Advanced Machine Learning
Lecture 1

Introduction

15.10.2012

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de/
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Organization

e Lecturer
> Prof. Bastian Leibe (leibe®@vision.rwth-aachen.de)

e Teaching Assistant
> Patrick Sudowe (sudowe@vision.rwth-aachen.de)

e Course webpage
> http://www.vision.rwth-aachen.de/teaching/
~ Slides will be made available on the webpage
~ There is also an L2P electronic repository

e Please subscribe to the lecture on the Campus system!
~ Important to get email announcements and L2P access!
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Language

e Official course language will be English
~ If at least one English-speaking student is present.
~ If not... you can choose.

e However...

~ Please tell me when I’m talking too fast or when | should repeat
something in German for better understanding!

> You may at any time ask questions in German!
> You may turn in your exercises in German.
> You may take the oral exam in German.
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RWTH
Relationship to Previous Courses

e Lecture Machine Learning (past summer semester)
> Introduction to ML
> Classification
» Graphical models

e This course: Advanced Machine Learning
> Natural continuation of ML course
- Deeper look at the underlying concepts

~ But: will try to make it accessible also to newcomers
» Quick poll: Who hasn’t heard the ML lecture?

e One-time only course
> Lecture will be held in this format only once
~ After this semester, will reorganize material into ML1 & ML2
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Organization

o Structure: 3V (lecture) + 1U (exercises)
» 6 EECS credits
- Part of the area “Applied Computer Science”

e Place & Time

> Lecture: Mon 17:30-19:00 room UMIC 025
> Lecture/Exercises: Wed 10:00 - 11:30 room UMIC 025
e Exam

~ Oral or written exam, depending on number of participants
~ Towards the end of the semester, there will be a proposed date
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Tentative Schedule

Course Webpage

Date Topic
03.04.11 ro elass

05.04.12 Introduction

Content Slides

Introduction, Probability Theory, Baves df
pdr,

Decizion Theary, Minimizing Expected
fullpaze

Laoss

Related Material

Bishop Ch. 1.1, 1.2.1-1.2.3,
1.5.1-1.5.4

10.04,12 Exercise 0

Intro Matlab

12.04.12 Pl‘l].h. Df:nnt}.r
Estimation |

17.04.12 Prn.h. Dfmnt'_-.r
Estimation Il

Linear
12,04, 12 Discriminant
Functions

Monparametrc Mhethods, Histograms,
Kernel Denzity Eztimation, Parametdc
Methodz, Gaussian DistHbution,
Maximum Likelihood, Bavesian
Learning, Biaz-YWarance Problem

Mixture of Gauzsians, k-Means
Clustering, EM-Clustering, EAb Alzorithm

Linear Dizscriminant Functions, Least-
zquares Clazsification, Generalized
Linear Models

Bizhop Ch, 2.5, 1.2.4,
2.3.1-2.3.4

Bizhop chapter 9, orginal
Dempster&Llaird EAN paper,
Bilmes' EM tutorial

Bizhop chapter 4.1

http://www.vision.rwth-aachen.de/teaching/
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RWTH
Exercises and Supplementary Material

e Exercises
> Typically 1 exercise sheet every 2 weeks.
- Pen & paper and Matlab based exercises
> Hands-on experience with the algorithms from the lecture.
> Send your solutions the night before the exercise class.

e Supplementary material
- Research papers and book chapters
> Will be provided on the webpage.
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Textbooks

e Most lecture topics will be covered in Bishop’s book.

e Some additional topics can be found in Rasmussen &
Williams.

B PATTERN RECOGNITION : Christopher M. Bishop

Pattern Recognition and Machine Learning
Springer, 2006

(available in the library’s “Handapparat”)

Carl E. Rasmussen, Christopher K.I. Williams
Gaussian Processes for Machine Learning
MIT Press, 2006

(also available online: http://www.gaussianprocess.org/gpml/)

e Research papers will be given out for some topics.
» Tutorials and deeper introductions.
~ Application papers
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http://www.gaussianprocess.org/gpml/

How to Find Us

o Office:
> UMIC Research Centre
> Mies-van-der-Rohe-Strasse 15, room 124

e Office hours
> If you have questions to the lecture, come to Patrick or me.

> My regular office hours are Tue 15:30-16:30
(additional slots are available upon request)

> Send us an email before to confirm a time slot.

