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Approximate Inference
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RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

> Linear Regression
> Regularization (Ridge, Lasso) J
> Gaussian Processes

M =9 =
st </

e Learning with Latent Variables
Probability Distributions m e
> Approximate Inference
»  Mixture Models

» EM and Generalizations

Y

e Deep Learning

> Neural Networks
> CNNs, RNNs, RBMs, etc.

o)
-
.
Q
whd
=
(@))
IE
c
-
®
Q
—
Q
=
N e
(&)
1+
=
©
Q
(&)
c
(1
3
<

B. Leibe



Recap: Binary Variables

e Bernoulli distribution
» Probability distribution over x € {0,1}:

Bern(z|p) = p*(1—p)'™*
Elz] = pu
varlz] = p(l—p)

o3 ——— 77— —

e Binomial distribution
- Generalization for m outcomes out of N trials "

Bin(m|N, ) = (Z ) (L= N

Bin(m|10,0.25)

0.1

0o 1 2 3 4 5 6 7 8 9 10
m

Elm]| = Z mBin(m|N,u) = Nu

m=0

var|m| = Z (m — E[m])* Bin(m/|N, u) = Nu(1 — p)

B. Leibe
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RWTH
Recap: The Beta Distribution

~ Distribution over u € [0,1]:

e Beta distribution L/)

Beta(ula,b) = [a+h) peH 1 = )t

Elu] =

a+b [
var(u] = ab
M= wro2atbt ) % |

- where I'(x) is the gamma function, a continuous generalization
of the factorial. (I'(xz 4 1) = «! iff = is an integer).

e Properties

» The Beta distribution generalizes the Binomial to arbitrary
values of a and b, while keeping the same functional form.
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» It is therefore a conjugate prior for the Bernoulli and Binomial.

B. Leibe




Recap: Multinomial Variables

e Multinomial variables
~ Variables that can take one of K possible distinct states
. Convenient: 1-of-K coding scheme: x = (0,0,1,0,0,0)"

e Generalization of the Bernoulli distribution
> Distribution of x with K outcomes

p(x|p) = Hu

with the constraints

K
Vk:ur >0 and Z,u,kzl
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Recap: Multinomial Variables

e Multinomial Distribution
. Variables using 1-of-K coding scheme: x = (0,0,1,0,0,0)"
> Joint distribution over m ,...,m, conditioned on x and N

N K
Mult(mq,ma,...,mr|pu, N) = (m1m2 m}{)H“’ZLk

k=1
Elmg] = Npug
varimg| = Npe(l — pg)
covimymg| = —Np;pk

with the constraints

K
Vk:ur >0 and Z,u,kzl
k=1
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RWNTH
Recap: The Dirichlet Distribution

e Dirichlet Distribution
> Multivariate generalization of the Beta distribution

T'(a) -
. - ak_]. ° .
Dirl) = Fary.Tam) LA with o0 =

O
Elpk] = o0
ag (oo — ag)
vl = e D)
0718%%
COV[Mjﬂk] — _(1(2)(040 n 1)

e Properties
> Conjugate prior for the Multinomial.

~ The Dirichlet distribution over K variables
is confined to a K-1 dimensional simplex.
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RWNTH
Recap: The Gaussian Distribution

e One-dimensional case t
> Mean u

N(z|p,a?)

> Variance o2

Nalp.o?) = —=—exp {_ (2 —p)’ }

v

e Multi-dimensional case
> Mean u
> Covariance X
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RWTH
Recap: Bayes’ Theorem for Gaussian Variables

e Marginal and Conditional Gaussians

» Suppose we are given a Gaussian prior p(x) and a Gaussian
conditional distribution p(y|x) (a linear Gaussian model)

po) = N (x| A7)
p(ylx) = N(y|Ax—|—b,L_1)

~ From this, we can compute
p(y) = N(ylAp+b L'+ AATIAT)
p(xly) = NE{A'L(y —b)+Au}, )

where
»=(A+A'LA)!

