

Computer Vision - Lecture 4

Gradients & Edges

05.11.2015

Bastian Leibe

RWTH Aachen

http://www.vision.rwth-aachen.de

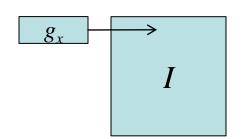
leibe@vision.rwth-aachen.de

Course Outline

- Image Processing Basics
 - Image Formation
 - Binary Image Processing
 - Linear Filters
 - Edge & Structure Extraction
- Segmentation
- Local Features & Matching
- Object Recognition and Categorization
- 3D Reconstruction
- Motion and Tracking

Topics of This Lecture

- Recap: Linear Filters
- Multi-Scale representations
 - How to properly rescale an image?
- Filters as templates
 - Correlation as template matching
- Image gradients
 - Derivatives of Gaussian
- Edge detection
 - Canny edge detector

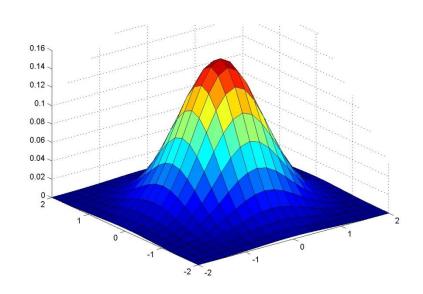


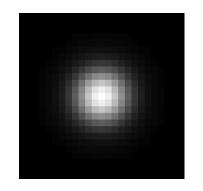
Recap: Gaussian Smoothing

Gaussian kernel

Gaussian kernel
$$G_{\sigma} = \frac{1}{2\pi\sigma^2}e^{-\frac{(x^2+y^2)}{2\sigma^2}}$$

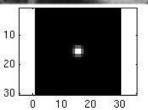
- Rotationally symmetric
- Weights nearby pixels more than distant ones
 - > This makes sense as 'probabilistic' inference about the signal
- A Gaussian gives a good model of a fuzzy blob

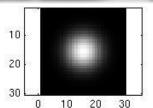


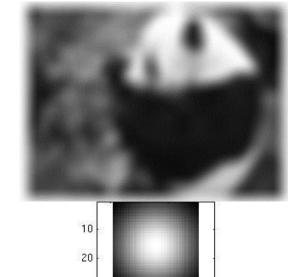


Recap: Smoothing with a Gaussian

• Parameter σ is the "scale" / "width" / "spread" of the Gaussian kernel and controls the amount of smoothing.







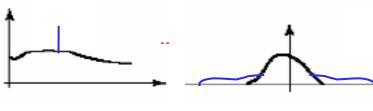
```
for sigma=1:3:10
  h = fspecial('gaussian', fsize, sigma);
  out = imfilter(im, h);
  imshow(out);
  pause;
```

end

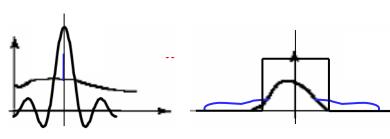
B. Leibe

Recap: Effect of Filtering

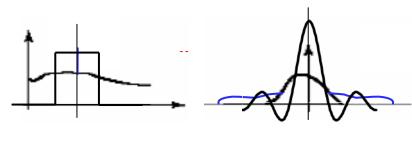
 Noise introduces high frequencies.
 To remove them, we want to apply a "low-pass" filter.



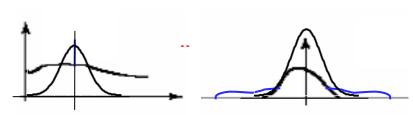
 The ideal filter shape in the frequency domain would be a box.
 But this transfers to a spatial sinc, which has infinite spatial support.



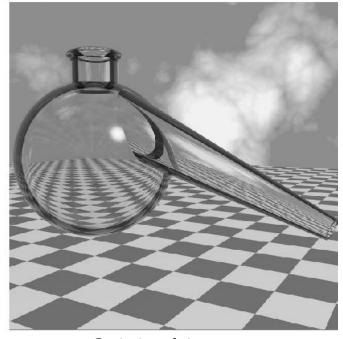
A compact spatial box filter transfers to a frequency sinc, which creates artifacts.



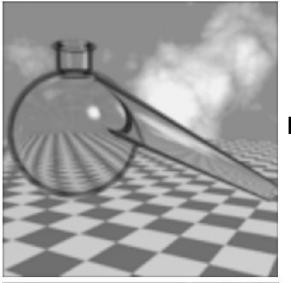
 A Gaussian has compact support in both domains. This makes it a convenient choice for a low-pass filter.



