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Topics of This Lecture

¢ Recap: Linear Regression

¢ Kernels
» Dual representations
~ Kernel Ridge Regression
~ Properties of kernels

Gaussian Processes
» Motivation
» Gaussian Process definition
» Squared exponential covariance function
» Prediction with noise-free observations
» Prediction with noisy observations
» GP Regression
Influence of hyperparameters

v

¢ Applications

B. Leibe
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RWTH//CHE
Recap: Linear Basis Function Models

¢ Generally, we consider models of the following form
M-1

. T
yix,w) = 3 wyoi(x) = whe(x)
=0
~ where ¢;(x) are known as basis functions.
» In the simplest case, we use linear basis functions: ¢,(x) = z,.

e Other popular basis functions
1 .‘ 1 [\
LN ’." 0.75
N /
0 el 05
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Gaussian
B. Leibe
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Polynomial Sigmoid
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This Lecture: Advanced Machine Learning

 Regression Approaches f X =R
» Linear Regression —

» Regularization (Ridge, Lasso) B

» Kernels (Kernel Ridge Regression)

» Gaussian Processes

¢ Learning with Latent Variables
» EM and Generalizations
» Approximate Inference

¢ Deep Learning

» Neural Networks
» CNNs, RNNs, RBMs, etc.

B. Leibe
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Recap: Loss Functions for Regression

e The squared loss is not the only possible choice
» Poor choice when conditional distribution p(¢|x) is multimodal.
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¢ Simple generalization: Minkowski loss -_l_ L
L{t, y(x)) = |y(x) — | —
. Expectation . \\\ ’ //
it = [ [l ~tipxpaxar ]
¢ Minimum of E[L ] is given by . "‘"\
> Conditional mean for ¢=2, —\LI
» Conditional median for ¢ =1, o
» Conditional mode for ¢=0. ‘ I‘.‘ ,‘I
— 4
B. Leibe
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Recap: Regularized Least-Squares

¢ Consider more general regularization functions
N M
“ ., 1 T 2, A
- “Lgnorms”: o Z{i‘,, —w d(x,)} + EZI w;]?
J=

n=1

©
L 4

o Effect: Sparsity for ¢ < 1.

» Minimization tends to set many coefficients to zero

6
B. Leibe

Image source: C.M, Bishop, 200d
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Recap: Lasso as Bayes Estimation Topics of This Lecture
¢ L, regularization (“The Lasso”)
R e Kernels
W =arg mm 9 z{f” -w ¢’(x“) + ’\Z |ew;] » Dual representations
n=1 . Kernel Ridge Regression
g . 3 X % » Properties of kernels
i« Interpretation as Bayes Estimation g
% » We can think of |w,|? as the log-prior density for w; 3;
c c
£ £
£ « Prior for Lasso (¢ = 1): Laplacian distribution 8
2 (w) 1 [—Iwl/} . 1 2
= = — — = — S
z p(w o exp W/ T with T 3 S
= =
-3 -
. .
3 S | 8
2 e 2
B. Leibe Image source: Wikipedi B. Leibe -
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Introduction to Kernel Methods Dual Representations: Derivation

¢ Dual representations
» Many linear models for regression and classification can be
reformulated in terms of a dual representation, where

predictions are based on linear combinations of a kernel
function evaluated at training data points.

¢ Consider a regularlzed linear regression model
A
== Z{w O(x,) — ta ¥+ ;w W

n=1 -

with the solution N
1y s )
wo= =2 {wholx) — tu)lx,)

n=1

» We can write this as a linear combination of the ¢(x,) with
coefficients that are functions of w:

= Z a,6(x,) = ¥'a

n=1

For models that are based on a fixed nonlinear feature space
mapping ¢(x), the kernel function is given by

kix,x') = ¢(x)"o(x')

v

v

We will see that by substituting the inner product by the kernel,
we can achieve interesting extensions of many well-known
algorithms...
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with a, = _X{WI o(xn) — tn}
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Dual Representations: Derivation Kernel Ridge Regression

¢ Dual definition

» Instead of working with w, we can formulate the optimization
for a by subsntutlng w = ®7a into J(w)

