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Recap: Local Feature Matching Outline
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4. Compute a local
descriptor from the
normalized region
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5. Match local
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Announcements(2)
¢ Lecture evaluation
» Please fill out the forms...
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A Script...

¢ We’ve created a script... for the part of the lecture on
object recognition & categorization "
> K. Grauman, B. Leibe \sulehj
Visual Object Recognition Recoguition
Morgan & Claypool publishers, 2011

¢ Chapter 3: Local Feature Extraction (Last 2 lectures)
¢ Chapter 4: Matching (Tuesday’s topic)
¢ Chapter 5: Geometric Verification (Today’s topic)

Computer Vision WS 14/15

- Available on the L2P -

Course Outline

Image Processing Basics

Segmentation & Grouping

Object Recognition
Object Categorization |

» Sliding Window based Object Detection
Local Features & Matching

» Local Features - Detection and Description
» Recognition with Local Features

» Indexing & Visual Vocabularies
¢ Object Categorization I

* 3D Reconstruction

Computer Vision WS 14/15

¢ Motion and Tracking

RWTH/ACHE
Recap: Automatic Scale Selection

¢ Function responses for increasing scale (scale signature)
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ide credit: Krystian Mikolaiczyk B. Leibe
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Recap: Laplacian-of-Gaussian (LoG) Recap: LoG Detector Responses

Gaussian

* Interest points: (& v
s o Lo
» Local maxima in scale ’., ,
space of Laplacian-of- -
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Y.
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= List of (x, y, o)
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ide adapted from Krystian Mikolajczyk B. Leibe ide credit: Svetlana | azebnik B. Leibe
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Recap: Key point localization with Do

Recap: Harris-Laplace pikolajczyk ‘01]

1. Initialization: Multiscale Harris corner detection

2. Scale selection based on Laplacian
(same procedure with Hessian = Hessian-Laplace)

¢ Efficient implementation

» Approximate LoG with a
difference of Gaussians (DoG)

Harris points

¢ Approach: DoG Detector

3 » Detect maxima of difference- B
5 of-Gaussian in scale space i
E » Reject points with low E
:% contrast (threshold) :%
S . S
5 » Eliminate edge responses 5
g 5 y-. 3 3
2 . 2 2 K
E Candidate keypoints: E Harris-Laplace points

list of (x,y,0) . 10

Image source; David Lowel ide adapted from Krystian Mikolai B. Leibe
RWTH/ACHET
UNIVERSITY] UNIVERSITY]

Topics of This Lecture Local Descriptors

e Local Descriptors
» SIFT
» Applications

¢ We know how to detect points
¢ Next question:

How to describe them for matching?

¢ Recognition with Local Features
» Matching local features
» Finding consistent configurations
» Alignment: linear transformations
» Affine estimation

Homography estimation

v

Dealing with Outliers
» RANSAC
» Generalized Hough Transform

Point descriptor should be:
1. Invariant
2. Distinctive

ide credit: Kristen Grauman LA
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Local Descriptors

« Simplest descriptor: list of intensities within a patch.
¢ What is this going to be invariant to?

Write regions as vectors region A region B
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ide credit: Kristen Grauman B. Leibe

Feature Descriptors: SIFT

¢ Scale Invariant Feature Transform
¢ Descriptor computation:
» Divide patch into 4x4 sub-patches: 16 cells

» Compute histogram of gradient orientations (8 reference angles)
for all pixels inside each sub-patch

> Resulting descriptor: 4x4x8 = 128 dimensions

David G. Lowe. "Distinctive image features from scale-invariant keypoints.”
1JCV 60 (2), pp. 91-110, 2004.
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ide credit: Svetlana Lazebnik B. Leibe

Working with SIFT Descriptors

¢ One image yields:
> N 2D points giving positions of the
patches
- [n x 2 matrix]
» N scale parameters specifying the
size of each patch
- [nx 1 vector]
> N orientation parameters specifying
the angle of the patch
- [nx 1 vector]

