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This Lecture: Advanced Machine Learning

• Regression Approaches

 Linear Regression

 Regularization (Ridge, Lasso)

 Kernels (Kernel Ridge Regression)

 Gaussian Processes

• Approximate Inference

 Sampling Approaches

 MCMC

• Deep Learning

 Linear Discriminants

 Neural Networks

 Backpropagation & Optimization

 CNNs, ResNets, RNNs, Deep RL, etc.
B. Leibe
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Recap: Long Short-Term Memory

• LSTMs

 Inspired by the design of memory cells

 Each module has 4 layers, interacting in a special way.
4

Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recap: Elements of LSTMs

• Forget gate layer

 Look at ht-1 and xt and output a 

number between 0 and 1 for each

dimension in the cell state Ct-1.

0: completely delete this,

1: completely keep this.

• Update gate layer

 Decide what information to store

in the cell state.

 Sigmoid network (input gate layer)

decides which values are updated.

 tanh layer creates a vector of new

candidate values      that could be 

added to the state.
5

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recap: Elements of LSTMs

• Output gate layer

 Output is a filtered version of our

gate state. 

 First, apply sigmoid layer to decide

what parts of the cell state to

output.

 Then, pass the cell state through a

tanh (to push the values to be

between -1 and 1) and multiply it

with the output of the sigmoid gate.

6
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recap: Gated Recurrent Units (GRU)

• Simpler model than LSTM

 Combines the forget and input

gates into a single update gate zt.

 Similar definition for a reset gate rt, 

but with different weights.

 In both cases, merge the cell state 

and hidden state.

• Empirical results

 Both LSTM and GRU can learn much

longer-term dependencies than 

regular RNNs

 GRU performance similar to LSTM 

(no clear winner yet), but fewer

parameters.
7

B. Leibe
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Topics of This Lecture

• Reinforcement Learning
 Introduction

 Key Concepts

 Optimal policies

 Exploration-exploitation trade-off

• Temporal Difference Learning
 SARSA

 Q-Learning

• Deep Reinforcement Learning
 Value based Deep RL

 Policy based Deep RL

 Model based Deep RL

• Applications
8
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Reinforcement Learning

• Motivation

 General purpose framework for decision making.

 Basis: Agent with the capability to interact with its environment

 Each action influences the agent’s future state.

 Success is measured by a scalar reward signal.

 Goal: select actions to maximize future rewards.

 Formalized as a partially observable Markov decision process 

(POMDP)
9

Slide adapted from: David Silver, Sergey Levine
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Reinforcement Learning

• Differences to other ML paradigms

 There is no supervisor, just a reward signal

 Feedback is delayed, not instantaneous

 Time really matters (sequential, non i.i.d. data)

 Agent’s actions affect the subsequent data it receives

 We don’t have full access to the function we’re trying to 

optimize, but must query it through interaction.

10
Slide adapted from: David Silver, Sergey Levine
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The Agent–Environment Interface

• Let’s formalize this

 Agent and environment interact at discrete time 

steps 𝑡 = 0, 1, 2, …

 Agent observes state at time 𝑡: 𝑆𝑡 ∈ 𝒮

 Produces an action at time 𝑡: 𝐴𝑡 ∈ 𝒜(𝑆𝑡)

 Gets a resulting reward 𝑅𝑡+1 ∈ ℛ ⊂ ℝ

 And a resulting next state: 𝑆𝑡+1

11
B. LeibeSlide adapted from: Sutton & Barto
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Note about Rewards

• Reward

 At each time step 𝑡, the agent receives a reward 𝑅𝑡+1

• Important note

 We need to provide those rewards to truly indicate what we 

want the agent to accomplish.

 E.g., learning to play chess: 

– The agent should only be rewarded for winning the game.

– Not for taking the opponent’s pieces or other subgoals.

– Else, the agent might learn a way to achieve the subgoals without 

achieving the real goal.

 This means, non-zero rewards will typically be very rare!

12
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Reward vs. Return

• Objective of learning

 We seek to maximize the expected return 𝐺𝑡 as some 

function of the reward sequence 𝑅𝑡+1, 𝑅𝑡+2, 𝑅𝑡+3, …

 Standard choice: expected discounted return

where 0 ≤ 𝛾 ≤ 1 is called the discount rate.