1 . . 1 .. A
J(a) = §a1 KKa —a’Kt + Etjt + ial Ka
» Solving for a, we obtain 3
a = (K+Ay) 't |

(w)——Z{w O(x,,) —:“} + w ‘W

n=1 e

¢ Prediction for a new input x: EEEE
- Writing k(x) for the vector with elements k,(x) = k(x;,,x)

y(x) = wig(x) = a"®o(x) = k(x)" (K + ALy) 't

| - . 1 4 A .
J(a) = 5a1¢~¢~1 30'a—aTddlt + Etff;+ aaIlIJlI‘Ia
. Define the kernel matrix K = &7 with elements

K = &(x0) " ¢(x1) = k(%0, %) = The dual formulation allows the solution to be entirely

expressed in terms of the kernel function k(x,x’).

= The resulting form is known as Kernel Ridge Regression
and allows us to perform non-linear regression.

» Now, the sum-of-squares error can be written as

© ©
= =
= i
o) [}
2 2
= =
=] =
= i=
= <
£ £
3 3
= =
o o
= =
£ £
] o
S S
= =
3 3
o Qo
= <
s g
H H

1 P 1 . A
J(a):§aIKKa—aIKt+§t1t+§aIKa

12

Image source: Christooh Lamper;

B. Leibe

B. Leibe




Advanced Machine Learning Winter’16

Advanced Machine Learning Winter’16

RWTH//CHE
Why use k(x,x’) instead of ¢(x)T¢(x’)?

1. Memory usage
» Storing @(x,),... , ¢(xy) requires O(NM) memory.
» Storing k(x,, X,),... , k(Xy, Xy) requires O(N?) memory.

2. Speed

~ We might find an expression for k(x;, x,) that is faster to
evaluate than first forming ¢(x) and then computing ¢(x)T¢(x’).

» Example: comparing angles (z € [o, 27]):

(olai), o))

([cos(x;). sin(;))], [cos(

x;),sin(x;)])

= cos(x;) cos(x;) + sin(x;) sin(x;)

k(wi,a;) = cos(z; — xj)

Slide credit: Christoph | ampert B. Leibe
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Properties of Kernels

¢ Definition (Positive Definite Kernel Function)
» Let Xbe a non-empty set. A function k£ : X' x X — R is called
positive definite kernel function, iff
» k is symmetric, i.e. k(z, 2’) = k(«’, z) for all z, 2’ € X, and
» for any set of points z,... , z, € X, the matrix

K,’j = (k(ﬂfn-ﬂ_ﬂ)):._r

is positive (semi-)definite, i.e. for all vectors x € R™

N

Z X Kijx; 20
ij=1

ide credit: Christoph | ampert. B. Leibe
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Properties of Kernels

¢ Theorem
» Let k: Xx X — R be a positive definite kernel function. Then
there exists a Hilbert Space H and a mapping ¢ : X — H such

that
(o), 8(a")in

, .)y is the inner product in .

k(z,z') =
» where (.

¢ Translation
» Take any set X and any function k: X' x X — R.

» If k is a positive definite kernel, then we can use k to learn a
(soft) maximum-margin classifier for the elements in A

* Note

» X can be any set, e.g. X = “all videos on YouTube" or X = “all
permutations of {1, , k3", or X = “the internet”.

ide credit: Christoph | ampert.
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Why use k(x,x’) instead of ¢(x)T¢(x’)?

3. Flexibility

~ There are kernel functions k(x;, x;) for which we know that a
feature transformation ¢ exists, but we don’t know what ¢ is.

» This allows us to work with far more general similarity functions.
» We can define kernels on strings, trees, graphs, ...

4. Dimensionality

» Since we no longer need to explicitly compute ¢(x), we can
work with high-dimensional (even infinite-dim.) feature spaces.