» N 128-dimensional descriptors: each
one is a histogram of the gradient
orientations within a patch

- [n x 128 matrix]
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ide credit- Steve Seit: B. Leibe

Feature Descriptors

« Disadvantage of patches as descriptors:
» Small shifts can affect matching score a lot

Computer Vision WS 14/15

ide credit: Svetlana Lazebnik B. Leibe

Overview: SIFT

* Extraordinarily robust matching technique
» Can handle changes in viewpoint up to ~60 deg. out-of-plane rotation
» Can handle significant changes in illumination
- Sometimes even day vs. night (below)
» Fast and efficient—can run in real time
~ Lots of code available

- - . tons_of SIFT

Computer Vision WS 14/15

el
Slide creditt Steve Seitz

RWTHPACTEN
Local Descriptors: SURF

l] ¢ Fast approximation of SIFT idea

~ Efficient computation by 2D box
filters & integral images
= 6 times faster than SIFT

~ Equivalent quality for object
identification

» http://www.vision.ee.ethz.ch/~surf

¢ GPU implementation available

» Feature extraction @ 100Hz
(detector + descriptor, 640x480 img|

- http://h esat be/-ncorneli/ o
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B. Leibe Bay, ECCV’06], [Cornelis, CVGPU’08]



http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://www.cs.ubc.ca/~lowe/papers/ijcv04.pdf
http://people.csail.mit.edu/albert/ladypack/wiki/index.php/Known_implementations_of_SIFT
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You Can Try It At Home...

¢ For most local feature detectors, executables are
available online:

¢ http://robots.ox.ac.uk/~vgg/research/affine

e http://www.cs.ubc.ca/~lowe/keypoints/

¢ http://www.vision.ee.ethz.ch/~surf

¢ http://homes.esat.kuleuven.be/~ncorneli/gpusurf/

20
B. Leibe
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RWTH/CHET
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Topics of This Lecture
¢ Local Descriptors
- SIFT
» Applications
B. Leibe “
RWTH/ACHET
UNIVERSITY]

Wide-Baseline Stereo

B. Leibe Image from T Tuvtelaars ECCV 2006
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UNIVERSITY]
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Q@ teoven Woe i

://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries

RWTH/CHET]
N . UNIVERSITY
Applications of Local Invariant Features

¢ Wide baseline stereo
¢ Motion tracking
¢ Panoramas
¢ Mobile robot navigation
¢ 3D reconstruction
¢ Recognition
» Specific objects
» Textures
» Categories

ide credit: Kristen Grauman B. Leibe
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Automatic Mosaicing

B. Leibe

25
[Brown & Lowe, 1CCY'03]



http://www.vision.ee.ethz.ch/~surf
http://www.robots.ox.ac.uk/~vgg/research/affine/detectors.html#binaries
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Panorama Stitching

R

(a) Matier data set (7 images)

(b) Matier final stitch
N

iPhone version|
available

http://www.cs.ubc.ca/~mbrown/autostitch/autostitch. html

26
B. Leibe [Brown, Szeliski, and Winder, 2005]

Recognition of Categories '

Constellation model Bags of words
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Csurka et al. (2004)

Dorko & Schmid (2005)

Sivic et al. (2005)
Lazebnik et al. (2006), ...

Weber et al. (2000)
Fergus et al. (2003)

ide credit: Svetlana Lazebnik B. Leibe
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Topics of This Lecture

¢ Recognition with Local Features
» Matching local features
» Finding consistent configurations
» Alignment: linear transformations
» Affine estimation
» Homography estimation

B. Leibe

Recognition of Specific Objects, Scenes

Computer Vision WS 14/15

Rothganger et al. 2003

Lowe 2002

ide credit: Kristen Grauman B. Leibe

Value of Local Features

¢ Advantages

Critical to find distinctive and repeatable local regions for multi-
view matching.

Complexity reduction via selection of distinctive points.
Describe images, objects, parts without requiring segmentation;
robustness to clutter & occlusion.

