

Advanced Machine Learning Lecture 19

Deep Reinforcement Learning

30.01.2017

Bastian Leibe

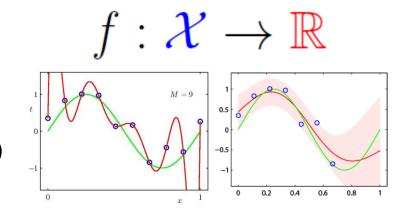
RWTH Aachen

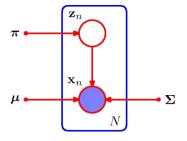
http://www.vision.rwth-aachen.de/

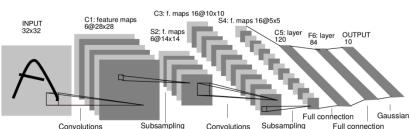
leibe@vision.rwth-aachen.de

This Lecture: Advanced Machine Learning

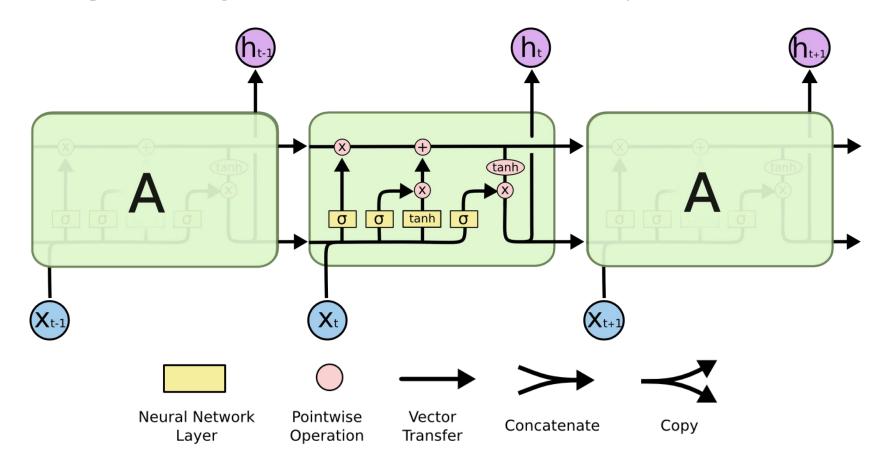
- Regression Approaches
 - Linear Regression
 - Regularization (Ridge, Lasso)
 - Kernels (Kernel Ridge Regression)
 - Gaussian Processes
- Approximate Inference
 - Sampling Approaches
 - MCMC
- Deep Learning
 - Linear Discriminants
 - Neural Networks
 - Backpropagation & Optimization
 - CNNs, ResNets, RNNs, Deep RL, etc.







Recap: Long Short-Term Memory



LSTMs

- Inspired by the design of memory cells
- Each module has 4 layers, interacting in a special way.

Recap: Elements of LSTMs

Forget gate layer

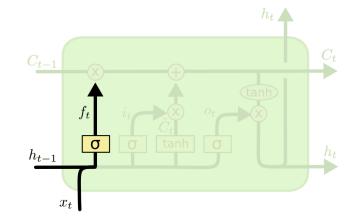
Look at \mathbf{h}_{t-1} and \mathbf{x}_t and output a number between 0 and 1 for each dimension in the cell state \mathbf{C}_{t-1} .

0: completely delete this,

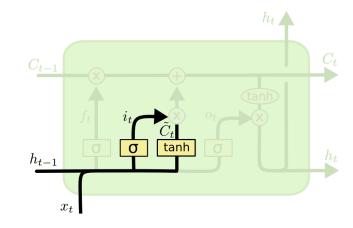
1: completely keep this.

Update gate layer

- Decide what information to store in the cell state.
- Sigmoid network (input gate layer) decides which values are updated.
- tanh layer creates a vector of new candidate values that could be added to the state.



$$f_t = \sigma\left(W_f \cdot [h_{t-1}, x_t] + b_f\right)$$



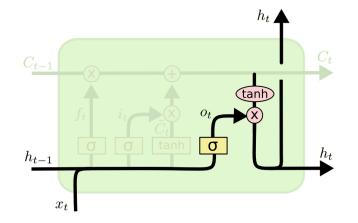
$$i_t = \sigma\left(W_i \cdot [h_{t-1}, x_t] + b_i\right)$$

$$\tilde{C}_t = \tanh(W_C \cdot [h_{t-1}, x_t] + b_C \mathfrak{Z}$$

Recap: Elements of LSTMs

Output gate layer

- Output is a filtered version of our gate state.
- First, apply sigmoid layer to decide what parts of the cell state to output.
- > Then, pass the cell state through a tanh (to push the values to be between -1 and 1) and multiply it with the output of the sigmoid gate.