Questions are welcome!
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Machine Learning

e Statistical Machine Learning

> Principles, methods, and algorithms for learning and prediction
on the basis of past evidence

e Already everywhere
> Speech recognition (e.g. speed-dialing)
> Computer vision (e.g. face detection)
» Hand-written character recognition (e.g. letter delivery)
> Information retrieval (e.g. image & video indexing)
> Operation systems (e.g. caching)
» Fraud detection (e.g. credit cards)
> Text filtering (e.g. email spam filters)
> Game playing (e.g. strategy prediction)
> Robotics (e.g. prediction of battery lifetime)
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What Is Machine Learning Useful For?

NPIA

3
f(?; |
3k

Siri. =2
Your wish is
its command.

Automatic Speech Recognition
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Slide adapted from Zoubin Gharamani B. Leibe



RWNTH
What Is Machine Learning Useful For?

Computer Vision

(Object Recognition, Segmentation, Scene Understanding)
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What Is Machine Learning Use

Goagle Search: Unsupervised Learning bt foruw google. comfszarchig=1

Web |mages Grouns Mows Froogh more »

GOngle [Usupeniwed Learming _Search | ARSIl

Web Results 1 - 10 of about 150,000 for Unsugervised Leamning, i0.27 seconds)

Mixture modelling, Clustering, Intrinsic classification ...

T T e T e T e e g pe Welcams £ Devis Dowe < custerng, Fitxture modefing
&nd unsupervised leaming page. Mixture madeling for ..

weoew_Csse monash.edu, audid mixkure modeling, p

S il
orksnop Unsuperv ming in Natur:

Umvelsw of Maryland June EF. 1299. Endorsed by S\GgILL._

w2 5r.comy~kehlarunsup-ad-29.himil - 5k - CEched - Similar papes

cgm.cs.mogl cal-sossicsd Aprogectswinel - 1k - Cached - papes

nizg

EE) e
4, IQQB -lLE-EgCI Tmcﬂprsgﬂf lJ umnnned L!Uﬂll
wwai-2.55 omu e ~mocallmisupunsup - 7k - Gached -

NIPS Tutorial 1999 Lo Tutaral et e
Probabiistic Models for Unsupervised Leamning Tutor esem att
1239 NIPS Conference by Zoubin Ghahraman.lgd Sam

wrw gatsby.ucd ac.ukf - zoubin™MIPStutorial. html - 4k Cgchec S miler pages

Mlssmg sjugs,'

Unsgpervised ¥
Introduction 1o IIslw\!

weorel galsoy. ucl.ac L qL;nc:ursa ’{55; C:;:hec
‘hore resuls from were, alsiy polacak

I'|II'| Df the MO pholog

atP EZPs Page 7. Page 8. Page 8. Page 10.
P%an %ge\z EagemEPaQElFPSQEPE Pagelﬁ Paage 7. D?aapela_ Bge 19 .
C.upenn.adw W01/ Jo f - Similar pages

- pervlse n\] Foundations of Neural Computation Edited
by Geotirey ‘arrence J. Sepnowsk Sinca its jounding in 1989 by ..
Mitpress. m edl..b:ck home. ol fisbne 026256 168X - 13k - - Cached - M

1 Unsuy mmd Learning of Disambiguation Rulas for Part of
IIE porda cfE‘ les for Part of. Speach T Exsi
Learnin \ssmE snma os for Part o i i
B e oee inaupareread hmngmuam?ﬁh [eaing-
swwrar = juadul-brillech-wkshp ps - Similar o

arming G naupervlsed Leamning Graup

[ULGJ'E?germpcf gradu udenls from the: CDInpube(
weerer_lans ece wlexas edu 4k - Caghed -
hnmmmummqIg >
ResultPage: 1234 Next

DI04 15:42

ful For?

Information Retrieval

(Retrieval, Categorization, Clustering, ...

Slide adapted from Zoubin Gharamani

B. Leibe




10-Year US Treasury Note Price (EOD) ($UST) <1tk S
$UST Daily SOcl20040'11215“'11230L11205C1122’3(:hg 006

MA(50) 112,29 4
MA(150) m_sA vIEs

#h 180
rat o

RSI(14) 450

e oy R = VW i Ve

Financial Prediction
(Time series analysis, ...)
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What Is Machine Learning Useful For? '

600

b
J

Diseases

Symptoms

b
¥

4000

Medical Diagnosis
(Inference from partial observations)

(9|
-
.
Q
i
=
(@))
IE
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
(1
3
<

. 15
B. Leibe Image from Kevin Murphy

Slide adapted from Zoubin Gharamani
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RWTH
What Is Machine Learning Useful For?
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5 6 7
Tiszues / Drug Treatment

Bioinformatics
(Modelling gene microarray data,...)

Slide adapted from Zoubin Gharamani B. Leibe
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RWNTH
What Is Machine Learning Useful For?

Robotics
(DARPA Grand Challenge,...)