Robustness: similar descriptors in spite of moderate view
changes, noise, blur, etc.

v

v

v

v

¢ How can we use local features for such applications?
» Next: matching and recognition

Computer Vision WS 14/15

ide adapted from Kristen Grauman B. Leibe

Recognition with Local Features

¢ Image content is transformed into local features that
are invariant to translation, rotation, and scale

* Goal: Verify if they belong to a consistent configuration

Local Features,
e.g. SIFT
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http://www.cs.ubc.ca/~mbrown/autostitch/autostitch.html

What Can be Represented by a 2x2 Matrix?

¢ 2D Scaling?
X'=5,*X

y'=s,*y

¢ 2D Rotation around (0,0)?

B. Leibe

2D Linear Transforms

What Can be Represented by a 2x2 Matrix?

e 2D Mirror about y axis?
X'=—X

y'=y

e 2D Mirror over (0,0)?

B. Leibe
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RWTH/ACHEN RWTH/ACHEN
Concepts: Warping vs. Alignment Parametric (Global) Warping
° & { & 7
Warping: Given a source
o T ° image and a transformation,
° > O s what does the transformed , o
o o output look like? p=(xy) P=Ky)
s v « Transformation T'is a coordinate-changing machine:
P =T(p)
§ § * What does it mean that T'is global?
° . .
g Ahgnment:hleen two g é » It’s the same for any point p
o T ° images with corresponding . :
§ o o . features, what is the § » It can be described by just a few numbers (parameters)
S o o transformation between — o Let’s represent T"as a matrix: . X
& them? 8
2 . . 2 p = Mp, =M
= E| ]
8 8 y y
33 34
Slide credit: Kristen Grauman B. Leibe Slide credit: Alexej Ffro: B. Leibe
RWTH CHE RWTH CHE

N

X'=cos@*x—sino*y [x7] [cos® -sind]x X'=—X x| [-1 0][x
e y'=sin@*Xx+cos@*y Ly'] |sing coso ||y g y'=-y y'| o -1y
g 2
5 * 2D Shearing? 5 * 2D Translation?
S X'=x+sh *y _x} 1 sh, {x} S X'=X+t,
- - - !
3 y'=sh *x+y Ly sh, 1|y s y =yt No!
E 15
o o
o O

Homogeneous Coordinates

RWTHACHEN

X a bl x ¢ Q: How can we represent translation as a 3x3 matrix
= i i 7
y' c dfly using homogeneous coordinates?
X'= X+t
¢ Only linear 2D transformations can be represented with y'= y+ty

a 2x2 matrix.

¢ Linear transformations are combinations of ...

B. Leibe

¢ A: Using the rightmost column:

B. Leibe

o) > Scale, 0
& - Rotation, N 1 0t
E - Shear, and 2 . X
g . Mirror 5 Translation=|0 1 t,
5 - 00 1
2 H
5 £
S S
o o




X7 [1 0 t]x
y'[=|0 1 t |y
1] o0 1)1

Basic 2D Transformations

« Basic 2D transformations as 3x3 matrices

Computer Vision WS 14/15

Translation Scaling
S x'| [cos@ —sin@ O x X 1 sh 0] x
2 y'|=|sin@ cos® O]y y'|=|sh, 1 Ofy
s i1 0 0 1|1 1 0 0 11
: L]
> Rotation Shearing
E
=8
£
3
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ide credit: Alexej Efro: B Leibe
RWTH/ACHEN

Projective Transformations

el

¢ Projective transformations:
> Affine transformations, and
» Projective warps

e Parallel lines do not necessarily remain parallel

translation|

_r
S
Fuclidean ~ it
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RWTHAACHER
Let’s Start with Affine Transformations

¢ Simple fitting procedure (linear least squares)

¢ Approximates viewpoint changes for roughly planar
objects and roughly orthographic cameras