¢ In the following, we take a closer look at the
background behind kernels and at how to use them...

ide adapted from Christoph | ampert 8. Leibe

Hilbert Spaces

¢ Definition (Hilbert Space)
» A Hilbert Space H is a vector space H with an inner product
(., )3 e.8. a mapping
(4 :HxH—R

which is
» symmetric: (v, V') = (v, v)y forallv, v € H,
~ positive definite: (v, v)y > 0 forallv e H,
where (v, v)3 =0only forv=0 € H.
» bilinear: (av, v')y = a(v, v)y forve H,a € R
{0+ 0%, 0% = (v, 0y + {0, 07y

¢ We can treat a Hilbert space like some R", if we only use
concepts like vectors, angles, distances.
¢ Note: dimH = oo is possible!

ide credit: Christoph Lampert B. Leibe
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ide adapted from Christoph | ampert 5. Leibe
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Example: Bag of Visual Words Representation
¢ General framework in visual recognition
» Create a codebook (vocabulary) of prototypical image features

» Represent images as histograms over codebook activations
» Compare two images by any histogram kernel, e.g. x2 kernel

1 (hy — B})?
kya(h, Iy = exp (7‘, ; I fﬁfj

{ 1
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The “Kernel Trick” Outlook

¢ Kernels are a widely used concept in Machine Learning
» They are the basis for Support Vector Machines from ML1.
» We will see several other kernelized algorithms in this lecture...

Any algorithm that uses data only in the form
of inner products can be kernelized.

e Examples
~ Gaussian Processes
» Support Vector Regression
» Kernel PCA
» Kernel k-Means

¢ How to kernelize an algorithm
» Write the algorithm only in terms of inner products.
» Replace all inner products by kernel function evaluations.

= The resulting algorithm will do the same as the linear
version, but in the (hidden) feature space #.
» Caveat: working in H is not a guarantee for better performance.
A good choice of k& and model selection are important!

e Let’s first examine the role of kernels in probabilistic
discriminative models.
= This will lead us to Gaussian Processes.

Advanced Machine Learning Winter’16
Advanced Machine Learning Winter’16
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Slide credit: Christoph lampert B. Leibe B. Leibe
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Topics of This Lecture Gaussian Processes
e Sofar...
» Considered linear regression models of the form
y(x,w) = wlo(x)
° © » where w is a vector of parameters
E g ¢(x) is a vector of fixed non-linear basis functions.
i « Gaussian Processes £ » We showed that a prior distribution over w induced a prior
Z, . Motivation ;g, distribution over functions y(x,w).
g » Gaussian Process definition E . Given a training set, we evaluated the posterior distribution
K . Squared exponential covariance function 4 over w = corresponding posterior over regression functions.
% » Prediction with noise-free observations é » This implies a predictive distribution p(t|x) for new inputs x.
E » Prediction with noisy observations S
= » GP Regression =| « Gaussian process viewpoint
8 - Influence of hyperparameters g » Dispense with the parametric model and instead define a prior
% g probability distribution over functions directly.
B. Leibe = B. Leibe 26
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Gaussian Process Gaussian Process

¢ Gaussian distribution
» Probability distribution over scalars / vectors.

o Example prior over functions p(f)

» Represents our prior belief about
functions before seeing any data.
Although specific functions don’t have
mean of zero, the mean of f(x) values
for any fixed x is zero (here).

¢ Gaussian process (generalization of Gaussian distrib.)
» Describes properties of functions.
» Function: Think of a function as a long vector where each entry
specifies the function value f(x;) at a particular point x;.
» Issue: How to deal with infinite number of points?
- If you ask only for properties of the function at a finite number of
points...
- Then inference in Gaussian Process gives you the same answer if
you ignore the infinitely many other points.

v

Favors smooth functions
- l.e. functions cannot vary too rapidly

- Smoothness is induced by the covariance function of the
Gaussian Process.

v

» Learning in Gaussian processes

- Is mainly defined by finding suitable properties of the covariance
function.

¢ Definition

» A Gaussian process (GP) is a collection of random variables any
finite number of which has a joint Gaussian distribution.
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ide credit: Rernt Schiele B. Leibe ide credit: Rernt Schiele 5. Leibe Jmage source: Rasmussen & Williams, 2004
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Linear Regression Revisited

e Let’s return to the linear regression example and re-
derive the predictive distribution by working in terms of
distributions over functions y(x,w)...

¢ Linear Regression Model

ylx, w) = wlo(x)

v

Consider a prior distribution over w given by
p(w) =N(w[0,a™'T)

v

For any given value of w, the definition induces a particular
function of x.