Slide adapted from Zoubin Gharamani B. Leibe Image from Kevin Murphy
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RWTH
Machine Learning: Core Questions

e Learning to perform a task from experience

e Task

~ Can often be expressed through a mathematical function

y = f(x; w)

> x: Input
> y: Output
> w.: Parameters (this is what is “learned”)

e (Classification vs. Regression
> Regression: continuous y
~ Classification: discrete y
- E.g. class membership, sometimes also posterior probability

Slide credit: Bernt Schiele B. Leibe
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Machine Learning: Core Questions

= f(z; w)

> w: characterizes the family of functions
> w: indexes the space of hypotheses
» w: vector, connection matrix, graph, ...

* Look inside box: w

.//\\.

X>§

%@ /\
/\/\
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RWTH
A Look Back: Lecture Machine Learning

e Fundamentals
- Bayes Decision Theory
~ Probability Density Estimation

e (Classification Approaches
> Linear Discriminant Functions
~ Support Vector Machines
- Ensemble Methods & Boosting
> Randomized Trees, Forests & Ferns

e Generative Models
> Bayesian Networks
> Markov Random Fields
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RWTH
This Lecture: Advanced Machine Learning

Extending lecture Machine Learning from last semester...

e Regression Approaches f X = R

> Linear Regression
» Regularization (Ridge, Lasso) 1 \
> Support Vector Regression ) \\

> @Gaussian Processes

=]
™

e Learning with Latent Variables __ [~ 2
- EM and Generalizations OO0 \. i
. Dirichlet Processes z 1= |
e Structured Output Learning f N y
> Large-margin Learning )
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Let’s Get Started...

e Some of you already have basic ML background
> Who hasn’t?

e We'll start with a gentle introduction

> I’ll try to make the lecture also accessible to newcomers
> We’ll review the main concepts before applying them
> I’ll point out chapters to review from ML lecture whenever

knowledge from there is nheeded/helpful
> But please tell me when I’m moving too fast (or too slow)

B. Leibe
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Topics of This Lecture

e Regression: Motivation
> Polynomial fitting
~ General Least-Squares Regression
» Overfitting problem
» Regularization
> Ridge Regression

e Recap: Important Concepts from ML Lecture
~ Probability Theory
~ Bayes Decision Theory
> Maximum Likelihood Estimation
> Bayesian Estimation

* A Probabilistic View on Regression
» Least-Squares Estimation as Maximum Likelihood

B. Leibe

23
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Regression

e Learning to predict a continuous function value
- Given: trainingset X ={z , ..., z,}
with target values T ={t , ..., t,}.

= Learn a continuous function y(x) to predict the function value
for a new input .

e Steps towards a solution
» Choose a form of the function y(z,w) with parameters w.
- Define an error function E(w) to optimize.

» Optimize E(w) for w to find a good solution.
(This may involve math).

» Derive the properties of this solution and think about its
limitations.

B. Leibe

24



RWTH
Example: Polynomial Curve Fitting

e Toy dataset
» Generated by function 1}

f(z) =sin(2mx)+e !

> Small level of random
noise with Gaussian
distribution added
(blue dots) LT

0 I
e Goal: fit a polynomial function to this data

y(z, W) = wo + w1 + war® + ... +wyxM = ija:j
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> Note: Nonlinear function of x, but linear function of the W

25

B. Leibe Image source: C.M. Bishop, 2006



Error Function

e How to determine the values of the coefficients w?

> We need to define an error function to be minimized.

> This function specifies how a deviation from the target value
should be weighted.

e Popular choice: sum-of-squares error
> Definition t

N t
Z (T, W) =t}

> We'll discuss the motivation
for this particular function later...

L\:)Ir—l

v
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Image source: C.M. Bishop, 2006
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Minimizing the Error

e How do we minimize the error?
1 N
2
— 5 Z {y(iUn,W) T tn}
n=1

e Solution (Always!)
> Compute the derivative and set it to zero.

Z{y L, W) — t }ay(x”’ M) L

8w3 W,

> Since the error is a quadratic function of w, its derivative will
be linear in w.

= Minimization has a unique solution.

B. Leibe

27



Least-Squares Regression

e We have given
~ Training data points: X = {X1 S Rd, - ,Xn}
- Associated function values: T=A{t1 eR,... t,}

e Start with linear regressor:

- Try to enforce x?w +wyg=t;, Vi=1,...,n

> One linear equation for each training data point / label pair.

> This is the same basic setup used for least-squares classification!
- Only the values are now continuous.
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Least-Squares Regression

T

(

e Setup .
- Step 1: Define fci:( 7“>, {fv:(

- Step 2: Rewrite ifﬁ =t;, Vi=1,...