¢ Can be used to initialize fitting for more complex models

43
ide credit: Svetlana | azehnik. LA

2D Affine Transformations

i

« Affine transformations are combinations of ...
> Linear transformations, and
» Translations

o Parallel lines remain parallel

Computer Vision WS 14/15

40

ide credit: Alexej Ffro: B. Leibe

RWTH CHE
Alignment Problem

¢ We have previously considered how to fit a model to
image evidence
» E.g., a line to edge points

¢ In alignment, we will fit the parameters of some
transformation according to a set of matching feature
pairs (“correspondences”).
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ide credit: Kristen Grauman B. Leibe

RWTH//CHET]
Fitting an Affine Transformation

¢ Affine model approximates perspective projection of
planar objects
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ide credit: Kristen Grauman LA Jmage source: David Lowel
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Fitting an Affine Transformation Recall: Least Squares Estimation

¢ Assuming we know the correspondences, how do we get

« Set of data points: (X, X;),(X,, X;), (X5, X3)
the transformation?

e Goal: a linear function to predict X’s from Xs:
Xa+b=X'

* We want to find a and b.

e How many (X, X') pairs do we need?

o o X1a+b:X1: X, 1ja _ Xll' Ax—B
3 3 Xa+b=X, X, 1]b X,
g =« What if the data is noisy?
.§ .§ X, 1 Xl‘ Overconstrained Solution:
s s . problem o+
g ot N I
g g 3 X = Least-squares Matlab:
S - 38 minimization z=A\B “
B. Leibe Slide credit: Alexej Ffro: B. Leibe
RWTH CHE RWTH CHE
Fitting an Affine Transformation Fitting an Affine Transformation
¢ Assuming we know the correspondences, how do we get m
the transformation? m,

X ¥y 0 0 1 0fm, X
0 0 x vy 0 1|m, yi

tl
tZ
] 2
A % ) (X, y!) m 3 .
@ i i | ¢ How many matches (correspondence pairs) do we need
E m, 2 : R
5 ) 5 to solve for the transformation parameters?
< Xil_ m. My X% + 4 My |_ 4| « Once we have solved for the parameters, how do we
g yi m, m,|Yy t, m, g compute the coordinates of the corresponding point for
g tl ‘gl (Xnew' ynew) ?
o o
B. Leibe t, N ide credit: Kristen Grauman B. Leibe 48
RWTH ACHET RWTH ACHET
Homography Homography

¢ A projective transform is a mapping between any two
perspective projections with the same center of
projection.
» l.e. two planes in 3D along the same sight ray

¢ Properties
> Rectangle should map to arbitrary quadrilateral

¢ A projective transform is a mapping between any two
perspective projections with the same center of
projection.
» l.e. two planes in 3D along the same sight ray

¢ Properties
» Rectangle should map to arbitrary quadrilateral

~ Parallel lines aren’t PP2 ~ Parallel lines aren’t
§ » but must preserve straight lines § » but must preserve straight lines
P — P

g ¢ This is called a homography ol . This is called a homography
s WX ™ 5 wx' h, h, hsl[x
g N R P, PP1 2 | = |h h h Set scale factor to 1
& wy | = . x y & wy | = 21 22 23 = 8 parameters left.
E w 1 E" W hy, s, 1
5} P ’ p S s
[$) ” S )4 H P

Slide adapted from Alexei Ffro: LA d from Alexei Efro: LA
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Fitting a Homography

« Estimating the transformation

Homogenous coordinates

Fitting a Homography

* Estimating the transformation

Xp € Xg, N h, h, h][x N . X' M;(t:lx nﬁ;on
Xy X ' ' =
h = Y |=|ha by hylly y'|= 7 y'
Xp, € Xg, 2| |hy hy, 101 1 7 X":%X'
51
Slide credit: Krystian Mikolajczyk B. Leibe

Matrix notation
X'=Hx
n_ 1y
2 X' = T X
Dt oy,
hyy X, +r132yBl +1 ’ 53
Slide credit: Krystian Mikolaiczvk B. Leibe
RWTH/ACHEN
Fitting a Homography
o Estimating the transformation
Homogenous coordinates Image coordinates
Xn OXg _haxXg +hoye +hy _ e xg 1Y
Xp, € X, Ny, Xg, + sy +1 AT hy X +hgyy +1
Xn, € Xg, XAh31 XB)+XA,hSZyBJ+XA=hll XBJ+hlZyBJ+hlS
55
Slide credit: Krystian Mikolaiczyk B. Leibe