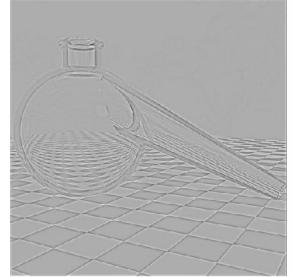
Recap: Low-Pass vs. High-Pass



Original image



Low-pass filtered



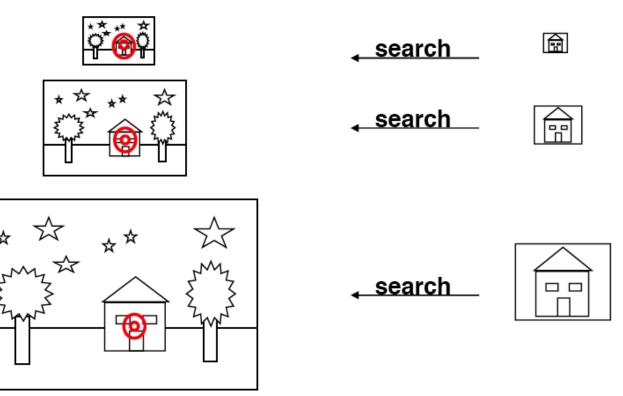
High-pass filtered

Topics of This Lecture

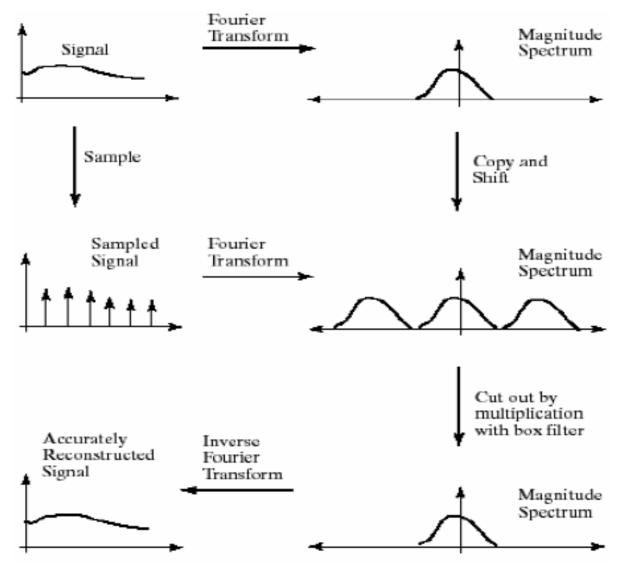
- Recap: Linear Filters
- Multi-Scale representations
 - How to properly rescale an image?

- Correlation as template matching
- Image gradients
 - Derivatives of Gaussian
- Edge detection
 - Canny edge detector

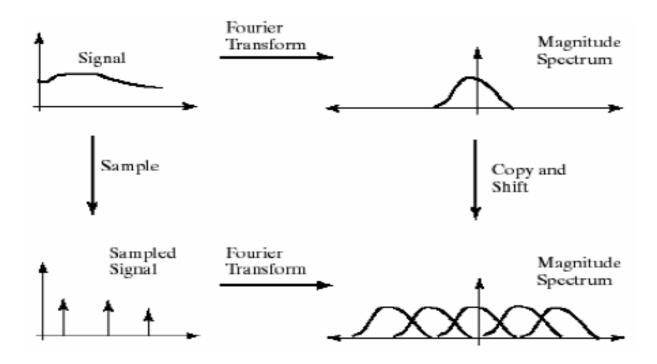
Motivation: Fast Search Across Scales



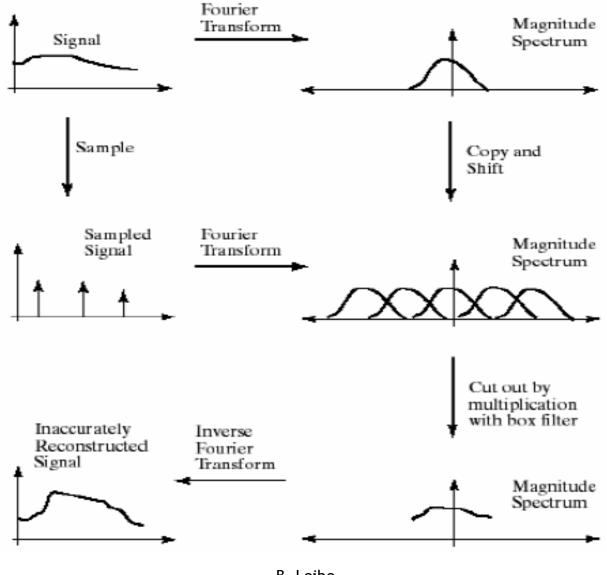
Recap: Sampling and Aliasing



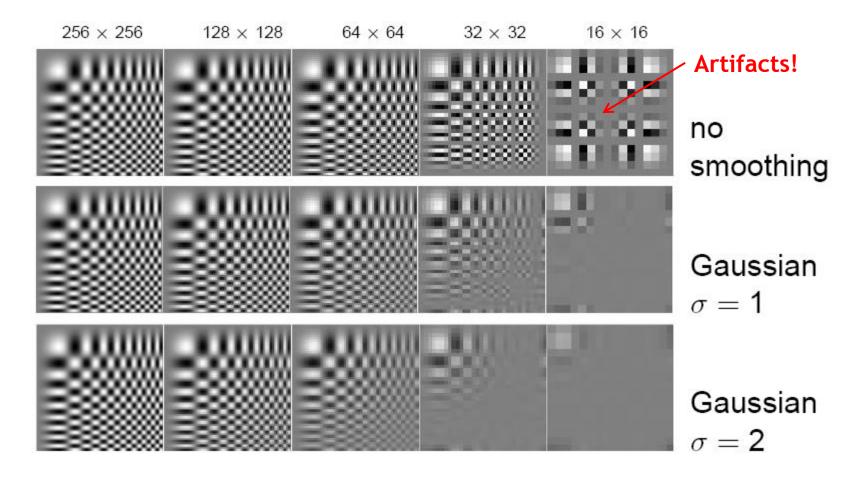
Recap: Sampling and Aliasing



Recap: Sampling and Aliasing



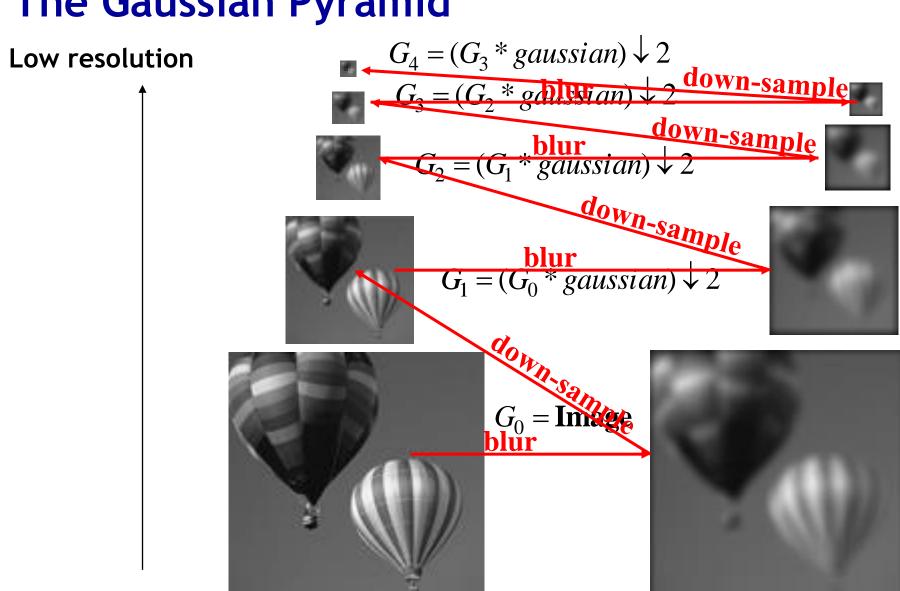
Recap: Resampling with Prior Smoothing



 Note: We cannot recover the high frequencies, but we can avoid artifacts by smoothing before resampling.