X

» Step 3: Matrix-vector notation

XT'w=t with X

> Step 4: Find least-squares solution
1XTW — t||* = min
- Solution: w = (XXXt

Slide credit: Bernt Schiele B. Leibe

w+wy=t;, Vi=1,...,n

29
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Regression with Polynomials

e How can we fit arbitrary polynomials using least-squares
regression?
> We introduce a feature transformation (as before in ML).

assume

y(x) = V]‘\;Tqb(x) /%(x):

basis functions

. B o(x)=(1,z, 2%, 2%
» Fitting a cubic polynomial.

. 30
Slide credit: Bernt Schiele B. Leibe



Varying the Order of the Polynomial.

1-

t

0-
N
i Tt
()
£ .
; 0 . 1 0 . 1
g’ .
=
© 1 M=3 i M =9
3 : . l
e Q
'.g 0 N ] 0f ]
8 o /
= Massive
S . 'l overfitting!
S . . .
% 0 z 1 0 T 1
< . .

Which one should we pick? 31

Image source: C.M. Bishop, 2006
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Analysis of the Results

e Results for different values of M

~ Best representation of the original “1d
function sin(27x) with M = 3. or

t

~ Perfect fit to the training data with
M =9, but poor representation of the ¢
original function.

—1F

e Why is that???
» After all, M =9 contains M = 3 as a special case!

B. Leibe
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Overfitting

e Problem
> Training data contains some noise

f(x) = sin(2rx) + €

~ Higher-order polynomial fitted perfectly to the noise.
~ We say it was overfitting to the training data.

e Goal is a good prediction of future data

> Our target function should fit well to the training data, but
also generalize.

~ Measure generalization performance on independent test set.

B. Leibe
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Measuring Generalization

—©— Training

—0— Test '\

> Overfitting!

e E.g., Root Mean Square Error (RMS): Erms = +/2E(w*)/N

e Motivation
~ Division by N lets us compare different data set sizes.

~ Square root ensures L, . is measured on the same scale (and in

the same units) as the target variable .
B. Leibe
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Analyzing Overfitting

e Example: Polynomial of degree 9

Relatively little data Enough data
Overfitting typical Good estimate

= Overfitting becomes less of a problem with more data.
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Image source: C.M. Bishop, 2006

Slide adapted from Bernt Schiele B. Leibe



What Is Happening Here?

e The coefficients get very large:
~ Fitting the data from before with various polynomials.

> Coefficients:

~ M=0 M=1 M=3 M=09
. wy | 019 082 0.3l 0.35
E w* -1.27 7.99 232.37
= wy 2543 -5321.83
1= w? 17.37  48568.31
s w} -231639.30
- wt 640042.26
£ N w -1061800.52
S w 1042400.18
= B wh -557682.99
§ w 125201.43
E

<

. 36
Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006
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Regularization

e What can we do then?

>

>

How can we apply the approach to data sets of limited size?
We still want to use relatively complex and flexible models.

e Workaround: Regularization

>

Y

Y

Penalize large coefficient values
1 & A
~, 2
E(W) — 52{?/(93717“7) _tn} +§HWH2
n=1

Here we’ve simply added a quadratic regularizer, which is
simple to optimize

[w||? :WTw:}/Oiqu%—k...qu?\/[
The resulting form of the problem is called Ridge Regression.

(Note: w, is often omitted from the regularizer.)
B. Leibe
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xz

1

InA\=—-00 InA=-18 InA=0
wg 0.35 0.35 0.13
wy 232.37 4.74 -0.05
w3 -5321.83 -0.77 -0.06
w3 48568.31 -31.97 -0.05
wy -231639.30 -3.89 -0.03
Wi 640042.26 55.28 -0.02
wg | -1061800.52 41.32 -0.01
wyr | 1042400.18 -45.95 -0.00
wg -557682.99 -91.53 0.00
wy 125201.43 72.68 0.01

B. Leibe
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RMS Error for Regularized Case

Training
Test
w2
2 0.5 :
& /
—-35 B0 gy g 2 -20

e Effect of regularization

» The trade-off parameter \ now controls the effective model
complexity and thus the degree of overfitting.
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Summary

e We’ve seen several important concepts
> Linear regression
> Overfitting
> Role of the amount of data
> Role of model complexity
» Regularization

e How can we approach this more systematically?
> Would like to work with complex models.
- How can we prevent overfitting systematically?
- How can we avoid the need for validation on separate test data?
> What does it mean to do linear regression?
> What does it mean to do regularization?
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Topics of This Lecture

e Recap: Important Concepts from ML Lecture
~ Probability Theory
~ Bayes Decision Theory
> Maximum Likelihood Estimation
> Bayesian Estimation
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Recap: The Rules of Probability

e Basic rules

Sum Rule p(X) =) p(X,Y)