Computer Vision WS 14/15
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Fitting a Homography

¢ Estimating the transformation

Homogenous coordinates Image coordinates
X, X Tyl RIE Matrix notation
A C | X h, h, hg|ffx X" 1 X ' = Hx
Xy X v ' =
BT7TR Y=y Ry hyg iy Y|=5Y
XAJ<—)XBJ 72-7 7h31 h32 17 71 1 7' X":%XI
52
ide credit: Krystian Mikolajczyk B. Leibe

Fitting a Homography

¢ Estimating the transformation
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Homogenous coordinates
Xp € Xg, Mx] ’hl h, b 17X Matrix notation
1 T 3 '
Xa, € Xe, | V' [=[hs hy by i y X'=Hx
X € X, 7] M e L[ X"Z%X'
Dt oy, +hy by X +higYy +hy
hyy Xg, + hazys. +1 hy, Xg, + hazyBl +1 54
ide credit: Krystian Mikolaiczvk B. Leibe
RWTHACHEN
Fitting a Homography
¢ Estimating the transformation
Homogenous coordinates Image coordinates
Xy OXg Py thayy +hy Xy Y, +hy,
Ko, X, Bk +haye +1 0T hyx, thyy, 4L
Xp, > Xg, XA‘h31 XB‘+XAhSZyBl+XA‘:hll X3l+huysl+hls
hy, Xg + hlZyB‘ +hy ’XA,hm Xg, ’XA,hsz)’Bl =X, =0
h21 XB, + hzzYB, + hza - yA,h31 XB, - yA,hszya, - YA, =0 56
ide edit. K jan Mikolaiczyk B.leibe,




Fitting a Homography Fitting a Homography

¢ Estimating the transformation ¢ Estimating the transformation

¢ Solution:
» Null-space vector of A

P X, MY Py =X Py X, =X NepYg =X, =0
LR P A e AU S Y

SV
g X %, Xg Yg 1 0 0 0 =XXg —X¥g —Xu|[hy| [O g Xp, O Xg, l
s 0 0 0 Xg Yo 1 =VYaXe —VaVs ~Va h,, 0 s
g Xp, € X, L . . oy, |= g Xp, €>Xg, A=2?
= RIS L . . o [y = RIS
@ . hy, 2 :
> > .
& n 5
3 =
= h _ =
: Ah=0 £

57 58
ide credit: Krystian Mikolajczyk B. Leibe ide credit: Krystian Mikolaiczyk B. Leibe

Fitting a Homography Image Warping with Homographies

4
¢ Estimating the transformation

¢ Solution:
» Null-space vector of A

» Corresponds to smallest
singular vector

VD Ah=0

wn wn

=N X, X o

S & l d, - 07v, - 3

= N 1 i R

2 e A=UDV' =U| i " G| e 2
Xp X

S o & 0 oo dg [[Vgy ot s

2 : 2

S S

& [y Vo) g Image plane in front

5 h = Yo" Vag . S|

a = Minimizes least square error a Black area

E Vo E where no pixel

S ) 59 o maps to. 60
ide credit: Krvstian Mikolaiczvk B. Leibe ide credit: Steve Seit; B. Leibe

Uses: Analyzing Patterns and Shapes '

» What is the shape of the b/w floor pattern?

