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Talk Announcement

• Yann LeCun (NYU & FaceBook AI)
28.11. 15:00-16:30h, SuperC 6th floor (Ford Saal)

The rapid progress of AI in the last few years are largely the result of advances in deep

learning and neural nets, combined with the availability of large datasets and fast

GPUs. We now have systems that can recognize images with an accuracy that rivals

that of humans. This will lead to revolutions in several domains such as autonomous

transportation and medical image analysis. But all of these systems currently use

supervised learning in which the machine is trained with inputs labeled by humans. The

challenge of the next several years is to let machines learn from raw, unlabeled data,

such as video or text. This is known as predictive (or unsupervised) learning. Intelligent

systems today do not possess "common sense", which humans and animals acquire by

observing the world, by acting in it, and by understanding the physical constraints of

it. I will argue that the ability of machines to learn predictive models of the world is a

key component of that will enable significant progress in AI. The main technical

difficulty is that the world is only partially predictable. A general formulation of

unsupervised learning that deals with partial predictability will be presented. The

formulation connects many well-known approaches to unsupervised learning, as well as

new and exciting ones such as adversarial training.

• No lecture next Monday - go see the talk!

2
B. Leibe
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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation

 CNNs, RNNs, ResNets, etc.
B. Leibe



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Recap: Generalized Linear Discriminants

• Extension with non-linear basis functions 

 Transform vector x with M nonlinear basis functions Áj(x):

 Basis functions Áj(x) allow non-linear decision boundaries.

 Activation function g( ¢ ) bounds the influence of outliers.

 Disadvantage: minimization no longer in closed form.

• Notation

4
B. Leibe

with Á0(x) = 1

Slide adapted from Bernt Schiele
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Recap: Gradient Descent

• Iterative minimization

 Start with an initial guess for the parameter values        .

 Move towards a (local) minimum by following the gradient.

• Basic strategies

 “Batch learning”

 “Sequential updating”

where

5
B. Leibe

w
(¿+1)

kj = w
(¿)

kj ¡ ´
@E(w)

@wkj

¯̄
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E(w) =

NX

n=1

En(w)
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Recap: Gradient Descent

• Example: Quadratic error function

• Sequential updating leads to delta rule (=LMS rule)

 where

 Simply feed back the input data point, weighted by the 

classification error.
6

B. Leibe

w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)

= w
(¿)

kj ¡ ´±knÁj(xn)

±kn = yk(xn;w)¡ tkn

Slide adapted from Bernt Schiele

E(w) =

NX

n=1

(y(xn;w)¡ tn)
2
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Recap: Probabilistic Discriminative Models

• Consider models of the form

with

• This model is called logistic regression.

• Properties

 Probabilistic interpretation

 But discriminative method: only focus on decision hyperplane

 Advantageous for high-dimensional spaces, requires less 

parameters than explicitly modeling p(Á|Ck) and p(Ck).

7
B. Leibe

p(C1jÁ) = y(Á) = ¾(wTÁ)

p(C2jÁ) = 1¡ p(C1jÁ)
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Recap: Logistic Regression

• Let’s consider a data set {Án,tn} with n = 1,…,N,

where                     and                 ,                            .

• With yn = p(C1|Án), we can write the likelihood as

• Define the error function as the negative log-likelihood

 This is the so-called cross-entropy error function.
9

Án = Á(xn) tn 2 f0;1g

p(tjw) =

NY

n=1

ytnn f1¡ yng1¡tn

E(w) = ¡ ln p(tjw)

= ¡
NX

n=1

ftn ln yn + (1¡ tn) ln(1¡ yn)g

t = (t1; : : : ; tN)T
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Softmax Regression

• Multi-class generalization of logistic regression

 In logistic regression, we assumed binary labels

 Softmax generalizes this to K values in 1-of-K notation.

 This uses the softmax function

 Note: the resulting distribution is normalized.

12
B. Leibe

tn 2 f0;1g

y(x;w) =

2
6664

P (y = 1jx;w)

P (y = 2jx;w)
...