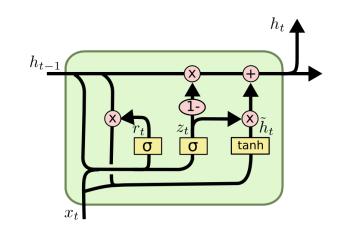
$$o_t = \sigma (W_o [h_{t-1}, x_t] + b_o)$$
$$h_t = o_t * \tanh (C_t)$$

RWTHAACHEN UNIVERSITY

Recap: Gated Recurrent Units (GRU)

Simpler model than LSTM

- > Combines the forget and input gates into a single update gate z_t .
- > Similar definition for a reset gate r_t , but with different weights.
- In both cases, merge the cell state and hidden state.



- Both LSTM and GRU can learn much longer-term dependencies than regular RNNs
- GRU performance similar to LSTM (no clear winner yet), but fewer parameters.

$$z_t = \sigma\left(W_z \cdot [h_{t-1}, x_t]\right)$$

$$r_t = \sigma\left(W_r \cdot [h_{t-1}, x_t]\right)$$

$$\tilde{h}_t = \tanh\left(W \cdot [r_t * h_{t-1}, x_t]\right)$$

$$h_t = (1 - z_t) * h_{t-1} + z_t * \tilde{h}_t$$

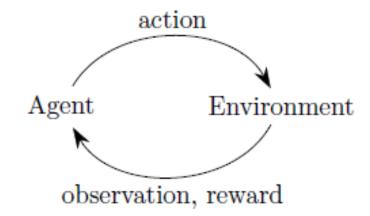
Topics of This Lecture

- Reinforcement Learning
 - Introduction
 - Key Concepts
 - Optimal policies
 - Exploration-exploitation trade-off
- Temporal Difference Learning
 - > SARSA
 - Q-Learning
- Deep Reinforcement Learning
 - Value based Deep RL
 - Policy based Deep RL
 - Model based Deep RL
- Applications

Reinforcement Learning

Motivation

- General purpose framework for decision making.
- > Basis: Agent with the capability to interact with its environment
- Each action influences the agent's future state.
- Success is measured by a scalar reward signal.
- Goal: select actions to maximize future rewards.

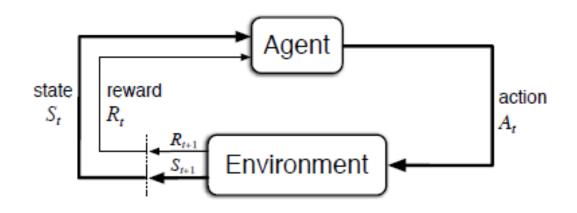


Formalized as a partially observable Markov decision process (POMDP)

Reinforcement Learning

- Differences to other ML paradigms
 - There is no supervisor, just a reward signal
 - Feedback is delayed, not instantaneous
 - Time really matters (sequential, non i.i.d. data)
 - Agent's actions affect the subsequent data it receives
 - ⇒ We don't have full access to the function we're trying to optimize, but must query it through interaction.

The Agent-Environment Interface



Let's formalize this

- Agent and environment interact at discrete time steps t = 0, 1, 2, ...
- Agent observes state at time $t: S_t \in S$
- Produces an action at time t: $A_t \in \mathcal{A}(S_t)$
- > Gets a resulting reward $R_{t+1} \in \mathcal{R} \subset \mathbb{R}$
- And a resulting next state: S_{t+1}

Note about Rewards

Reward

> At each time step t, the agent receives a reward R_{t+1}

Important note

- We need to provide those rewards to truly indicate what we want the agent to accomplish.
- E.g., learning to play chess:
 - The agent should only be rewarded for winning the game.
 - Not for taking the opponent's pieces or other subgoals.
 - Else, the agent might learn a way to achieve the subgoals without achieving the real goal.
- ⇒ This means, non-zero rewards will typically be very rare!