= Closed-form solution for (Gaussian) marginal and posterior.
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RWNTH
Maximum Likelihood for the Gaussian

e Maximum Likelihood
- Giveni.i.d. data X = (x_,...,xy)?, the log likelihood function is

given by
ND N
logp(X[p, X) = ———log(2m) — - log |X]
| N
D) (x5 — ﬂ)Tz_l(Xn — 1)

n=1

e Sufficient statistics
» The likelihood depends on the data set only through

N N
E X, E Xp X2

> Those are the sufficient statistics for the Gaussian distribution.
14
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ML for the Gaussian

e Setting the derivative to zero

0
9 Inp(X|p, X Zz =0

> Solve to obtain
1 N
My = ; Xn -

> And similarly, but a bit more involved

N
1
ML = o Z — pn) (Xn — fyir,)

n=1
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ML for the Gaussian

e Comparison with true results
> Under the true distribution, we obtain

E[MML] — M
N —1
EXwvL] = TE'

= The ML estimate for the covariance is biased and
underestimates the true covariance!

» Therefore define the following unbiased estimator
_ 1 N
Y= D (%n — tpgr) (% — o)™

n=1

Slide adapted from C. Bishop B. Leibe
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RWTH
Bayesian Inference for the Gaussian

e Let’s begin with a simple example
» Consider a single Gaussian random variable z.
> Assume o? is known and the task is to infer the mean .

- Giveni.i.d. data X = (x,,...,z,)’, the likelihood function for p is
given by

1

n=1 n—

> The likelihood function has a Gaussian shape as a function of L.
= The conjugate prior for this case is again a Gaussian.

p(p) = N (plpo, a5) -

17
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RWNTH
Bayesian Inference for the Gaussian

e Combined with a Gaussian prior over y
p(p) = N (plpo, o5) -
~ This results in the posterior

p(plx) oc p(x|p)p(p).

> Completing the square over i, we can derive that

p(p|x) =N (ulpn, o)

where N
p— 4 — 7 :I:
1 B 1 n N
o2 o o?
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Visualization of the Results

e Bayes estimate:
oo + Nodumr

N = 02+ No3
1 1 N
o =3T3

On o O

e Behavior for large v
N=0 N -—x

N 204, HML
0% od 0
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po =0

Image source: C.M. Bishop, 2006
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RWNTH
Bayesian Inference for the Gaussian

e More complex case

» Now assume 1 is known and the precision ) shall be inferred.

» The likelihood function for A = 1/0° is given by
N

A
p(X|\) = HN B2, A1) ox A2 exp{ = (@ — )

n=1

> This has the shape of a Gamma function of \.

Slide adapted from C. Bishop B. Leibe

} |
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The Gamma Distribution

e Gamma distribution
> Product of a power of A and the exponential of a linear function

of ). .
Gam(\a,b) = beN L exp(—bA
. (asb) = o p(—bA)
S i
§ e Properties
o > Finite integral if a>0 and the distribution itself is finite if a>1.
= > Moments E[M] = 4 var|\| = 4
] b b2
— R . .
o > Visualization
= 2 2 2
8 = 0.1 o= | a=4
p— b=0.1 b=l b=6
g 1 1 . 1t
Q
% \
3 0 ; ——— B - 0 ;
< 0 A1 2 0 A1 2 0 3 i

2 21
Image source: C.M. Bishop, 2006
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Slide adapted from C. Bishop

RWNTH
Bayesian Inference for the Gaussian

e Bayesian estimation

. Combine a Gamma prior Gam(\|ag, by) with the likelihood
function to obtain

N
. A
p(ANX) ox X2~ IA\N/2 exp {—bo)\ — 3 Z:l(xn - ,u)2}
- We recognize this again as a Gamma function Gam(A|ay, by)
with

N

any = ag-+ E
N

1 N

bN — b0—|—§nz::1(ﬂjn—u)2 :bO+EO§AL'

B. Leibe
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RWNTH
Bayesian Inference for the Gaussian

e Even more complex case
» Assume that both 1 and )\ are unknown
> The joint likelihood function is given by

o) = I (2—);)/ exp {;lcc . m?}

n=1

x [ A2 exp —)\le Nexp )\,ug::c —iixQ
2 — "2 "

= Need a prior with the same functional dependence on i and .