High resolution

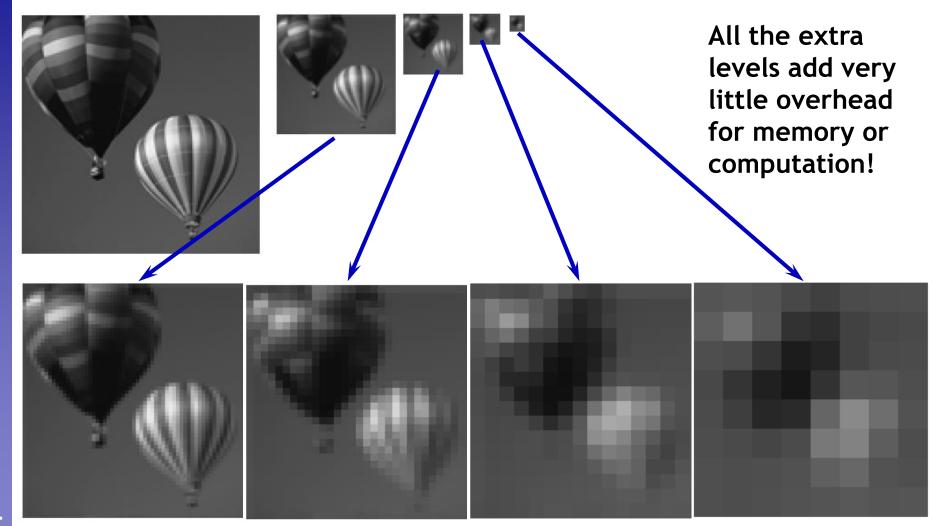
The Gaussian Pyramid



B. Leibe

Source: Irani & Basri

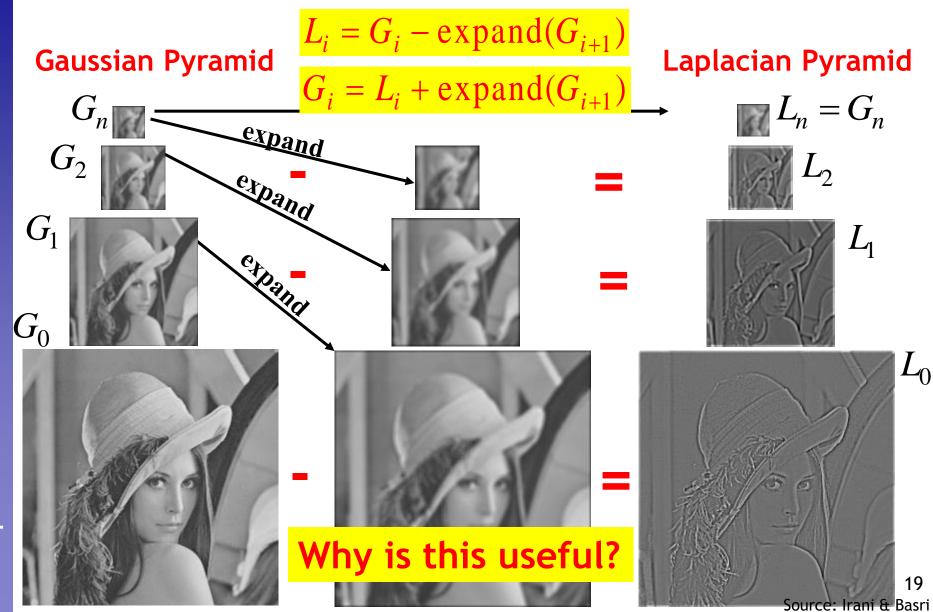
Gaussian Pyramid - Stored Information



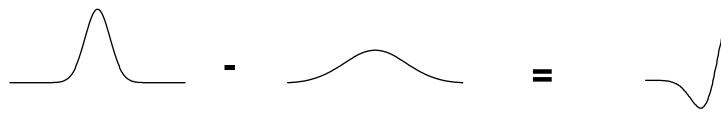
Summary: Gaussian Pyramid

- Construction: create each level from previous one
 - Smooth and sample
- Smooth with Gaussians, in part because
 - a Gaussian*Gaussian = another Gaussian
 - > $G(\sigma_1) * G(\sigma_2) = G(sqrt(\sigma_1^{2+} \sigma_2^{2}))$
- Gaussians are low-pass filters, so the representation is redundant once smoothing has been performed.
 - ⇒ There is no need to store smoothed images at the full original resolution.

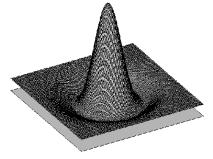
The Laplacian Pyramid



Laplacian ~ Difference of Gaussian



DoG = Difference of Gaussians
Cheap approximation - no derivatives needed.