• Difficulty

 We don’t know which past actions caused the reward.

 Temporal credit assignment problem

13
B. Leibe

𝐺𝑡 = 𝑅𝑡+1 + 𝛾𝑅𝑡+2 + 𝛾2𝑅𝑡+3 + … = 

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1
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Markov Decision Process (MDP)

• Markov Decision Processes

 We consider decision processes that fulfill the Markov property.

 I.e., where the environments response at time 𝑡 depends only 

on the state and action representation at 𝑡.

• To define an MDP, we need to specify

 State and action sets

 One-step dynamics defined by state transition probabilities

 Expected rewards for next state-action-next-state triplets

14
B. Leibe

𝑝 𝑠′ 𝑠, 𝑎 = Pr 𝑆𝑡+1 = 𝑠′|𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 

𝑟∈ℛ

𝑝 𝑠′, 𝑟 𝑠, 𝑎)

𝑟 𝑠, 𝑎, 𝑠′ = 𝔼 𝑅𝑡+1| 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎, 𝑆𝑡+1 = 𝑠′ =
σ𝑟∈ℛ 𝑟 𝑝(𝑠

′, 𝑟|𝑠, 𝑎)

𝑝(𝑠′|𝑠, 𝑎)
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Policy

• Definition

 A policy determines the agent’s behavior

 Map from state to action 𝜋: 𝒮 → 𝒜

• Two types of policies

 Deterministic policy: 𝑎 = 𝜋(𝑠)

 Stochastic policy: 𝜋 𝑎 𝑠 = Pr 𝐴𝑡 = 𝑎 𝑆𝑡 = 𝑠

• Note

 𝜋 𝑎 𝑠 denotes the probability of taking action 𝑎 when in state 𝑠.

15
B. Leibe
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Value Function

• Idea

 Value function is a prediction of future reward

 Used to evaluate the goodness/badness of states

 And thus to select between actions

• Definition

 The value of a state 𝑠 under a policy 𝜋, denoted 𝑣𝜋 𝑠 , is the 

expected return when starting in 𝑠 and following 𝜋 thereafter.

 The value of taking action 𝑎 in state 𝑠 under a policy 𝜋, 

denoted 𝑞𝜋 𝑠, 𝑎 , is the expected return starting from 𝑠, 
taking action 𝑎, and following 𝜋 thereafter.

16
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𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠 = 𝔼𝜋 σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠

𝑞𝜋 𝑠, 𝑎 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎 = 𝔼𝜋 σ𝑘=0
∞ 𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠, 𝐴𝑡 = 𝑎
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Bellman Equation

• Recursive Relationship

 For any policy 𝜋 and any state 𝑠, the following consistency holds

 This is the Bellman equation for 𝑣𝜋 𝑠 .
17
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𝑣𝜋 𝑠 = 𝔼𝜋 𝐺𝑡 𝑆𝑡 = 𝑠

= 𝔼𝜋 อ

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+1 𝑆𝑡 = 𝑠

= 𝔼𝜋 อ𝑅𝑡+1 + 𝛾

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+2 𝑆𝑡 = 𝑠

= 

𝑎

𝜋 𝑎 𝑠 

𝑠′



𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝔼𝜋 อ

𝑘=0

∞

𝛾𝑘𝑅𝑡+𝑘+2 𝑆𝑡+1 = 𝑠′

= 

𝑎

𝜋 𝑎 𝑠 

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ , ∀𝑠 ∈ 𝒮
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Bellman Equation

• Interpretation

 Think of looking ahead from a state to each successor state.

 The Bellman equation states that the value of the start state 

must equal the (discounted) value of the expected next state, 

plus the reward expected along the way.

 We will use this equation in various forms to learn 𝑣𝜋 𝑠 .

18
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𝑣𝜋 𝑠 =

𝑎

𝜋 𝑎 𝑠 

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾𝑣𝜋 𝑠′ , ∀𝑠 ∈ 𝒮
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Optimal Value Functions

• For finite MDPs, policies can be partially ordered

 There will always be at least one optimal policy 𝜋∗.