The probability distribution over w therefore induces a
probability distribution over functions y(x).

v

B. Leibe

RWTH LGN
Gaussian Process

¢ This model is a particular example of a Gaussian
Process.

» Linear regression with a zero-mean, isotropic Gaussian prior on
Ww.

¢ General definition
» A Gaussian Process is defined as a probability distribution over
functions y(x) such that the set of values of y(x) evaluated at an
arbitrary set of points x,,...,x have a Gaussian distribution.

v

A key point about GPs is that the joint distribution over N
variables y,,...,yy is completely specified by the second-order
statistics, namely mean and covariance.

B. Leibe
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Gaussian Process
e Property
» Defined as a collection of random variables, which implies
consistency.

» Consistency means

- If the GP specifies e.g.  (y1,) ~ N1, %) E:[Z“ E12]

o1 Yo

- Then it must also specify Y1 ~ NMug, E4y)

» l.e. examination of a larger set of variables does not change the
distribution of a smaller set.

B. Leibe

ide credit: Rernt Schiele
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Linear Regression Revisited

¢ Linear Regression (cont’d)
» We want to evaluate this function at specific values of x,
e.g. at the training data points x,...,x.
» We are therefore interested in the joint distribution of function
values y(x,),...,y(xy), which we denote by the vector y.

¥y = $w

> We know that y is a linear combination of Gaussian distributed
variables and is therefore itself Gaussian.

= Only need to find its mean and covariance.
Ely] = ®E[w]=0

1
covly] = Elyy?] = dE[ww’]aT = atbq)T =K

» with the kernel matrix K = {k(x,,,x,,)},.,.-

B. Leibe

TWTH G
Gaussian Process

¢ A Gaussian process is completely defined by
» Mean function m(x) and

m(x) = E[f(x)]

» Covariance function k(x,x’)

k(x,x') = B[(f(x) = m(x)(f(x') —m(x))]

» We write the Gaussian process (GP)

f(x) ~ GP(m(x), k(x,x))

ide adapted from Rernt Schiele B. Leibe
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Gaussian Process: Example

¢ Example:
. Bayesian linear regression model: f(x) = ¢(x)"w
- With Gaussian prior: w ~ N(0,%,)

= Mean:
E[f(x)] = ¢(x) "E[w] = 0
= Covariance:
E[f(x)f(x)] = ¢(x)"Eww"]¢(x)
= ¢(x)"5,0(x")
= $(x)7(x)

where

ide credit: Bernt Schiele B. Leibe
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Gaussian Process: Squared Exponential

RWTHAACHEN
Gaussian Process: Prior over Functions

* Typical covariance function
» Squared exponential (SE)

- Covariance function specifies the covariance between pairs of
random variables

covlF0x). )] = Ky x,) = exp { 3, x|

¢ Distribution over functions:
» Specification of covariance function implies distribution over
functions.

» l.e. we can draw samples from the distribution of functions
evaluated at a (finite) number of points.

» Procedure
- We choose a number of input points X,

- We write the corresponding covariance
matrix (e.g. using SE) element-wise:

e Remarks

» Covariance between the outputs is written as a function
between the inputs.

» The squared exponential covariance function corresponds to a K(X,,X,) 3o " X
Bayesian linear regression model with an infinite number of . 3, \7 /X
basis functions. - Then we generate a random Gaussian - \/ \ /

: vector with this covariance matrix: \

» For any positive definite covariance function k(.,.), there exists

fe NN(Ov K(X*, X*))
a (possibly infinite) expansion in terms of basis functions.

Advanced Machine Learning Winter’16
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input, x
Example of 3 functions

Slide credit: Bernt Schiele B. Leibe > ide credit: Bernt Schiele 8. Leibe Image source: Ras:.rAn Enlgevﬂham gg
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Topics of This Lecture Prediction with Noise-free Observations
¢ Assume our observations are noise-free:
{(xn, fu) [ n=1,...,N}
¢ Joint distribution of the training outputs f and test
o o outputs f. according to the prior:
3 3 €] a (o[ KCLX) KX
5| + Gaussian Processes £ £, KX, X) K(X X
4 » Motivation o . ) 3 .
g . Gaussian Process definition E > K(.)(;, X.) contains covariances for all pairs of training and test
3 » Squared exponential covariance function S points.
P pe . . . @
£ - Prediction with noise-free observations =1 « To get the posterior (after including the observations)
E » Prediction with noisy observations 5 . . :
S GP R X 2 » We need to restrict the above prior to contain only those
B - Infl egress1fo: " B functions which agree with the observed values.
§ - Influence of hyperparameters E » Think of generating functions from the prior and rejecting those
§ § that disagree with the observations (obviously prohibitive).
B. Leibe N ide credit: Rernt Schiele LA *
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Prediction with Noise-free Observations Prediction with Noise-free Observations