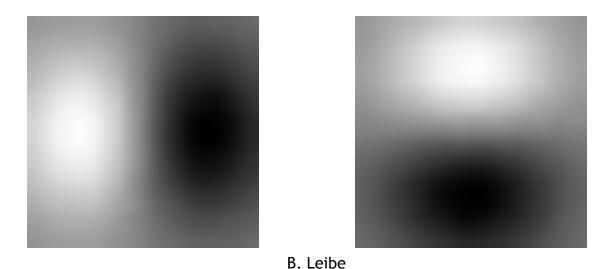
Topics of This Lecture

- Recap: Linear Filters
- Multi-Scale representations
 - How to properly rescale an image?
- Filters as templates
 - Correlation as template matching
- Image gradients
 - Derivatives of Gaussian
- Edge detection
 - Canny edge detector

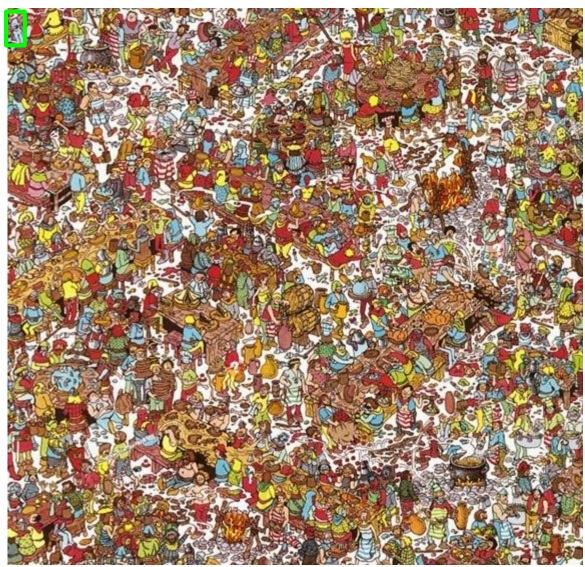
Note: Filters are Templates

- Applying a filter at some point can be seen as taking a dotproduct between the image and some vector.
- Filtering the image is a set of dot products.

- Insight
 - Filters look like the effects they are intended to find.
 - Filters find effects they look like.



Where's Waldo?



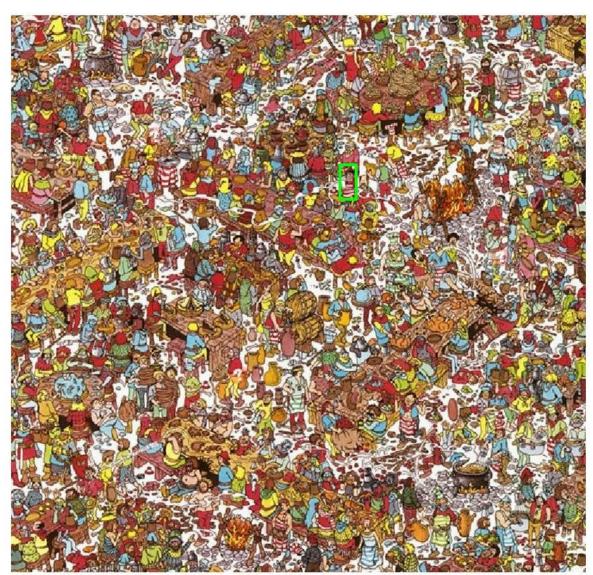
Template

Scene

Slide credit: Kristen Grauman

B. Leibe

Where's Waldo?



Template

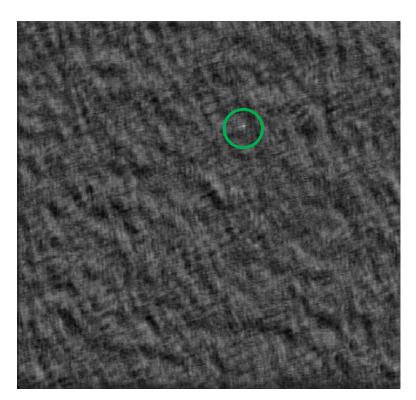
Detected template

Slide credit: Kristen Grauman

B. Leibe

Where's Waldo?

Detected template



Correlation map

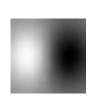
Correlation as Template Matching

- Think of filters as a dot product of the filter vector with the image region
 - Now measure the angle between the vectors

$$a \cdot b = |a| |b| \cos \theta$$
 $\cos \theta = \frac{a \cdot b}{|a| |b|}$

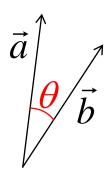
Angle (similarity) between vectors can be measured by normalizing the length of each vector to 1 and taking the dot product.

B. Leibe



Template

Image region

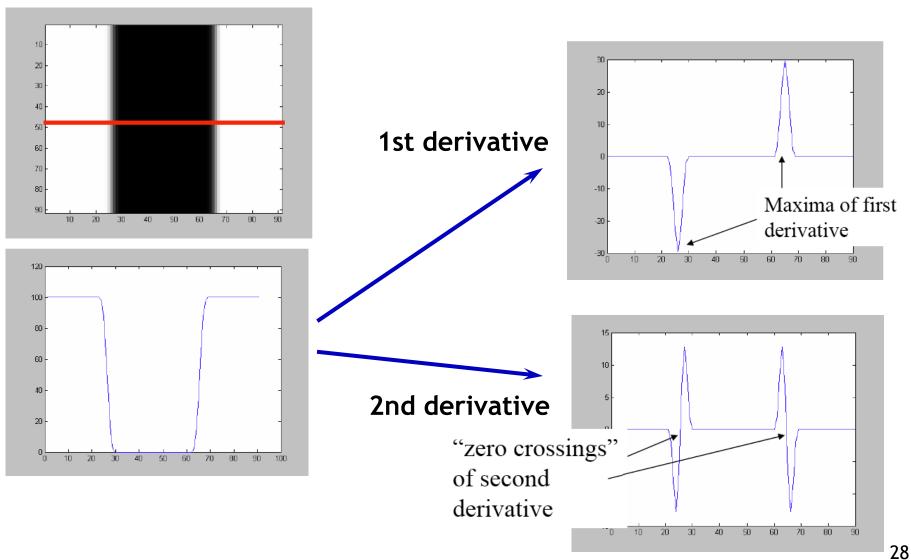


Vector interpretation

Topics of This Lecture

- Recap: Linear Filters
- Multi-Scale representations
 - How to properly rescale an image?
- Filters as templates
 - Correlation as template matching
- Image gradients
 - Derivatives of Gaussian
- Edge detection
 - > Canny edge detector

Derivatives and Edges...