Slide adapted from C. Bishop B. Leibe
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RWNTH
The Gaussian-Gamma Distribution

e Gaussian-Gamma distribution
p(ps A) = N(plpo, (BX) ") Gam(Na, b)

X exp {%(M - Mo)z} X" exp {—bA}

& J J
Y Y

e Quadratic in u.
e Linear in ).

e Visualization

=2 0 2
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RWNTH
Bayesian Inference for the Gaussian

e Multivariate conjugate priors
> u unknown, A known: p(u) Gaussian.

> A unknown, u known: p(A) Wishart,

W(A|W,v) = B|A|VP=D 2 exp (—%Tr(WlA)) .

> A and u unknown: p(u,A) Gaussian-Wishart,
p(ua A‘/’I’OJ /87 WJ V) — N(MHMO: (BA)_l) W(A‘W) V)

Slide adapted from C. Bishop B. Leibe
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RWNTH
Recap: Bayesian Inference for the Gaussian

e Multivariate conjugate priors
> u unknown, A known: p(u) Gaussian.

> A unknown, u known: p(A) Wishart,

W(A|W,v) = B|A|VP=D 2 exp (—%Tr(WlA)) .

> A and u unknown: p(u,A) Gaussian-Wishart,
p(ua A‘/’I’OJ /87 WJ V) — N(MHMO: (BA)_l) W(A‘W) V)

Slide adapted from C. Bishop B. Leibe
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Student’s t-Distribution

e Gaussian estimation

» The conjugate prior for the precision of a Gaussian is a Gamma
distribution.

. Suppose we have a univariate Gaussian NM(z | 1, 1) together
with a Gamma prior Gam(7| a,b).

» By integrating out the precision, obtain the marginal distribution

plaln,ab) = [ Nialu,7)Gam(rla,b)dr
0

— [N (al, () ) Gam(lo /2, v/ 2

0

> This corresponds to an infinite mixture of Gaussians having the
same mean, but different precision.

27
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Student’s t-Distribution

e Student’s t-Distribution
» We reparametrize the infinite mixture of Gaussians to get

e Parameters
. “Precision” A=a/b
- “Degrees of freedom” v = 2a.
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Student’s t-Distribution: Visualization o

0.5

¢ B B

Longer-tailed
distribution!

= More robust
to outliers...

e Behavior
| vr=1 vV — 0

St(z|u, A, v) | Cauchy A (x|p, A1)
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Student’s t-Distribution

e Robustness to outliers: Gaussian vs t-distribution.

0.5 - - 0.5

041 047}

03} 03}
0.2} 02}

0.1 0.1}

-5 0 5 10 -5 0 5 10

= The t-distribution is much less sensitive to outliers, can be used
for robust regression.

= Downside: ML solution for t-distribution requires EM algorithm.

30
Image source: C.M. Bishop, 2006
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RWNTH
Student’s t-Distribution: Multivariate Case

e Multivariate case in D dimensions
St(xlp, A,v) = / N (], (nA) ) Gam(n|v/2, v/2) dn

I(D/2+v/2) |A|Y/? {1 A_QI—D/2—1//2
['(v/2) CORE

vV

where A? = (x — p)' A(x — p) is the Mahalanobis distance.

e Properties

cov|x| = A7l ify>2

mode|x| = p
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Topics of This Lecture

e Approximate Inference
~ Variational methods
- Sampling approaches

e Sampling approaches
~ Sampling from a distribution
~ Ancestral Sampling
~ Rejection Sampling
> Importance Sampling

e Markov Chain Monte Carlo
> Markov Chains
» Metropolis Algorithm
» Metropolis-Hastings Algorithm
> Gibbs Sampling

B. Leibe
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Approximate Inference

e Exact Bayesian inference is often intractable.