P (y = Kjx;w)

3
7775 =

1
PK

j=1 exp(w>j x)

2
6664

exp(w>1 x)

exp(w>2 x)
...

exp(w>Kx)

3
7775
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Softmax Regression Cost Function

• Logistic regression

 Alternative way of writing the cost function

• Softmax regression

 Generalization to K classes using indicator functions.

13
B. Leibe

E(w) = ¡
NX

n=1

ftn ln yn + (1¡ tn) ln(1¡ yn)g

= ¡
NX

n=1

1X

k=0

fI (tn = k) ln P (yn = kjxn;w)g

E(w) = ¡
NX

n=1

KX

k=1

(
I (tn = k) ln

exp(w>k x)
PK

j=1 exp(w>j x)

)

rwkE(w) = ¡
NX

n=1

[I (tn = k) lnP (yn = kjxn;w)]
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• Again, no closed-form solution is available

 Resort again to Gradient Descent

 Gradient

• Note

 rwk E(w) is itself a vector of partial derivatives for the 

different components of wk.

 We can now plug this into a standard optimization package.

Optimization

14
B. Leibe

rwkE(w) = ¡
NX

n=1

[I (tn = k) lnP (yn = kjxn;w)]
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A Note on Error Functions

• Ideal misclassification error function (black)

 This is what we want to approximate, 

 Unfortunately, it is not differentiable.

 The gradient is zero for misclassified points.

 We cannot minimize it by gradient descent. 15
Image source: Bishop, 2006

Ideal misclassification error

Not differentiable!

zn = tny(xn)



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

A Note on Error Functions

• Squared error used in Least-Squares Classification

 Very popular, leads to closed-form solutions.

 However, sensitive to outliers due to squared penalty.

 Penalizes “too correct” data points

 Generally does not lead to good classifiers. 16
Image source: Bishop, 2006

Ideal misclassification error

Squared error

Penalizes “too correct”

data points!

Sensitive to outliers!

zn = tny(xn)
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A Note on Error Functions

• Cross-Entropy Error

 Minimizer of this error is given by posterior class probabilities.

 Concave error function, unique minimum exists.

 Robust to outliers, error increases only roughly linearly 

 But no closed-form solution, requires iterative estimation. 17
Image source: Bishop, 2006

Ideal misclassification error

Cross-entropy error

Squared error

Robust to outliers!

zn = tny(xn)
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Side Note: Support Vector Machine (SVM)

• Basic idea

 The SVM tries to find a classifier which  

maximizes the margin between pos. and

neg. data points.

 Up to now: consider linear classifiers

• Formulation as a convex optimization problem

 Find the hyperplane satisfying

under the constraints

based on training data points xn and target values                     .
18

B. Leibe

Margin

wTx+ b = 0

argmin
w;b

1

2
kwk2

tn(wTxn + b) ¸ 1 8n

tn 2 f¡1;1g
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SVM – Analysis

• Traditional soft-margin formulation

subject to the constraints

• Different way of looking at it

 We can reformulate the constraints into the objective function.

where [x]+ := max{0,x}.
19

B. Leibe

“Hinge loss”L2 regularizer

“Most points should 

be on the correct

side of the margin”

“Maximize 

the margin”
min

w2RD; »n2R+
1

2
kwk2 + C

NX

n=1

»n

min
w2RD

1

2
kwk2 + C

NX

n=1

[1¡ tny(xn)]+

Slide adapted from Christoph Lampert
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SVM Error Function (Loss Function)

 “Hinge error” used in SVMs

– Zero error for points outside the margin (zn > 1).

– Linearly increasing error for misclassified points (zn < 1).

 Leads to sparse solutions, not sensitive to outliers.

– Not differentiable around zn = 1  Cannot be optimized directly.
20

B. Leibe Image source: Bishop, 2006

Ideal misclassification error

Hinge error

Squared error

Not differentiable! Favors sparse 

solutions!

Robust to outliers!
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SVM – Discussion

• SVM optimization function

• Hinge loss enforces sparsity

 Only a subset of training data points actually influences the 

decision boundary.

 This is different from sparsity obtained through the regularizer! 

There, only a subset of input dimensions are used.

 Unconstrained optimization, but non-differentiable function.