B. Leibe

Differentiation and Convolution

• For the 2D function f(x,y), the partial derivative is:

$$\frac{\partial f(x,y)}{\partial x} = \lim_{\varepsilon \to 0} \frac{f(x+\varepsilon,y) - f(x,y)}{\varepsilon}$$

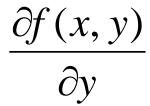
 For discrete data, we can approximate this using finite differences:

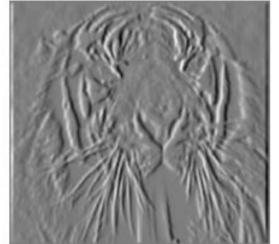
$$\frac{\partial f(x,y)}{\partial x} \approx \frac{f(x+1,y) - f(x,y)}{1}$$

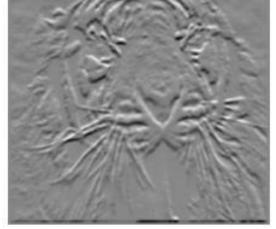
 To implement the above as convolution, what would be the associated filter?

Partial Derivatives of an Image

 $\frac{\partial f(x,y)}{\partial x}$







Which shows changes with respect to x?

Assorted Finite Difference Filters

Prewitt:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -1 & 0 & 1 \\ -1 & 0 & 1 \end{bmatrix}$$
; $M_y = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$

Sobel:
$$M_x = \begin{bmatrix} -1 & 0 & 1 \\ -2 & 0 & 2 \\ -1 & 0 & 1 \end{bmatrix}$$

$$M_y = \begin{array}{c|cccc} 1 & 2 & 1 \\ \hline 0 & 0 & 0 \\ \hline -1 & -2 & -1 \end{array}$$

Roberts:
$$M_x = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$$
 ; $M_y = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}$

$$M_y = \begin{array}{c|c} 1 & 0 \\ \hline 0 & -1 \end{array}$$

31

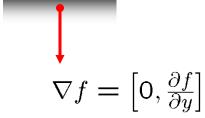
Image Gradient

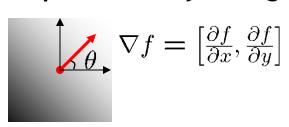
The gradient of an image:

$$\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y} \right]$$

• The gradient points in the direction of most rapid intensity change

$$\nabla f = \left[\frac{\partial f}{\partial x}, 0\right]$$





The gradient direction (orientation of edge normal) is given by:

$$\theta = \tan^{-1}\left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x}\right)$$

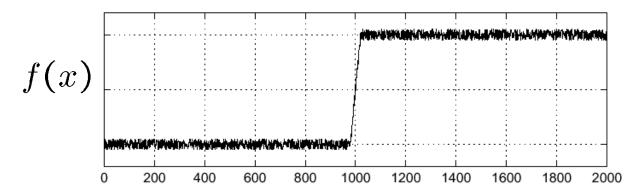
The edge strength is given by the gradient magnitude

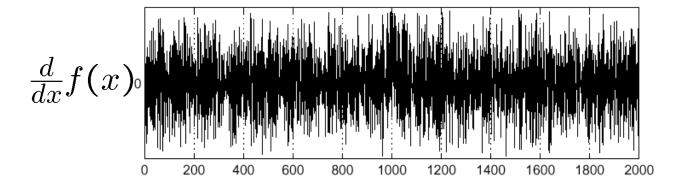
$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

B. Leibe

Effect of Noise

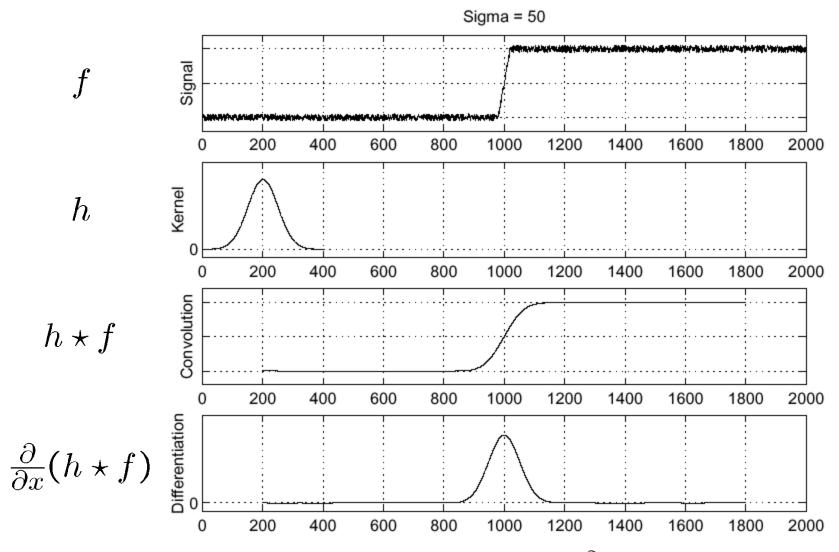
- Consider a single row or column of the image
 - Plotting intensity as a function of position gives a signal





Where is the edge?

Solution: Smooth First



Where is the edge?

