

Announcements(2) • Lecture evaluation • Please fill out the forms...

RANSAC RANSAC loop: 1. Randomly select a seed group of points on which to base transformation estimate (e.g., a group of matches) 2. Compute transformation from seed group 3. Find inliers to this transformation 4. If the number of inliers is sufficiently large, recompute least-squares estimate of transformation on all of the inliers • Keep the transformation with the largest number of inliers slide credit: Kristen Grauman 69

	RANSAC: How many samples?
	 How many samples are needed? Suppose w is fraction of inliers (points from line). n points needed to define hypothesis (2 for lines) k samples chosen.
	• Prob. that a single sample of n points is correct: w^n
4/15	• Prob. that all k samples fail is: $(1-w^n)^k$
Computer Vision WS 14/15	⇒ Choose k high enough to keep this below desired failure rate.
	Clida anadita David Laura B. Leibe

Sample size	Proportion of outliers						
n	5%	10%	20%	25%	30%	40%	50%
2	2	3	5	6	7	11	17
3	3	4	7	9	11	19	35
4	3	5	9	13	17	34	72
5	4	6	12	17	26	57	146
6	4	7	16	24	37	97	293
7	4	8	20	33	54	163	588
8	5	9	26	44	78	272	1177