Automatic rectification

From Martin Kemp The Science of Art
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The floor (enlarged)

ide credit: Antonio Criminisi B Lefbe

ide credit: Antonio Criminisi B. Leibe
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Topics of This Lecture

¢ Dealing with Outliers
» RANSAC
» Generalized Hough Transform

B. Leibe

TWTHACHE
Example: Least-Squares Line Fitting

¢ Assuming all the points that belong to a particular line
are known

. 65
B. Leibe Source: Forsyth & Ponce]
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RWTH ACHET
Outliers Affect Least-Squares Fit

5 Lebe Source: Forsvth & Ponce

Computer Vision WS 14/15
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TWTH/ZCEN
Problem: Outliers

¢ Outliers can hurt the quality of our parameter
estimates, e.g.,
» An erroneous pair of matching points from two images

~ A feature point that is noise or doesn’t belong to the
transformation we are fitting.
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ide credit: Kristen Grauman B. Leibe
RWTHACEN
Outliers Affect Least-Squares Fit
o
4k
il
o
4L
-2k
7‘?14 -z -10 -5 -5 - -2 0 2 4 &
’ 66
B. Leibe Source: Forsyth & Ponce]
RWTHAACHEN

Strategy 1: RANSAC [rischlers1]

¢ RANdom SAmple Consensus

¢ Approach: we want to avoid the impact of outliers, so
let’s look for “inliers”, and use only those.

¢ Intuition: if an outlier is chosen to compute the current
fit, then the resulting line won’t have much support
from rest of the points.

ide credit: Kristen Grauman LA
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RANSAC

RANSAC loop:

1. Randomly select a seed group of points on which to
base transformation estimate (e.g., a group of
matches)

2. Compute transformation from seed group
3. Find inliers to this transformation

4. If the number of inliers is sufficiently large, re-
compute least-squares estimate of transformation on
all of the inliers

* Keep the transformation with the largest number of
inliers

69
slide credit: Kristen Grauman B. Leibe

RWTH/CHEN
RANSAC Line Fitting Example
¢ Task: Estimate the best line
°
°
°
. ®
°
° ® L4
H
°
. . Sample two points
°
lide credit: Jinxiang Chaj B. Leibe "

RANSAC Line Fitting Example

¢ Task: Estimate the best line

[ ]
. N Total number of points
. within a threshold of
line.
73
Slide credit: Jinxiane Chai B. Leibe
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RANSAC Line Fitting Example

¢ Task: Estimate the best line

» How many points do we need to estimate the line?

Slide credit: Jinxiang Chai B. Leibe

RANSAC Line Fitting Example

e Task: Estimate the best line

Fit a line to them

ide credit: Jinxiang Chai B. Leibe

Computer Vision WS 14/15

RANSAC Line Fitting Example

e Task: Estimate the best line

line.

ide credit: Jinxiano Chai B. Leibe

“7“7 inlier points’

Total number of points
within a threshold of

12
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RWTH/CET
. . UNIVERSITY
RANSAC Line Fitting Example

¢ Task: Estimate the best line

Repeat, until we get a
good result.

ide credit: Jinxiang Chai B. Leibe

UNIVERSITY
RANSAC: How many samples?

¢ How many samples are needed?
» Suppose W is fraction of inliers (points from line).
> N points needed to define hypothesis (2 for lines)
» k samples chosen.

* Prob. that a single sample of n points is correct: w"

« Prob. that all k samples fail is: (L-w"*

= Choose k high enough to keep this below desired failure
rate.

ide credit: David Lowe B. Leibe
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RWTHAACHER
UNIVERSITY
After RANSAC

o RANSAC divides data into inliers and outliers and yields

estimate computed from minimal set of inliers.

Improve this initial estimate with estimation over all

inliers (e.g. with standard least-squares minimization).

¢ But this may change inliers, so alternate fitting with re-
classification as inlier/outlier.

ide credit: David | owe. B Lefbe
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RANSAC Line Fitting Example

¢ Task: Estimate the best line

" “11 inlier points”

Repeat, until we get a
good result.

ide credit: Jinxiang Chai B. Leibe

RWTHACHEN
RANSAC: Computed k (p=0.99) HHEET
sample Proportion of outliers
SI:,e 5% 10% 20% 25% 30% 40% 50%
2 2 3 5 6 7 11 17
3 3 4 7 9 11 19 35
4 3 5 9 13 17 34 72
5 4 6 12 17 26 57 146
6 4 7 16 24 37 97 293
7 4 8 20 33 54 163 588
8 5 9 26 44 78 272 1177
ide credit: David Lowe B. Leibe I
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Example: Finding Feature Matches

¢ Find best stereo match within a square search window
(here 300 pixels2)

¢ Global transformation model: epipolar geometry

Images from Hartley & Zisserman

80
ide credit: David | owe B. Leibe
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Example: Finding Feature Matches Problem with RANSAC

¢ Find best stereo match within a square search window
(here 300 pixels?)