 Solve, e.g. by subgradient descent

 Currently most efficient: stochastic gradient descent
21

B. Leibe

min
w2RD

1

2
kwk2 + C

NX

n=1

[1¡ tny(xn)]+

Hinge lossL2 regularizer

Slide adapted from Christoph Lampert
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Topics of This Lecture

• A Brief History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning

22
B. Leibe
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

 And a cool learning algorithm: “Perceptron Learning”

 Hardware implementation “Mark I Perceptron”
for 20£20 pixel image analysis 

23
B. Leibe Image source: Wikipedia, clipartpanda.com

“The embryo of an electronic computer 

that [...] will be able to walk, talk, see, 

write, reproduce itself and be conscious 

of its existence.”
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

 They showed that (single-layer) Perceptrons cannot solve all 

problems.

 This was misunderstood by many that they were worthless.

24
B. Leibe Image source: colourbox.de, thinkstock

Neural Networks 

don’t work!
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

 Some notable successes with multi-layer perceptrons.

 Backpropagation learning algorithm

25
B. Leibe Image sources: clipartpanda.com, cliparts.co

OMG! They work like 

the human brain!

Oh no! Killer robots will 

achieve world domination!
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

 Some notable successes with multi-layer perceptrons.

 Backpropagation learning algorithm

 But they are hard to train, tend to overfit, and have 

unintuitive parameters.

 So, the excitement fades again.

26
B. Leibe Image source: clipartof.com, colourbox.de

sigh!
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

 Notably Support Vector Machines

 Machine Learning becomes a discipline of its own.

27
B. Leibe

I can do science, me!

Image source: clipartof.com
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

 Notably Support Vector Machines

 Machine Learning becomes a discipline of its own.

 The general public and the press still love Neural Networks.

28
B. Leibe

So, you’re using Neural Networks?

I’m doing Machine Learning.

Actually...
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

2005+ Gradual progress

 Better understanding how to successfully train deep networks

 Availability of large datasets and powerful GPUs

 Still largely under the radar for many disciplines applying ML

29
B. Leibe

Are you using Neural Networks?

Come on. Get real!
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A Brief History of Neural Networks

1957 Rosenblatt invents the Perceptron

1969 Minsky & Papert

1980s Resurgence of Neural Networks

1995+ Interest shifts to other learning methods

2005+ Gradual progress

2012   Breakthrough results

 ImageNet Large Scale Visual Recognition Challenge

 A ConvNet halves the error rate of dedicated vision approaches.

 Deep Learning is widely adopted.

30
B. Leibe Image source: clipartpanda.com, clipartof.com

It works!
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Topics of This Lecture

• A Short History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning

31
B. Leibe
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• Standard Perceptron

• Input Layer

 Hand-designed features based on common sense

• Outputs

 Linear outputs Logistic outputs

• Learning = Determining the weights w

Perceptrons (Rosenblatt 1957)
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Input layer

Weights

Output layer
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• One output node per class

• Outputs

 Linear outputs Logistic outputs

 Can be used to do multidimensional linear regression or 

multiclass classification.

Extension: Multi-Class Networks
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• Straightforward generalization

• Outputs

 Linear outputs Logistic outputs

Extension: Non-Linear Basis Functions
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Feature layer

Weights

Output layer

Input layer

Mapping (fixed)
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• Straightforward generalization

• Remarks

 Perceptrons are generalized linear discriminants!

 Everything we know about the latter can also be applied here.

 Note: feature functions Á(x) are kept fixed, not learned!

Extension: Non-Linear Basis Functions
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Feature layer

Weights

Output layer

Input layer

Mapping (fixed)

Wkd’
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Perceptron Learning

• Very simple algorithm

• Process the training cases in some permutation

 If the output unit is correct, leave the weights alone.

 If the output unit incorrectly outputs a zero, add the input 

vector to the weight vector.

 If the output unit incorrectly outputs a one, subtract the input 

vector from the weight vector.

• This is guaranteed to converge to a correct solution if 

such a solution exists.
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Perceptron Learning

• Let’s analyze this algorithm...

• Process the training cases in some permutation

 If the output unit is correct, leave the weights alone.

 If the output unit incorrectly outputs a zero, add the input 

vector to the weight vector.