 The optimal state-value function is defined as

𝑣∗ 𝑠 = max
𝜋

v𝜋(s)

 The optimal action-value function is defined as

𝑞∗ 𝑠, 𝑎 = max
𝜋

𝑞𝜋(𝑠, 𝑎)

19
B. Leibe



4

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Optimal Value Functions

• Bellman optimality equations

 For the optimal state-value function 𝑣∗:

 𝑣∗ is the unique solution to this system of nonlinear equations.

 For the optimal action-value function 𝑞∗:

 𝑞∗ is the unique solution to this system of nonlinear equations.

 If the dynamics of the environment 𝑝 𝑠′, 𝑟 𝑠, 𝑎 are known, then 

in principle one can solve those equation systems.
20
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𝑣∗ 𝑠 = max
𝑎∈𝒜(𝑠)

𝑞𝜋∗ 𝑠, 𝑎

= max
𝑎∈𝒜(𝑠)



𝑠′,𝑟
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𝑞∗ 𝑠, 𝑎 = 

𝑠′,𝑟

𝑝 𝑠′, 𝑟 𝑠, 𝑎 𝑟 + 𝛾max
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′, 𝑎′
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Optimal Policies

• Why optimal state-value functions are useful

 Any policy that is greedy w.r.t. 𝑣∗ is an optimal policy.

 Given 𝑣∗, one-step-ahead search produces the long-term 

optimal results.

 Given 𝑞∗, we do not even have to do one-step-ahead search

• Challenge

 Many interesting problems have too many states for solving 𝑣∗.

 Many Reinforcement Learning methods can be understood as 

approximately solving the Bellman optimality equations, using 

actually observed transitions instead of the ideal ones.

21
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𝜋∗ 𝑠 = argmax
𝑎∈𝒜 𝑠

𝑞∗ 𝑠, 𝑎
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Exploration-Exploitation Trade-off

• Example: N-armed bandit problem

 Suppose we have the choice between

𝑁 actions 𝑎1, … , 𝑎𝑁.

 If we knew their value functions 𝑞∗(𝑠, 𝑎𝑖),
it would be trivial to choose the best.

 However, we only have estimates based

on our previous actions and their returns.

• We can now

 Exploit our current knowledge 

– And choose the greedy action that has the highest value based on 

our current estimate.

 Explore to gain additional knowledge

– And choose a non-greedy action to improve our estimate of that 

action’s value.

22
B. Leibe

Image source: research.microsoft.com
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Simple Action Selection Strategies

• ϵ-greedy

 Select the greedy action with probability 1 − 𝜖 and a random 

one in the remaining cases.

 In the limit, every action will be sampled infinitely often.

 Probability of selecting the optimal action becomes > (1 − 𝜖).

 But: many bad actions are chosen along the way.

• Softmax

 Choose action 𝑎𝑖 at time 𝑡 according to the softmax function

where 𝜏 is a temperature parameter (start high, then lower it).

 Generalization: replace 𝑞𝑡 by a preference function 𝐻𝑡 that is 

learned by stochastic gradient ascent (“gradient bandit”).

23
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𝑒𝑞𝑡(𝑎𝑖)/𝜏

σ𝑗=1
𝑁 𝑒𝑞𝑡(𝑎𝑗)/𝜏
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Topics of This Lecture

• Reinforcement Learning
 Introduction

 Key Concepts

 Optimal policies

 Exploration-exploitation trade-off

• Temporal Difference Learning
 SARSA

 Q-Learning

• Deep Reinforcement Learning
 Value based Deep RL

 Policy based Deep RL

 Model based Deep RL

• Applications
25

B. Leibe

P
e
rc

e
p
tu

a
l 

a
n
d
 S

e
n
so

ry
 A

u
g
m

e
n
te

d
 C

o
m

p
u
ti

n
g

A
d

v
a

n
c

e
d

 M
a

c
h

in
e

 L
e

a
rn

in
g

 W
in
te
r’
1
6

Temporal Difference Learning (TD-Learning)

• Policy evaluation (the prediction problem)

 For a given policy 𝜋, compute the state-value function 𝑣𝜋.