¢ Global transformation model: epipolar geometry

« In many practical situations, the percentage of outliers
(incorrect putative matches) is often very high (90% or
above).

¢ Alternative strategy: Generalized Hough Transform

before RANSAC after RANSAC

Computer Vision WS 14/15
Computer Vision WS 14/15

Images from Hartley & Zisserman

81
ide credit: David Lowe B. Leibe

ide credit: Svetlana Lazebnik B. Leibe
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Strategy 2: Generalized Hough Trans#arm

Strategy 2: Generalized Hough Transflcjarm

¢ Suppose our features are scale- and rotation-invariant

» Then a single feature match provides an alignment hypothesis
(translation, scale, orientation).

¢ Suppose our features are scale- and rotation-invariant

» Then a single feature match provides an alignment hypothesis
(translation, scale, orientation).

Of course, a hypothesis from a single match is unreliable.

Solution: let each match vote for its hypothesis in a Hough space
with very coarse bins.

v

v
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ide credit: Svetlana Lazebnik B. Leibe

ide credit: Svetlana Lazebnik B. Leibe
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Pose Clustering and Verification with SIFT Indexing Local Features
e To detect instances of objects from a model base:
1. Index descriptors
* Distinctive features narrow down
possible matches
New image
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Model base

ide credit: Kristen Grauman B Lefbe Jmage source: David Lowel ide credit: Kristen Grauman

lmage source: David Lowe)
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Pose Clustering and Verification with SIFT

¢ To detect instances of objects from a model base:

1. Index descriptors
* Distinctive features narrow down
possible matches
2. Generalized Hough transform
to vote for poses

* Keypoints have record of parameters
relative to model coordinate system

3. Affine fit to check for agreement
between model and image
features

* Fit and verify using features from
Hough bins with 3+ votes

ide credit: Kristen Grauman B. Leibe

Image source: David Lowe)
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[Lowe, 1JCV’04] 89
B. Leibe Slide credit: David Lowe
Summary

¢ Recognition by alignment: looking for object and pose
that fits well with image
» Use good correspondences to designate hypotheses.
» Invariant local features offer more reliable matches.
» Find consistent “inlier” configurations in clutter
- Generalized Hough Transform
- RANSAC

¢ Alignment approach to recognition can be effective
if we find reliable features within clutter.
~ Application: large-scale image retrieval
~ Application: recognition of specific (mostly planar) objects
- Movie posters
- Books
- CD covers

92
B. Leibe
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Object Recognition Results

Background subtract for Objects recognized Recognition in spite
model boundaries of occlusion
ide credit: Kristen Grauman B. Leibe Jmage source: David Lowe

RWTH CHE
Recall: Difficulties of Voting '

Noise/clutter can lead to as many votes as true target.

¢ Bin size for the accumulator array must be chosen
carefully.

(Recall Hough Transform)

In practice, good idea to make broad bins and spread
votes to nearby bins, since verification stage can prune
bad vote peaks.

B. Leibe
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References and Further Reading

¢ A detailed description of local feature extraction and
recognition can be found in Chapters 3-5 of Grauman &
Leibe (available on the L2P).

_ » K. Grauman, B. Leibe
Visual Object Visual Object Recognition
Recognition Morgan & Claypool publishers, 2011

R. Hartley, A. Zisserman

Multiple View Geometry in

Computer Vision

2nd Ed., Cambridge Univ. Press, 2004

More details on RANSAC can also be found in Chapter 4.7
of Hartley & Zisserman.
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