~ Often infeasible to evaluate the posterior distribution or to
compute expectations w.r.t. the distribution.
- E.g. because the dimensionality of the latent space is too high.
- Or because the posterior distribution has a too complex form.

~ Problems with continuous variables
- Required integrations may not have closed-form solutions.

> Problems with discrete variables

- Marginalization involves summing over all possible configurations of
the hidden variables.

- There may be exponentially many such states.

= We need to resort to approximation schemes.

33
B. Leibe
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RWTH
Two Classes of Approximation Schemes

e Deterministic approximations (Variational methods)

- Based on analytical approximations to the posterior distribution
- E.g. by assuming that it factorizes in a certain form
- Or that it has a certain parametric form (e.g. a Gaussian).

= Can never generate exact results, but are often scalable to large
applications.

e Stochastic approximations (Sampling methods)

~ Given infinite computationally resources, they can generate
exact results.

> Approximation arises from the use of a finite amount of
processor time.

= Enable the use of Bayesian techniques across many domains.

= But: computationally demanding, often limited to small-scale
problems.

34
B. Leibe



Topics of This Lecture

e Sampling approaches
~ Sampling from a distribution
~ Ancestral Sampling
~ Rejection Sampling
> Importance Sampling
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Sampling Idea

e Objective:
- Evaluate expectation of a function f(z) p(2)
w.r.t. a probability distribution p(z).

- [ t@pia)az

e Sampling idea -

- Draw L independent samples z!) with [ = 1,...,L from p(z).

f(z)

aY

> This allows the expectatlon to be approximated by a finite sum
L
1=1
- As long as the samples z() are drawn independently from p(z),
then Em = E[/]

= Unbiased estimate, independent of the dimension of z!
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Sampling - Challenges

e Problem 1: Samples might not be independent

= Effective sample size might be much smaller than apparent

sample size.
p(2) /)

e Problem 2: e i

» If f(z) is small in regions where p(z) is large and vice versa, the
expectation may be dominated by regions of small probability.

= Large sample sizes necessary to achieve sufficient accuracy.
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Parametric Density Model

e Example:
> A simple multivariate (d-dimensional) Gaussian model

i D) = s enn { 5 TR - ) |

~ This is a “generative” model

in the sense that we can generate goo "¢
samples x according to the ° §€°¢, ’
distribution. . ogig"
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Sampling from a Gaussian

e Given: 1-dim. Gaussian pdf (probability density function)
p(x|u,0%) and the corresponding cumulative distribution:

Fuor(a) = [ plalp,o?)ds

e To draw samples from a Gaussian, we can invert the
cumulative distribution function:
u ~ Uniform(0,1) = Fu_;2 (u) ~ p(x|w, o?)

1

0.9

0.7

0.6

0.5F

0.3F

0.2F

0.1F
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RWTH
Sampling from a pdf (Transformation method)

e In general, assume we are given the pdf p(x) and the
corresponding cumulative distribution:
Fa)= [ plaiz

e To draw samples from this pdf, we can invert the
cumulative distribution function:

w ~ Uniform(0,1) = F~ 1 (u) ~ p(z)
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RWNTH
Example 1: Sampling from Exponential Distrib.

1.6

e Exponential Distribution o ——a=05 |

1.2} A=1 ]

A=15
p(y) = Aexp (—Ay) gé,“;\ |

0.6}

where 0 < y < . 0.4f
th_ ¥
0.0 . L L

0 1 2 3 4 3

e Transformation sampling
> Indefinite Integral h(y) —1—exp (_)\y)

> Inverse function
y=h(y)" =-A"In(1l-2)

for a uniformly distributed input variable z.
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Example 2: Sampling from Cauchy Distrib.

