"EX' =0 - X'FxX'=0 with F=KTEK"™
5 are unknown § l
'Jl| * We can write the epipolar constraint in terms of unknown 5 X =KX
8 H H . 2
; normalized coordinates: ; K Fundamental Matrix
£ AT o o ’ ! = X =KX
E R EX' =0 X = K R, X'= K R é (Faugeras and Luong, 1992)
8 8
14 15
ide credit Svetlana | azebnik B. Leibe de credit: Svetlana | azehnik B. Leibe
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RWTH/THE
Epipolar Geometry: Uncalibrated Case

X

o

all |,""'

R'EX'=0 mm) X Fx'=0 with F=KTEK'™
* Fx’ is the epipolar line associated with x’ (I = F X))
* FTx is the epipolar line associated with x ("= FTx)
* Fe’=0 and Fe=0
* Fis singular (rank two)
* F has seven degrees of freedom 16
ide credit- Svetlana | azebnik B. Leibe
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The Eight-Point Algorithm
x=(u,v,1)7T, x’=(@’ v, 17 ;i;
I3

Fy Fa Fy)fd Fo
(u,0,1) | Foy Foa Fy || |=0 ‘ [u'u, w' v, u! v’ 00’ v w0, 1) | Fao | =0
Fa By Fm)\1 Fay

F3

. Fy

* Taking 8 correspondences: Fis
. 3

Wy vl w wgel e W

whuy  uhvy uh ugvh vavh uy 2
uhus  whus  uh wavh vl uy vy
g :

T

uy Uy By
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i
Uglg
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whur uly T - P ;
g ol s v This minimizes:
N
T "2
. X, FX
Solve using... SVD! IZl:( ! ')
ide adapted from Svetlana | azebnik B. Leibe =
RWTH//CHE
The Eight-Point Algorithm
* Problem with noisy data
» The solution will usually not fulfill the constraint that F only has
rank 2.
= There will be no epipoles through which all epipolar lines pass!
* Enforce the rank-2 constraint using SVD
Setdg to
zero and
reconstruct F
* As we have just seen, this provides the best least-squares
approximation to the rank-2 solution.
20
B. Leibe

TOWTHACHET]
Estimating the Fundamental Matrix

* The Fundamental matrix defines the epipolar geometry
between two uncalibrated cameras.

* How can we estimate F from an image pair?
» We need correspondences...

Computer Vision Summer19
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B. Leibe

Excursion: Properties of SVD

* Frobenius norm
» Generalization of the Euclidean norm to matrices

min(m,n)

1Al =[S faf =2 o

i=1 j=1 i1

* Partial reconstruction property of SVD
» Let g;i=1,...,N be the singular values of A.
- LetAy = UprVpT be the reconstruction of A when we set
Op+1, -+ Oy t0 Zero.
- Then A, = UprVpT is the best rank-p approximation of A in the
sense of the Frobenius norm

(i.e. the best least-squares approximation).
B. Leibe
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TOWTHACHET]
Problem with the Eight-Point Algorithm

* In practice, this often looks as follows:
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RWTH//CHEN
Problem with the Eight-Point Algorithm

* In practice, this often looks as follows:

Fuy

250906. 36 183269.57 921.81) 200931.10 146766.13 738.21 272.19| 198.81 1 F12 0
2692.28 1316833.03 176.27) 65196, 73 302975.59 405,71 15,27 745.79) 1 F13 0
41637423 &71684.30) 935,47 408110.89 854384.92 216.90) 445,10 931.81) 1 Fz[ 0
191183.60 171759.40 410.27 416435.62 374125.90 B93.65 465. 99| 418.65, 1 1‘—‘22 — 0
45986, 86)  30401.76) 57.89) 299604,57 185303.58 352.87) 846,22 525,15 1 F23 0
164786.04 546553.67 813,17 1998, 37| 6628.15 3. 86| 202,65 £72.14 1 Fq‘1 0
116407. 01 2727.75) 138.89) 169941.27 3982.21 202.77 838. 12| 19.64 1 Fgg 0
13538458 75411.13 198,72 411350.03] 228127.78 603.79) 681,28 379.48) 1 F:i;l 0
= Poor numerical conditioning
= Can be fixed by rescaling the data
22
ide adapted from Svetlana | azebnik B. Leibe
N
. T n2 .
* Meaning of error E (X Fx)":
i=1

Sum of Euclidean distances between points x;and epipolar
lines Fxj (or points x’ and epipolar lines F'x;), multiplied by
a scale factor

* Nonlinear approach for refining the solution: minimize
N
3 [d2 0%, Fx) + 0% (X, FTx)]
i=l
» Similar to nonlinear minimization

approach for triangulation.