Look for peaks in

 $\frac{\partial}{\partial x}(h\star f)$

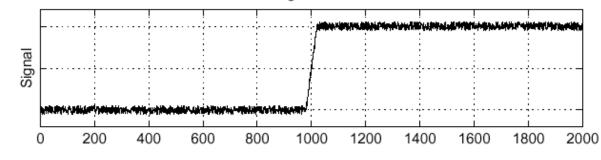
Slide credit: Steve Seitz

Derivative Theorem of Convolution

$$\frac{\partial}{\partial x}(h \star f) = (\frac{\partial}{\partial x}h) \star f$$

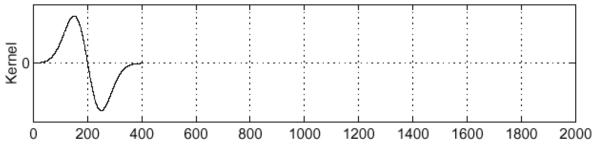
Differentiation property of convolution.

f

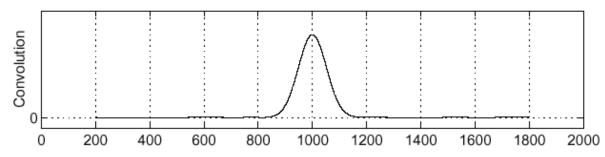


Sigma = 50

 $\frac{\partial}{\partial x}h$

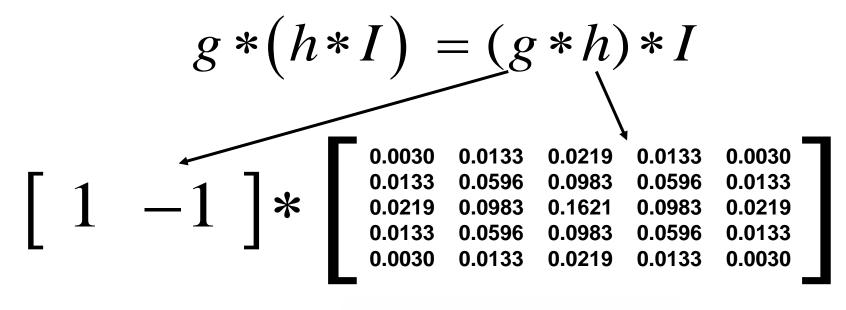


$$(\frac{\partial}{\partial x}h) \star f$$

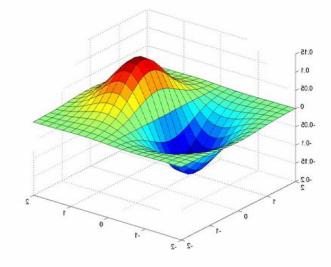


B. Leibe

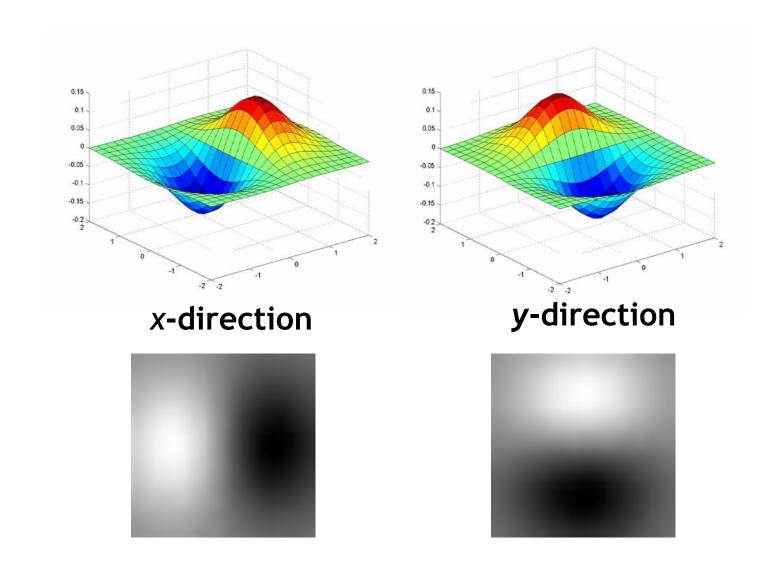
Derivative of Gaussian Filter



Why is this preferable?



Derivative of Gaussian Filters



Laplacian of Gaussian (LoG)

0

200

400

600

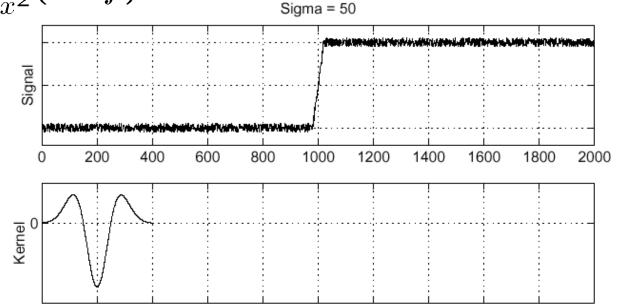
800

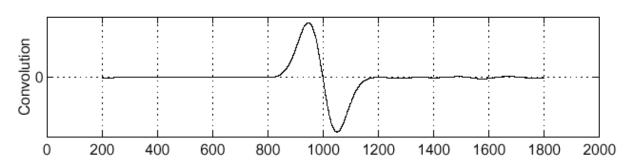
• Consider $\frac{\partial^2}{\partial x^2}(h\star f)$

f

$$(\frac{\partial^2}{\partial x^2}h) \star f$$

 $\frac{\partial^2}{\partial x^2}h$





1000

1200

1400

1600

1800

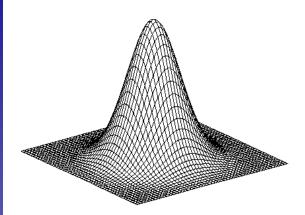
2000

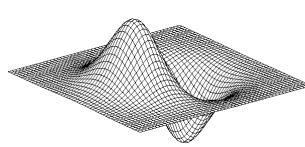
Where is the edge?