0.7

1 1 o By
p(y) o 7_'('1 + y2 Igak
0.2
R =2 0 2 4

e Transformation sampling
> Inverse of integral can be expressed as a tan function.

y = h(y)~" = tan (2)

for a uniformly distributed input variable z.
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RWTH
Note: Efficient Sampling from a Gaussian

. . 1
e Problem with transformation method
» Integral over Gaussian cannot be expressed
in analytical form. -
~ Standard transformation approach is very |
inefficient.
_1_ - Zl 1

* More efficient: Box-Muller Algorithm
~ Generate pairs of uniformly distributed random numbers
2,72, € (-1,1).
. Discard each pair unless it satisfies 72 = zf + z% <1.

~ This leads to a uniform distribution of points inside the unit
circle with p(z,,z,) = 1/m.

43

B. Leibe Image source: C.M. Bishop, 2006
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Box-Muller Algorithm (cont’d)

e Box-Muller Algorithm (cont’d)

- For each pair z,z, evaluate

—21In7r? 1/2 —9Inr2\ 2
y1_21( 5 ) y2_2’2( 5 )
r r
- Then the joint distribution of y, and y, is given by
8(21, Zg)
P\WY1,Y2) = Plz1,22
v) = P (50 )
——exp(—48/2)| | = e(-13/2)
= exp(— exp(—

= y, and y, are independent and each has a Gaussian distribution
with mean u and variance o2.

. If y ~ N0,1), then oy + 1 ~ Mu,o0?).

B. Leibe
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Box-Muller Algorithm (cont’d)

e Multivariate extension

~ If z is a vector valued random variable whose components are
independent and Gaussian distributed with A/(0,1),

> Then y = u + Lz will have mean y and covariance 3..
- Where X = LL" is the Cholesky decomposition of X.

B. Leibe
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Ancestral Sampling

e Generalization of this idea to directed graphical models.
- Joint probability factorizes into conditional probabilities: .

p(x) = | | plexpay,)

e Ancestral sampling

> Assume the variables are ordered such that there are no links
from any node to a lower-numbered node.

~ Start with lowest-numbered node and draw a sample from its
distribution. Z1 ~ p(x1)

> Cycle through each of the nodes in order and draw samples from
the conditional distribution (where the parent variable is set to

its sampled value).
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Logic Sampling

e Extension of Ancestral sampling

~ Directed graph where some nodes are instantiated
with observed values.

e Use ancestral sampling, except

> When sample is obtained for an observed variable, if they agree
then sample value is retained and proceed to next variable.

~ If they don’t agree, whole sample is discarded.

e Result

~ Approach samples correctly from the posterior distribution.

- However, probability of accepting a sample decreases rapidly as
the number of observed variables increases.

= Approach is rarely used in practice.

47
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Discussion

e Transformation method

» Limited applicability, as we need to invert the indefinite integral
of the required distribution p(z).

> This will only be feasible for a limited number of simple
distributions.

e More general
~ Rejection Sampling
> Importance Sampling

48
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Rejection Sampling

e Assumptions
» Sampling directly from p(z) is difficult.
» But we can easily evaluate p(z) (up to some normalization factor

Z,): 1
g p(z) — Z—p(z)
e |ldea g

- We need some simpler distribution ¢(z) (called proposal
distribution) from which we can draw samples.

- Choose a constant k such that: Vz : kq(z) > p(2)
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Rejection Sampling
e Sampling procedure kq(z0) ko]
- Generate a number z, from ¢(z).

- Generate a number v, from the / p()
uniform distribution over [0,kq(z,)]. --- .

Z0 z

- If ug > p(zy) reject sample, otherwise accept.
- Sample is rejected if it lies in the grey shaded area.
- The remaining pairs (u,,z,) have uniform distribution under the

curve p(z).
e Discussion
» Original values of z are generated from the distribution ¢(z).
. Samples are accepted with probability p(2)/kq(2)

p(accept) = / f;iz)q(z)dz = %/ﬁ(z)dz

= k should be as small as possible!
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Rejection Sampling - Discussion

e Limitation: high-dimensional spaces

~ For rejection sampling to be of practical value, we require that
kq(z) be close to the required distribution, so that the rate of
rejection is minimal.