» Iterative approach (Gauss-Newton,
Levenberg-Marquardt,...)

ide credit- Svetlana | azebnik B. Leibe

RWTH LGN
3D Reconstruction with Weak Calibration

* Want to estimate world geometry without requiring
calibrated cameras.
* Many applications:
» Archival videos
» Photos from multiple unrelated users
» Dynamic camera system

* Main idea:

» Estimate epipolar geometry from a (redundant) set of
point correspondences between two uncalibrated
cameras.

26
ide credit- Kristen Grauman B. Leibe
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TWTH/ /T
The Normalized Eight-Point Algorithm

1. Center the image data at the origin, and scale it so the
mean squared distance between the origin and the data
points is 2 pixels.

2. Use the eight-point algorithm to compute F from the
normalized points.

3. Enforce the rank-2 constraint using SVD. Set dgy to
SvD d, i zero and
ELubvT=U d reconstruct F
- - 22

4. Transform fundamental matrix back to original units: if T
and T’ are the normalizing transformations in the two
images, then the fundamental matrix in original coordinates
isTTFT.

de credit- Svetlana | azebnik B Leibe
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[Hartley, 19051

TRWTH/JCHEN
Comparison of Estimation Algorithms

8-point Normalized 8-point Nonlinear least squares
Av. Dist. 1 2.33 pixels 0.92 pixel 0.86 pixel
Av. Dist. 2 2.18 pixels 0.85 pixel 0.80 pixel
5
de credit Svetlana | azebnik B Leibe

Stereo Pipeline with Weak Calibration

* So, where to start with uncalibrated cameras?

» Need to find fundamental matrix F and the correspondences
(pairs of points (U',v') & (u,v)).

* Procedure
1. Find interest points in both images
2. Compute correspondences
3. Compute epipolar geometry
4. Refine

27
de credit Kristen Grauman B. Leibe

Example from Andrew Zisserman)
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UNIVERSITY]
Stereo Pipeline with Weak Calibration

Stereo Pipeline with Weak Calibration
1. Find interest points (e.g. Harris corners)

2. Match points using only proximity
e T - -
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ide credit- Kristen Grauman B. Leibe Example from Andrew Zisserma ide credit: Kristen Grauman B. Leibe Example from Andrew
RWTH/CHET RWTH CHET
UNIVERSITY UNIVERSITY}

Putative Matches based on Correlation Search RANSAC for Robust Estimation of F

.

Select random sample of correspondences
¢ Compute F using them
» This determines epipolar constraint

¢ Evaluate amount of support — number of inliers
within threshold distance of epipolar line

* lterate until a solution with sufficient support
has been found (or for max #iterations)

¢ Choose F with most support (#inliers)
* Many wrong matches (10-50%), but enough to compute F

Computer Vision Summer‘19
Computer Vision Summer‘19

30

31
Example from Andrew Zissermay

B. Leibe

de credit Kristen Grauman B Leibe

RWTH/ACHEN
UNIVERSITY UNIVERSITY}

Putative Matches based on Correlation Search Pruned Matches

* Correspondences consistent with epipolar geometry

* Many wrong matches (10-50%), but enough to compute F

@ o
= 2
£ £
£ £
5 5
2] 2]
c c
= S
£ k2]
= >
& 8
= =
2 3
£ £
o o
o o

32

33
Example from Andrew Zissermar

Example from Andrew Zisserman

B. Leibe B. Leibe
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Resulting Epipolar Geometry Epipolar Transfer

¢ Assume the epipolar geometry is known

* Given projections of the same point in two images, how can
we compute the projection of that point in a third image?