Zero-crossings of bottom graph

Slide credit: Steve Seitz

Summary: 2D Edge Detection Filters





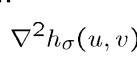
Laplacian of Gaussian

Gaussian

$$h_{\sigma}(u,v) = \frac{1}{2\pi\sigma^2} e^{-\frac{u^2+v^2}{2\sigma^2}} \qquad \frac{\partial}{\partial x} h_{\sigma}(u,v) \qquad \nabla^2 h_{\sigma}(u,v)$$

Derivative of Gaussian

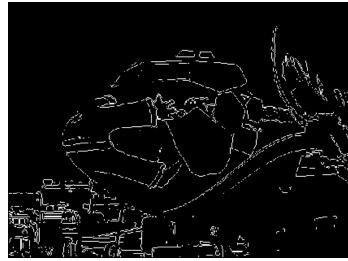
$$\frac{\partial}{\partial x}h_{\sigma}(u,v)$$



$$\nabla^2 f = \frac{\partial^2 f}{\partial x^2} + \frac{\partial^2 f}{\partial y^2}$$

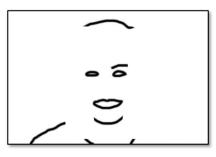
Topics of This Lecture

- Recap: Linear Filters
- Multi-Scale representations
 - > How to properly rescale an image?
- Filters as templates
 - Correlation as template matching
- Image gradients
 - Derivatives of Gaussian
- Edge detection
 - Canny edge detector



Edge Detection

- Goal: map image from 2D array of pixels to a set of curves or line segments or contours.
- Why?



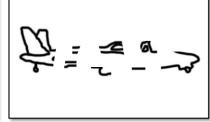
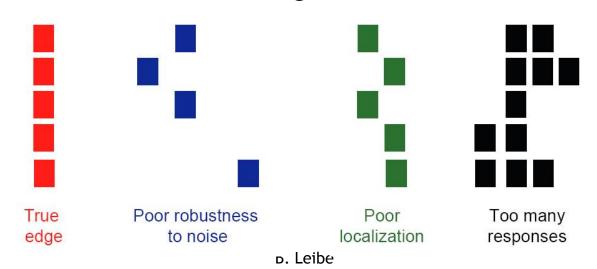


Figure from J. Shotton et al., PAMI 2007

Main idea: look for strong gradients, post-process

Designing an Edge Detector

- Criteria for an "optimal" edge detector:
 - Good detection: the optimal detector should minimize the probability of false positives (detecting spurious edges caused by noise), as well as that of false negatives (missing real edges).
 - Good localization: the edges detected should be as close as possible to the true edges.
 - Single response: the detector should return one point only for each true edge point; that is, minimize the number of local maxima around the true edge.



42 - **F**o

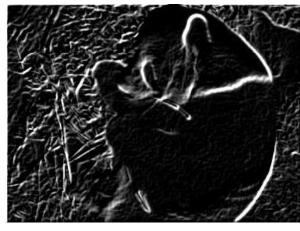
Source: Li Fei-Fei

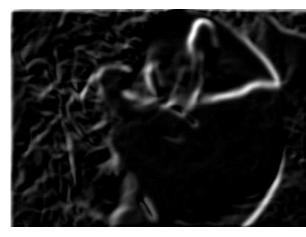
Gradients → **Edges**

Primary edge detection steps

- 1. Smoothing: suppress noise
- 2. Edge enhancement: filter for contrast
- 3. Edge localization
 - Determine which local maxima from filter output are actually edges vs. noise
 - Thresholding, thinning
 - Two issues
 - At what scale do we want to extract structures?
 - How sensitive should the edge extractor be?

Scale: Effect of σ on Derivatives





 σ = 1 pixel

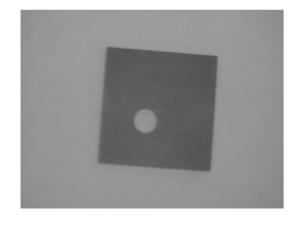
 $\sigma = 3$ pixels

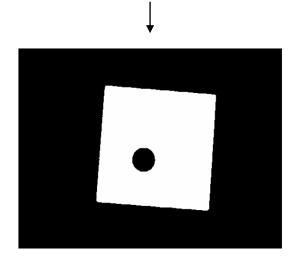
- The apparent structures differ depending on Gaussian's scale parameter.
- ⇒ Larger values: larger-scale edges detected
- ⇒ Smaller values: finer features detected

Sensitivity: Recall Thresholding

- Choose a threshold t
- Set any pixels less than t
 to zero (off).
- Set any pixels greater than or equal t to one (on).

$$F_{T}[i,j] = \begin{cases} 1, & \text{if } F[i,j] \ge t \\ 0, & \text{otherwise} \end{cases}$$





Original Image

Slide credit: Kristen Grauman

Gradient Magnitude Image

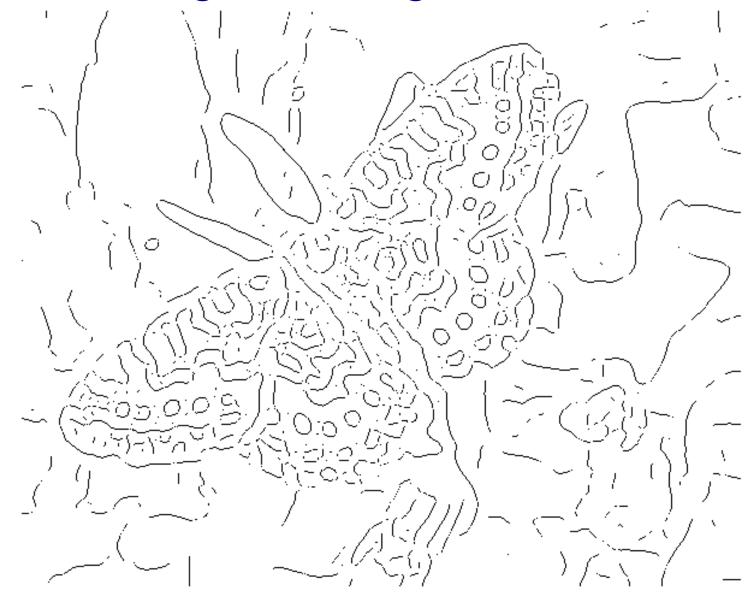
Slide credit: Kristen Grauman

B. Leibe

Thresholding with a Lower Threshold

49

Thresholding with a Higher Threshold



Slide credit: Kristen Grauman

B. Leibe

- Probably the most widely used edge detector in computer vision
- Theoretical model: step-edges corrupted by additive Gaussian noise
- Canny has shown that the first derivative of the Gaussian closely approximates the operator that optimizes the product of signal-to-noise ratio and localization.