• One option: Monte-Carlo methods

 Play through a sequence of actions until a reward is reached, 

then backpropagate it to the states on the path.

• Temporal Difference Learning – TD(𝜆)

 Directly perform an update using the estimate 𝑉(𝑆𝑡+𝜆+1).

26
B. Leibe

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝐺𝑡 − 𝑉(𝑆𝑡)

𝑉 𝑆𝑡 ← 𝑉 𝑆𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑉(𝑆𝑡+1) − 𝑉(𝑆𝑡)

Target: the actual return after time 𝑡

Target: an estimate of the return (here: TD(0))
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SARSA: On-Policy TD Control

• Idea

 Turn the TD idea into a control method by always updating the 

policy to be greedy w.r.t. the current estimate

• Procedure

 Estimate 𝑞𝜋(𝑠, 𝑎) for the current policy 𝜋 and for all states 𝑠 and 

actions 𝑎.

 TD(0) update equation

 This rule is applied after every transition from a nonterminal 

state 𝑆𝑡.

 It uses every element of the quintuple (𝑆𝑡, 𝐴𝑡 , 𝑅𝑡+1, 𝑆𝑡+1, 𝐴𝑡+1).

 Hence, the name SARSA.

27
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Image source: Sutton & Barto

𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡 , 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾𝑄 𝑆𝑡+1, 𝐴𝑡+1 − 𝑄(𝑆𝑡 , 𝐴𝑡)
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SARSA: On-Policy TD Control

• Algorithm
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Image source: Sutton & Barto
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Q-Learning: Off-Policy TD Control

• Idea

 Directly approximate the optimal action-value function 𝑞∗, 
independent of the policy being followed.

• Procedure

 TD(0) update equation

 Dramatically simplifies the analysis of the algorithm.

 All that is required for correct convergence is that all pairs 

continue to be updated.
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Image source: Sutton & Barto

𝑄 𝑆𝑡, 𝐴𝑡 ← 𝑄 𝑆𝑡, 𝐴𝑡 + 𝛼 𝑅𝑡+1 + 𝛾max
𝑎

𝑄 𝑆𝑡+1, 𝑎 − 𝑄(𝑆𝑡 , 𝐴𝑡)
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Q-Learning: Off-Policy TD Control

• Algorithm
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Image source: Sutton & Barto
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Topics of This Lecture

• Reinforcement Learning
 Introduction

 Key Concepts

 Optimal policies

 Exploration-exploitation trade-off

• Temporal Difference Learning
 SARSA

 Q-Learning

• Deep Reinforcement Learning
 Value based Deep RL

 Policy based Deep RL

 Model based Deep RL

• Applications
31
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Deep Reinforcement Learning

• RL using deep neural networks to approximate functions

 Value functions 

– Measure goodness of states or state-action pairs

 Policies

– Select next action

 Dynamics Models

– Predict next states and rewards

32
B. LeibeSlide credit: Sergey Levine
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Deep Reinforcement Learning

• Application: Learning to play Atari games

33
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V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518, 

pp. 529-533, 2015

Input: 

pixels

+game 

scores

Output: 

control

commands
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• L2 Regression Loss

Idea Behind the Model

• Interpretation

 Assume finite number of actions

 Each number here is a real-valued 

quantity that represents the 

Q function in Reinforcement Learning

• Collect experience dataset:

 Set of tuples {(s,a,s’,r), … }

 (State, Action taken, New state, Reward 

received

34
B. Leibe

target value predicted value

Current reward + estimate of future reward, discounted by 

Slide credit: Andrej Karpaty
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Results: Space Invaders
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Results: Breakout
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Comparison with Human Performance
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Close-up

view
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Learned Representation

• t-SNE embedding of DQN last hidden layer (Space Inv.)
38
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http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html
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References and Further Reading

• More information on Reinforcement Learning can be 

found in the following book

• The complete text is also freely available online

B. Leibe
41

Richard S. Sutton, Andrew G. Barto

Reinforcement Learning: An Introduction

MIT Press, 1998

https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html

https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html