Product Rule p(X,Y) =p(Y|X)p(X)

e From those, we can derive
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Bayes’ Theorem p(Y|X) = p(Xp‘z;)(I)?(Y)
where  p(X) = 3 p(XV)p(Y)

B. Leibe
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Recap: Bayes Decision Theory

tp(x]a) (le) Likelihood

p( p(a

X | b p(b) Likelihood x Prior

Dec1510n boundary

p(alx) , Likelihood x Prior
Posterzor = -
NormalizationFactor

43
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RWNTH
Recap: Gaussian (or Normal) Distribution

e One-dimensional case '
> Mean p
> Variance o2

N(z|p,0®) = \/Ql—m exp {— (xz_af)Q }

N(z|p,a?)

v

e Multi-dimensional case
> Mean p
> Covariance X
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Side Note

e Notation

> In many situations, it will be necessary to work with the inverse
of the covariance matrix X:

A=X"1

> We call A the precision matrix.

> We can therefore also write the Gaussian as

N(z|p, A7) = \/ﬁi\—l/Q exp {—%(a: — M)2}
N (x|, A7) = (zw)Dﬂl\A\—l/Q exp {—%(X — ) Ax - u)}

45
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Recap: Parametric Methods

e Given
. Data X ={x1,2o,...,2zN}

> Parametric form of the distribution
with parameters 6

. E.g. for Gaussian distrib.: 0 = (i, 0)

e Learning
~ Estimation of the parameters ¢

e Likelihood of ¢

> Probability that the data X have indeed been generated from a
probability density with parameters 6

L(6) = p(X16)

Slide adapted from Bernt Schiele B. Leibe
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RWTH
Recap: Maximum Likelihood Approach

e Computation of the likelihood
» Single data point: p(xnw)

~ Assumption: all data points X = {:cl, ..,xn} are independent
L(0) = p(X|0) = H p(x,|0)

» Log-likelihood
E@)=—InL(0) = — Zlnp(mn|9)

e Estimation of the parameters 6 (Learning)

> Maximize the likelihood (=minimize the negative log-likelihood)
— Take the derivative and set it to Zero.

-y B
p(x,|0)

Slide credit: Bernt Schiele B. Leibe
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RWTH
Recap: Maximum Likelihood - Limitations

e Maximum Likelihood has several significant limitations
» It systematically underestimates the variance of the distribution!
~ E.g. consider the case

NZl,X:{CIl‘l} I >

= Maximum-likelihood estimate:

- We say ML overfits to the observed data.

> We will still often use ML, but it is important to know about this
effect.

48
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Recap: Deeper Reason

e Maximum Likelihood is a Frequentist concept

> In the Frequentist view, probabilities are the frequencies of
random, repeatable events.

» These frequencies are fixed, but can be estimated more
precisely when more data is available.

e This is in contrast to the Bayesian interpretation

> In the Bayesian view, probabilities quantify the uncertainty
about certain states or events.

> This uncertainty can be revised in the light of new evidence.

e Bayesians and Frequentists do not like /7
each other too well... =

s
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RWNTH
Recap: Bayesian Learning Approach

e Bayesian view:

» Consider the parameter vector 6 as a random variable.
> When estimating the parameters, what we compute is

p(x|X) = /p(aj, 0| X)do Assumption: given 0, this

doesn’t depend on X anymore

p(x,6|X) = p(x6, X)p(6]X)

p(2]X) = / p(]0)p(6]X)do
——

This is entirely determined by the parameter 6
(i.e. by the parametric form of the pdf).
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RWTH
Recap: Bayesian Learning Approach

* Discussion Likelihood of the parametric

form 0 given the data set X.

Estimate for x based on Prior for the
parametric form 0 parameters 0

\ | /

_ [h(alf)LO)p(d
o) = | TLOPO)d

~

I

Normalization: integrate
over all possible values of ¢

S

» The more uncertain we are about 6, the more we average over
all possible parameter values.
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Topics of This Lecture

e A Probabilistic View on Regression
» Least-Squares Estimation as Maximum Likelihood
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CHEN
UNIVERSITY

Next lecture...
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References and Further Reading '

 More information, including a short review of Probability
theory and a good introduction in Bayes Decision Theory
can be found in Chapters 1.1, 1.2 and 1.5 of

g AN

Christopher M. Bishop
Pattern Recognition and Machine Learning
Springer, 2006
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