Computer Vision Summer19

B. Leibe
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Example from Andrew Zissermay
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Microsoft Kinect — How Does It Work?

e Built-in IR
projector

* IR camera for
depth

* Regular camera .

for color

B. Leibe

KINECT

for @

T

Computer Vision Summer19

X1

X2

3

ide credit.

etlana | azebnik.
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Recall: Optical Triangulation

3D Scene point

Image plane

b Camera center

X?

B. Leibe

RWTH/CHET RWTH CHET
. . UNIVERSITY| . . UNIVERSITY]
Extension: Epipolar Transfer Topics of This Lecture
* Assume the epipolar geometry is known
* Given projections of the same point in two images, how can
we compute the projection of that point in a third image?
* Active Stereo
» Kinect sensor
g PY ° >< % » Structured Light sensing
£ Xy Xy X3 2 » Laser scanning
E I3y s, E
z 2
S —ET S
% lsy = FTygX; %
% ls2 = FTasX, %
§ When does epipolar transfer fail? §
ide credit: Svetlana | azebnik B. Leibe % B. Leibe “
RWTH/CHET RWTH CHET
UNIVERSITY| UNIVERSITY]
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Recall: Optical Triangulation

3D Scene point X

Image plane

What the Kinect Sees...

Computer Vision Summer‘19

B. Leibe

)
® o
E b, Camera center
@
< . . . . . .
=1 * Principle: 3D point given by intersection of two rays.
E » Crucial information: point correspondence
é » Most expensive and error-prone step in the pipeline...
o
(&} 40
B. Leibe
RWTH//CHE
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Laser Scanning

Object

Direction of travel

Laser sheet

CCD image plane

& ¥ Cylindrical lens 4

Laser D LA
Digital Michelangelo Project
http: tanford.edt ‘

¢ Optical triangulation
» Project a single stripe of laser light
» Scan it across the surface of the object
» This is a very precise version of structured light scanning
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ide credit- Steve Seit B. Leibe

45

TRWTH/JCHEN
Active Stereo with Structured Light

3D Scene point B X
Image plane

O O,

b, Camera center Projector @

* |dea: Replace one camera by a projector.
» Project “structured” light patterns onto the object
» Simplifies the correspondence problem

Computer Vision Summer19
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B. Leibe

TWTH G
3D Reconstruction with the Kinect

SIGGRAPH Talks 2011
KinectFusion:

Real-Time Dynamic 3D Surface
Reconstruction and Interaction

Shahram lzadi 1, Richard Newcombe 2, David Kim 1,3, Otmar Hilliges 1,
David Molyneaux 1,4, Pushmeet Kohli 1, Jamie Shotton 1,
Steve Hodges 1, Dustin Freeman 5, Andrew Davison 2, Andrew Fitzgibbon 1

ambridge 2 Imperial College London
it 4la ter Uni

Computer Vision Summer‘19
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Laser Scanned Models
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The Digital Michelangelo Project, Levoy et al.

46
de credit: Steve Seit; B. Leibe



http://graphics.stanford.edu/projects/mich/

Laser Scanned Models

Computer Vision Summer19

The Digital Michelangelo Project, Levoy et al.

47
ide credit- Steve Seif B. Leibe

Laser Scanned Models

Computer Vision Summer‘19

The Digital Michelangelo Project, Levoy et al.

49
de credit: Steve Seit B Leibe

Poor Man’s Scanner

Desk 9
Lamp Stick or

pencil

Computer Vision Summer‘19

Laser Scanned Models
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3 The Digital Michelangelo Project, Levoy et al.
de credit: Steve Sei; B. Leibe 48
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Laser Scanned Models
)
B
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3 The Digital Michelangelo Project, Levoy et al. 0
de _credit-_Steve Seit; B. Leibe
RWTH CHET
Slightly More Elaborate (But Still Cheap)
>
e -
o e
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é Software freely available from Robotics Institute TU Braunschweig
8 http://www.david-laserscanner.com/ o
B. Leibe