¢ Calculation of posterior: simple in GP framework

» Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

LIX, X, E~ N(E,covlf)) £, = EE|X, X, 1)

¢ Example:

Prior Posterior using 5
noise-free observations

/

+

o
N

» with:

2 e

5 3

£ £

= =

g - ] = 2 fy

] f, = K(X,, X)K(X,X)"'f =3 S, \ 1\ 20

3 e . 1 3 [\ 1

3 covlf,] = K(X,,X,) - K(X,, X)K(X,X)"'K(X,X,) 4 \\/ \ /N 3 ) J
£ £ - \ / -

§ » This uses the general property of Gaussians that f% ) v o

= = - -

o b = Mo+ St (% — o ~ E :
3 H:[H“] s E:I:E”a E“b:| = Hajp s b e (1 0 ) 3 5 mpgt, X 5 ? mpgl. x

§ oy b b Bap = Baa — S S, Sha §

2 2

40
ide credit: Bernt Schiele B. Leibe Image source: Rasmussen & Williame, 2000

ide credit: Bernt Schiele B. Leibe
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Topics of This Lecture

¢ Gaussian Processes

Motivation

Gaussian Process definition

» Squared exponential covariance function
» Prediction with noise-free observations
» Prediction with noisy observations

» GP Regression

» Influence of hyperparameters

v

v

41
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Prediction with Noisy Observations

¢ Calculation of posterior:

» Corresponds to conditioning the joint Gaussian prior distribution
on the observations:

£ X, X, t ~ N(£,, cov[L,]) f, = E[f|X, X,,t]

» with:

f, = K(X.,X)(K(X,X)+c2) "¢
covlf,] = K(X.,X.) - K(X., X) (K(X, X)+02I) ' K(X,X.)

= This is the key result that defines Gaussian process regression!
- The predictive distribution is a Gaussian whose mean and variance
depend on the test points X. and on the kernel k(x,x’), evaluated
on the training data X.
43

ide credit: Bernt Schiele B. Leibe
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Gaussian Process Regression

f

45

ide credit: Rernt Schiele B. Leibe
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Prediction with Noisy Observations

¢ Typically, we assume noise in the observations
t=fix)+e e~ N(0,07)
¢ The prior on the noisy observations becomes
cov[yp, Yy] = k(xp. ) +02 6,
» Written in compact form:

covly| = K(X, X)+o] 1

¢ Joint distribution of the observed values and the test
locations under the prior is then:

t ] (o [ECX X0kl K(X,X.)
f, : ’ K(X, X) K(X,, X.)
42
ide credit: Bernt Schiele 8. Leibe
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Gaussian Process Regression

e Example

ide credit: Bernt Schiele B. Leibe
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TWTH G
Discussion

e Keyresult: f|X, X, t~N(f,cov[f.])
£, = K(X.. X)(K(X, X)+o1) "¢
1

eovlf)] = K(X., X.)— K(X,, X) (K(X, X)+1) " K(X, X.)

with

¢ Observations
» The mean can be written in linear form N
Foo) = k(x, X)E (X, X) + 020] 't =3 ank(x,x,).
e el B
o n=1

- This form is commonly encountered in the kernel literature (—SVM)

» The variance is the difference between two terms
Vi(x,) = k(x,,x,) = k(x,, X)[K(X, X) + o217 k(X, x,)
-

Prior variance Explanation of data X'

46

ide adapted from Carl B. Leibe
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Computational Complexity

« Computational complexity

» Central operation in using GPs involves inverting a matrix of size
NxN (the kernel matrix K(X,X)):

£ = K(X., XO[K(X, X)+020) "}t
cavlf,] = K(X,, X.) = K(X,, X)|(K(X, X)+~o21) ' [K(X, X.)