 If the output unit incorrectly outputs a one, subtract the input 

vector from the weight vector.

• Translation

37
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w
(¿+1)

kj = w
(¿)

kj ¡ ´ (yk(xn;w)¡ tkn)Áj(xn)



P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a
n

c
e
d

 M
a
c
h

in
e
 L

e
a
rn

in
g

 W
in
te
r’
1
6

Perceptron Learning

• Let’s analyze this algorithm...

• Process the training cases in some permutation

 If the output unit is correct, leave the weights alone.

 If the output unit incorrectly outputs a zero, add the input 

vector to the weight vector.

 If the output unit incorrectly outputs a one, subtract the input 

vector from the weight vector.

• Translation

 This is the Delta rule a.k.a. LMS rule!

 Perceptron Learning corresponds to 1st-order (stochastic) 

Gradient Descent of a quadratic error function! 
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Loss Functions

• We can now also apply other loss functions

 L2 loss

 L1 loss:

 Cross-entropy loss

 Hinge loss

 Softmax loss

39
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 Logistic regression

 Least-squares regression

 Median regression

L(t; y(x)) = ¡
P

n

P
k

n
I (tn = k) ln

exp(yk(x))P
j exp(yj(x))

o

 SVM classification

 Multi-class probabilistic classification
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Regularization

• In addition, we can apply regularizers

 E.g., an L2 regularizer

 This is known as weight decay in Neural Networks. 

 We can also apply other regularizers, e.g. L1  sparsity

 Since Neural Networks often have many parameters, 

regularization becomes very important in practice.

 We will see more complex regularization techniques later on...
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Limitations of Perceptrons

• What makes the task difficult?

 Perceptrons with fixed, hand-coded input features can model 

any separable function perfectly...

 ...given the right input features.

 For some tasks this requires an exponential number of input 

features.

– E.g., by enumerating all possible binary input vectors as separate 

feature units (similar to a look-up table).

– But this approach won’t generalize to unseen test cases!

 It is the feature design that solves the task!

 Once the hand-coded features have been determined, there are 

very strong limitations on what a perceptron can learn.

– Classic example: XOR function.
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Wait...

• Didn’t we just say that...

 Perceptrons correspond to generalized linear discriminants

 And Perceptrons are very limited...

 Doesn’t this mean that what we have been doing so far in 

this lecture has the same problems???

• Yes, this is the case. 

 A linear classifier cannot solve certain problems

(e.g., XOR).

 However, with a non-linear classifier based on 

the right kind of features, the problem becomes solvable.

 So far, we have solved such problems by hand-designing good 

features Á and kernels Á>Á.

 Can we also learn such feature representations?
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Topics of This Lecture

• A Short History of Neural Networks

• Perceptrons
 Definition

 Loss functions

 Regularization

 Limits

• Multi-Layer Perceptrons
 Definition

 Learning
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Multi-Layer Perceptrons

• Adding more layers

• Output

44
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Hidden layer

Output layer

Input layer

Slide adapted from Stefan Roth
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Multi-Layer Perceptrons

• Activation functions g(k):

 For example: g(2)(a) = ¾(a), g(1)(a) = a

• The hidden layer can have an arbitrary number of nodes

 There can also be multiple hidden layers.

• Universal approximators

 A 2-layer network (1 hidden layer) can approximate any 

continuous function of a compact domain arbitrarily well!

(assuming sufficient hidden nodes)
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Learning with Hidden Units

• Networks without hidden units are very limited in what 

they can learn

 More layers of linear units do not help  still linear

 Fixed output non-linearities are not enough.

• We need multiple layers of adaptive non-linear hidden 

units. But how can we train such nets?

 Need an efficient way of adapting all weights, not just the last 

layer.

 Learning the weights to the hidden units = learning features

 This is difficult, because nobody tells us what the hidden units 

should do.

 Next lecture
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References and Further Reading

• More information on Neural Networks can be found in 

Chapters 6 and 7 of the Goodfellow & Bengio book

B. Leibe
47

Ian Goodfellow, Aaron Courville, Yoshua Bengio

Deep Learning

MIT Press, in preparation

https://goodfeli.github.io/dlbook/