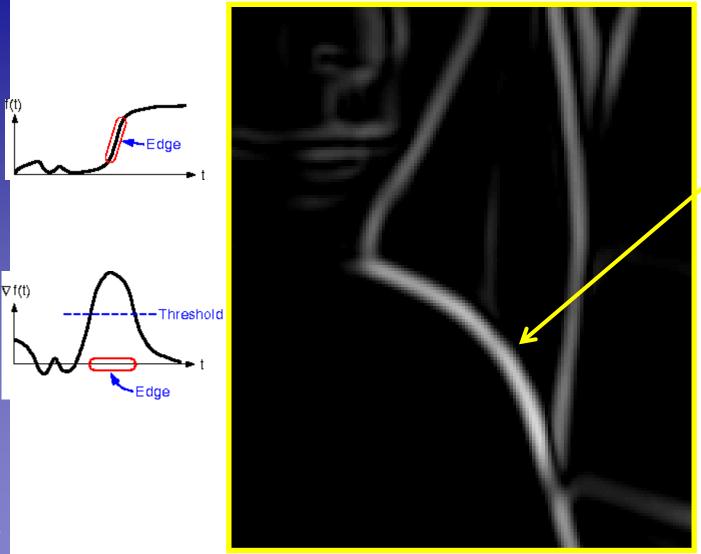
J. Canny, <u>A Computational Approach To Edge Detection</u>, *IEEE Trans*. *Pattern Analysis and Machine Intelligence*, 8:679-714, 1986.

51 Source: Li Fei-Fei

- 1. Filter image with derivative of Gaussian
- 2. Find magnitude and orientation of gradient
- 3. Non-maximum suppression:
 - Thin multi-pixel wide "ridges" down to single pixel width
- 4. Linking and thresholding (hysteresis):
 - Define two thresholds: low and high
 - Use the high threshold to start edge curves and the low threshold to continue them
- MATLAB:
 - >> edge(image, 'canny');
 - >> help edge

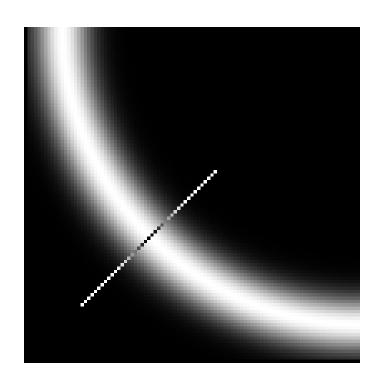
Original image (Lena)

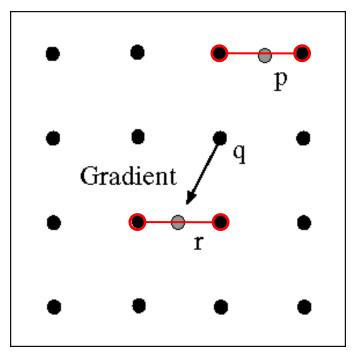
Gradient magnitude



How to turn these thick regions of the gradient into curves?

Non-Maximum Suppression





- Check if pixel is local maximum along gradient direction, select single max across width of the edge
 - Requires checking interpolated pixels p and r
 - ⇒ Linear interpolation based on gradient direction

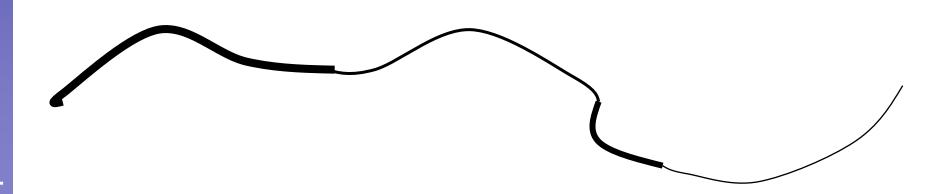
Problem: pixels along this edge didn't survive the thresholding.

Thinning (non-maximum suppression)

Solution: Hysteresis Thresholding

- Hysteresis: A lag or momentum factor
- ullet Idea: Maintain two thresholds k_{high} and k_{low}
 - ightarrow Use k_{high} to find strong edges to start edge chain
 - ightharpoonup Use k_{low} to find weak edges which continue edge chain
- Typical ratio of thresholds is roughly

$$k_{high} \ / \ k_{low} = 2$$



Hysteresis Thresholding

Original image

High threshold (strong edges)

Low threshold (weak edges)

courtesy of G. Loy

Hysteresis threshold

60 Source: L. Fei-Fei

Object Boundaries vs. Edges

Shadows

B. Leibe

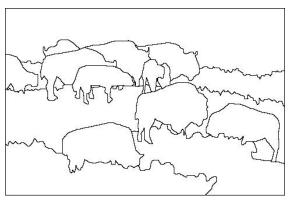
Slide credit: Kristen Grauman

Texture

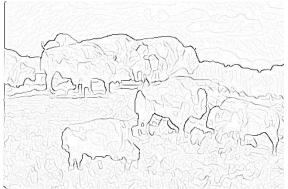
Edge Detection is Just the Beginning...

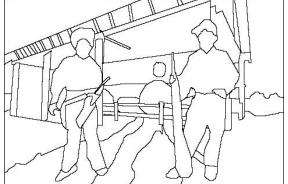
Image

Human segmentation



Gradient magnitude





Berkeley segmentation database:

http://www.eecs.berkeley.edu/Research/Projects/CS/vision/grouping/segbench/

62

References and Further Reading

 Background information on linear filters and their connection with the Fourier transform can be found in Chapter 7 of F&P. Additional information on edge detection is available in Chapter 8.

D. Forsyth, J. Ponce,
 Computer Vision - A Modern Approach.
 Prentice Hall, 2003