= Effort in O(IV?) for N data points!

» Compare this with the basis function model (—Lecture 3)

U Xt) ~ A7 (o) ST B0 6k, "8 00,

1 el
S= 20X+

= Effort in O(M?) for M basis functions.

47
B. Leibe

Topics of This Lecture

¢ Gaussian Processes

Motivation

Gaussian Process definition

» Squared exponential covariance function
» Prediction with noise-free observations
» Prediction with noisy observations

» GP Regression

» Influence of hyperparameters

v

v

B. Leibe
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Influence of Hyperparameters

2.2
* Examples for different settings of the length scale

2
; Xp — X, 3
Foy (%, Xg) = rrf exp {7u} + ”idpq

(o parameters set by optimizing
the marginal likelihood)

U:O-J"U??) =

ide credit: Bernt Schiele B. Leibe

Image source: Rasmussen & Williams, 200
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Computational Complexity

¢ Complexity of GP model
» Training effort: O(IV?) through matrix inversion
» Test effort: O(N?) through vector-matrix multiplication

* Complexity of basis function model
. Training effort: O(M3)
» Test effort: O(M?)

¢ Discussion
» If the number of basis functions ) is smaller than the number of
data points NN, then the basis function model is more efficient.
» However, advantage of GP viewpoint is that we can consider

covariance functions that can only be expressed by an infinite
number of basis functions.

- Still, exact GP methods become infeasible for large training sets,
B. Leibe

TOWTHACHET]
Influence of Hyperparameters

¢ Most covariance functions have some free parameters.
» Example:
(xp — X,

2
ko) = e {220l o,

- Parameters: (I,7y.a,)
- Signal variance: O
- Range of neighbor influence (called “length scale”): [
- Observation noise: ;L

ide credit: Bernt Schiele B. Leibe
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Topics of This Lecture

¢ Applications

B. Leibe
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Application: Non-Linear Dimensionality Reduction

RWTHAACHET
Gaussian Process Latent Variable Model

2D space

2D manifold
in 3D space

¢ At each time step ¢, we express our observations y as a
combination of basis functions « of latent variables x.

(B)

20 latent
P _ space
300 F TR _
articulated > i V yi = E by (x¢) + 6
body space 1 3 7
4

¢ This is modeled as a Gaussian process...

Advanced Machine Learning Winter’16
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slide credit: Andreas Geiger B. Leibe ide credit: Andreas Geiser B. Leibe
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Example: Style-based Inverse Kinematics

| 4
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RWTH CHET
Application: Modeling Body Dynamics

¢ Task: estimate full body pose in m video frames.
» High-dimensional Y.

» Model body dynamics using hierarchical Gaussian process latent
variable model (hGPLVM) [Lawrence & Moore, ICML 2007].
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S Learned GPLVMs using a walk, a jump shot and a baseball pitch S I O

< ! 55 2 ' 56
ide credit: Andreas Gejoar B. Lethe ide credit: Bernt Schiele B. Leibe LAndriluka, Roth, Schiele, CYPR'08]

RWTH//CHE RWTH CHET

Articulated Motion in Latent Space witferent work) Results

¢ Gaussian Process regression from latent space to
» Pose [—>= p(Pose|z) to recover original pose from latent space]
» Silhouette [ = p(Silhouette | z) to do inference on silhouettes]

454 frames (~35 sec)
23 Pedestrians

Walking cycles have one Additional DOF encodes 20 detected by multi-body tracker

main (periodic) DOF »walking style“
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References and Further Reading

¢ Kernels and Gaussian Processes are (shortly) described
in Chapters 6.1 and 6.4 of Bishop’s book.

Christopher M. Bishop "L - E
Pattern Recognition and Machine Learning = I
Springer, 2006

Carl E. Rasmussen, Christopher K.I. Williams
Gaussian Processes for Machine Learning
MIT Press, 2006

¢ A better introduction can be found in Chapters 1 and 2
of the book by Rasmussen & Williams (also available
online: http://www.gaussianprocess.org/gpml/)

B. Leibe
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