../../../Local Settings/ANGEL.WRL
../../../Local Settings/ANGEL.WRL
http://www.david-laserscanner.com/

Topics of This Lecture

» Projective factorization
» Bundle adjustment

2

®

£

%l * Structure from Motion (SfM)
c

z » Motivation
E » Ambiguity
2

£

Q

(&}

B. Leibe

Applications

* E.g., movie special effects

Video

Computer Vision Summer19

55
B. Leibe Video Credit: Stefan Hafeneger]

TRWTH/ACHEN
Structure from Motion Ambiguity

* |If we scale the entire scene by some factor k and, at the
same time, scale the camera matrices by the factor of 1/k,
the projections of the scene points in the image remain
exactly the same.

* More generally: if we transform the scene using a
transformation Q and apply the inverse transformation to the
camera matrices, then the images do not change

x=PX = (PQ1)QX
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ide credit: Svetlana | azebnik. B. Leibe
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RWTH CHET
Structure from Motion
X
X1j
X3
P, %2 /
PS
P2
* Given: m images of n fixed 3D points
X =PiX;, i=1..,m j=1 . ,n

* Problem: estimate m projection matrices P; and
n 3D points X; from the mn correspondences x;;

ide credit: Svetlana | azebnik B. Leibe

RWTHACHE

Structure from Motion Ambiguity
* |If we scale the entire scene by some factor k and, at the
same time, scale the camera matrices by the factor of 1/k,

the projections of the scene points in the image remain
exactly the same:

x=PX = (%P) (kX)

= Itis impossible to recover the absolute scale of the scene!

ide credit: Svetlana L azebnik. B. Leibe
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Reconstruction Ambiguity: Similarity

x =PX = (PQ;")QsX

58

ide credit: Svetlana | azehnik. 5. Leihe Jmages from Hartley & Zisserman



../cv-ws08/videos/MotivationFilm.mov

Reconstruction Ambiguity: Affine

x=PX = (PQ,")QaX

Computer Vision Summer19

Slide credit: Svetlana | azebnik B. Leibe

Images from Hartlev & Zisserman|

Computer Vision Summer‘19

ide credit: Svetlana | azebnik. B. Leibe
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lmages from Hartley & Zisserman)

From Affine to Similarity
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ide credit: Svetlana | azebnik B. Leibe
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lmages from Hartley & Zisserman)
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x=PX = (PQ;")QrX

ide credit: Svetlana lazebnik B. Leibe

Images from Hartley & Zisserman|

60

ide credit: Svetlana | azebnik B Lefbe

Images from Hartley & Zisserman)

62

Hierarchy of 3D Transformations

Projective At Preserves intersection
15dof Vv and tangency

Affine At Preserves parallellism,
12dof 0" 1 volume ratios
Similarity SRt Preserves angles, ratios
7dof o 1 of length

Euclidean Rt Preserves angles,

6dof 0" 1 lengths

* With no constraints on the camera calibration matrix or on the scene,
we get a projective reconstruction.

* Need additional information to upgrade the reconstruction to affine,
similarity, or Euclidean.

ide credit: Svetlana | azehnik. 5. Leibe
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Structure from Motion
X:

* Given: m images of n fixed 3D points
X = Py X, i=1..,m j=1..,n

* Problem: estimate m projection matrices P; and
n 3D points X; from the mn correspondences x;;

Slide credit: Svetlana | azebnik B. Leibe

Computer Vision Summer19

Projective SfM: Two-Camera Case

* Assume fundamental matrix F between the two views
» First camera matrix: [1j0]Q*
» Second camera matrix: [Ab]Q*

« Let X=QX, then zx=[110]1X, z'x'=[Ab]X

* And 7’x' = A[1|0]X +b=zAx+b
2 'x'xb=zAxxb
E ('X'xb)- x'=(zAxxb)- x’
s 0=(zAxxb)-X
% * So we have x[b,]JAx =0
5 F=[b,JA b: epipole (Fb=0), A=—[b,JF

ide adapted from Svetlana | azebnik B. Leibe

RWTHAACHE

67
F&Psec 13.3.1)

D = MS has rank 4
* If we knew the depths z, we could factorize D to estimate
Mand S.
* If we knew M and S, we could solve for z.