e Artificial example
Assume that p(z) is Gaussian with covariance matrix ng

Y

Assume that ¢(z) is Gaussian with covariance matrix O'(?I

Y

. . 2 2 0.5
Obviously: o, > o,

Y

> In D dimensions: k = (0,/0,)". o
- Assume o is just 1% larger than o,. 0.5
- D=1000= £k = 1.0111000 > 20,000
- And p(accept) -

20000 e
= Often impractical to find good proposal distributions for high

dimensions! 51
Slide credit: Bernt Schiele B. Leibe Image source: C.M. Bishop, 2006
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RWTH
Example: Sampling from a Gamma Distrib.

e Gamma distribution

1
Gam(z|a,b) = ——b*2%" ! exp(—bz) a> 1

['(a)

e Rejection sampling approach

0.15

> For a>1, Gamma distribution has a 0.1}
bell-shaped form. ()

~ Suitable proposal distribution is 0.05 |
Cauchy (for which we can use
the transformation method). il

» Generalize Cauchy slightly to ensure ’ 2

it is nowhere smaller than Gamma: y = b tan y + ¢ for uniform .
> This gives random numbers distributed according to

k with optimal c = a—1
1+ (2 —1c¢)?/b% rejectionratefor 2 _— 9, _ 1

q(z) =
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Importance Sampling

e Approach

» Approximate expectations directly
(but does not enable to draw samples from p(z) directly).

St By - [ fap()ia

e Simplistic strategy: Grid sampling
» Discretize z-space into a uniform grid.
» Evaluate the integrand as a sum of the form

E[f] =) f(z")p(z")dz
(=1

> But: number of terms grows exponentially with nhumber of
dimensions!

Slide credit: Bernt Schiele B. Leibe
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Importance Sampling

e Idea

» Use a proposal distribution ¢(z) from which it is easy to draw
samples.

» Express expectations in the form of a finite sum over samples
{zD} drawn from ¢(z).

Blf) = [ Sz = [ 7(2) 2 g(2) e

2
—
[~
i
N
=
— =
~n
TN
N/‘\
—

> with importance weights
p(z")
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Importance Sampling

e Typical setting:
> p(z) can only be evaluated up to an unknown normalization
constant p(z) _ ﬁ(z)/Zp
> @(z) can also be treated in a similar fashion.
q(z) = 4(z)/ 2,

= 7)p(z)dz é z@ 7)dz
Blf] = [ Sl =5 [ @5 @)
P =1
o B(EY)
> with: Tl:(j(z(l))

Slide credit: Bernt Schiele B. Leibe
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Importance Sampling

e Ratio of normalization constants can be evaluated
p(zY) 1 <
___/ dz_/ i20) (Z)dZZZ;”

e and therefore

L
~ Z wy f(z)
[=1

e with -~ p(zM)

I D))
N Frm p(z(™)
2em T Yo

Slide credit: Bernt Schiele B. Leibe
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RWTH
Importance Sampling - Discussion

e Observations

~ Success of importance sampling depends crucially on how well
the sampling distribution ¢(z) matches the desired distribution
p(z).

- Often, p(z) f(z) is strongly varying and has a significant propor-
tion of its mass concentrated over small regions of z-space.

= Weights r, may be dominated by a few weights having large
values.

~ Practical issue: if none of the samples falls in the regions where
p(z) f(z) is large...
- The results may be arbitrary in error.
- And there will be no diagnostic indication (no large variance in 7;)!

- Key requirement for sampling distribution ¢(z):

- Should not be small or zero in regions where p(z) is significant!

; 57
Slide credit: Bernt Schiele B. Leibe



Topics of This Lecture

e Markov Chain Monte Carlo
> Markov Chains
» Metropolis Algorithm
» Metropolis-Hastings Algorithm
> Gibbs Sampling
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RWNTH
References and Further Reading

e Sampling methods for approximate inference are
described in detail in Chapter 11 of Bishop’s book.
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e Another good introduction to Monte Carlo methods can
be found in Chapter 29 of MacKay’s book (also available
online: http://www.inference.phy.cam.ac.uk/mackay/itprnn/book.html)
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