* Solution: iterative approach
(alternate between above two steps).

ide credit: Svetlana | azebnik B. Leibe
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RWTH//CHE
Projective Factorization
29Xy 23X DXy P1
Z,.X Z,,X Z,, X P.
D=| 2 22722 2n”2n :2 [Xl Xz Xn]
Points (4 x n)
Zmlxml Zmzxmz Zmnan Pm
Cameras
(3m x 4)

Computer Vision Summer19
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Projective Structure from Motion

* Given: m images of n fixed 3D points
* i X = PiXj, i=1,..,m j=1 ..,n

* Problem: estimate m projection matrices P; and n 3D points
X; from the mn correspondences x;

With no calibration info, cameras and points can only be
recovered up to a 4x4 projective transformation Q:

X - QX,P - PQ!
* We can solve for structure and motion when
2mn >=11m +3n — 15
* For two cameras, at least 7 points are needed.

66

ide credit: Svetlana | azebnik 8. Leibe

TRWTH/JCHEN
Projective SfM: Two-Camera Case

* Decomposing the Fundamental Matrix

» This means that if we can compute the fundamental matrix between
two cameras, we can directly estimate the two projection matrices
from F.

» Once we have the projection matrices, we can compute the 3D
position of any point X by triangulation.

* How can we obtain both kinds of information at the same
time?

68

B. Leibe

Sequential Structure from Motion

* Initialize motion from two images
using fundamental matrix Points
* Initialize structure
* For each additional view:
» Determine projection matrix
of new camera using all the
known 3D points that are
visible in its image —
calibration

Cameras
® e 000 000

eeessosce
s e e e
s s eessee
sses s
ssss s
se e e s s e

KRR RN

70

ide credit: Svetlana L azebnik B. Leibe
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Sequential Structure from Motion

* Initialize motion from two images
using fundamental matrix Points

¢ Initialize structure

* For each additional view:

» Determine projection matrix
of new camera using all the
known 3D points that are
visible in its image —
calibration
Refine and extend structure:
compute new 3D points,
re-optimize existing points
that are also seen by this camera —
triangulation

Cameras

* e 000 000

sesessse
sesesssse
sesssssss
sessssses
LI )
sjeeeecscsss

R R ERE RN

v
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Slide credit: Svetlana | azebnik B. Leibe

TRWTH/ACHEN
Bundle Adjustment

* Non-linear method for refining structure and motion
* Minimizing mean-square reprojection error
m n
E(P,X)=Y > D(x,,PX,)
i1 j-1

Xi

PZXH *

| Ps
PZ

ide credit: Svetlana | azebnik B. Leibe

Computer Vision Summer‘19

TRWTH/ACHEN
References and Further Reading

¢ Background information on camera models and calibration
algorithms can be found in Chapters 6 and 7 of

R. Hartley, A. Zisserman
Multiple View Geometry in Computer Vision
2nd Ed., Cambridge Univ. Press, 2004

* Also recommended: Chapter 9 of the same book on
Epipolar geometry and the Fundamental Matrix and
Chapter 11.1-11.6 on automatic computation of F.
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Sequential Structure from Motion

* Initialize motion from two images
using fundamental matrix Points

* |Initialize structure

* For each additional view:

» Determine projection matrix
of new camera using all the
known 3D points that are
visible in its image —
calibration
Refine and extend structure:
compute new 3D points,
re-optimize existing points
that are also seen by this camera —
triangulation

* Refine structure and motion: bundle adjustment
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Bundle Adjustment

* |dea

» Seek the Maximum Likelihood (ML) solution assuming the
measurement noise is Gaussian.

» It involves adjusting the bundle of rays between each camera center
and the set of 3D points.

» Bundle adjustment should generally be used as the final step
of any multi-view reconstruction algorithm.
— Considerably improves the results.
— Allows assignment of individual covariances to each measurement.

* However...

» It needs a good initialization.

» It can become an extremely large minimization problem.
* Very efficient algorithms available.
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