Reward vs. Return

Objective of learning

- We seek to maximize the expected return G_t as some function of the reward sequence $R_{t+1}, R_{t+2}, R_{t+3}, ...$
- Standard choice: expected discounted return

$$G_t = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1}$$

where $0 \le \gamma \le 1$ is called the discount rate.

Difficulty

- We don't know which past actions caused the reward.
- ⇒ Temporal credit assignment problem

Markov Decision Process (MDP)

- Markov Decision Processes
 - We consider decision processes that fulfill the Markov property.
 - I.e., where the environments response at time t depends only on the state and action representation at t.
- To define an MDP, we need to specify
 - State and action sets
 - One-step dynamics defined by state transition probabilities

$$p(s'|s,a) = \Pr\{S_{t+1} = s'|S_t = s, A_t = a\} = \sum_{r \in \mathcal{R}} p(s',r|s,a)$$

Expected rewards for next state-action-next-state triplets

$$r(s, a, s') = \mathbb{E}[R_{t+1} | S_t = s, A_t = a, S_{t+1} = s'] = \frac{\sum_{r \in \mathcal{R}} r \, p(s', r | s, a)}{p(s' | s, a)}$$

Policy

Definition

- A policy determines the agent's behavior
- Map from state to action $\pi: \mathcal{S} \to \mathcal{A}$

Two types of policies

> **Deterministic policy:** $a = \pi(s)$

> Stochastic policy: $\pi(a|s) = \Pr\{A_t = a|S_t = s\}$

Note

 $\pi(a|s)$ denotes the probability of taking action a when in state s.

Value Function

Idea

- Value function is a prediction of future reward
- Used to evaluate the goodness/badness of states
- And thus to select between actions

Definition

The value of a state s under a policy π , denoted $v_{\pi}(s)$, is the expected return when starting in s and following π thereafter.

$$v_{\pi}(s) = \mathbb{E}_{\pi}[G_t | S_t = s] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s]$$

The value of taking action a in state s under a policy π , denoted $q_{\pi}(s,a)$, is the expected return starting from s, taking action a, and following π thereafter.

$$q_{\pi}(s, a) = \mathbb{E}_{\pi}[G_t | S_t = s, A_t = a] = \mathbb{E}_{\pi}[\sum_{k=0}^{\infty} \gamma^k R_{t+k+1} | S_t = s, A_t = a]$$

Bellman Equation

- Recursive Relationship
 - > For any policy π and any state s, the following consistency holds

$$\begin{aligned} v_{\pi}(s) &= \mathbb{E}_{\pi}[G_{t}|S_{t} = s] \\ &= \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \middle| S_{t} = s\right] \\ &= \mathbb{E}_{\pi}\left[R_{t+1} + \gamma \sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \middle| S_{t} = s\right] \\ &= \sum_{a} \pi(a|s) \sum_{s'} \sum_{r} p(s', r|s, a) \left[r + \gamma \mathbb{E}_{\pi}\left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+2} \middle| S_{t+1} = s'\right]\right] \\ &= \sum_{s} \pi(a|s) \sum_{s'} p(s', r|s, a) [r + \gamma v_{\pi}(s')], \quad \forall s \in \mathcal{S} \end{aligned}$$

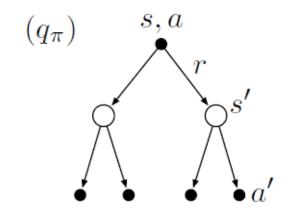
This is the Bellman equation for $v_{\pi}(s)$.

Bellman Equation

$$v_{\pi}(s) = \sum_{a} \pi(a|s) \sum_{s',r} p(s',r|s,a) [r + \gamma v_{\pi}(s')], \qquad \forall s \in \mathcal{S}$$

- Interpretation
 - Think of looking ahead from a state to each successor state.





- The Bellman equation states that the value of the start state must equal the (discounted) value of the expected next state, plus the reward expected along the way.
- We will use this equation in various forms to learn $v_{\pi}(s)$.

Optimal Value Functions

- For finite MDPs, policies can be partially ordered
 - \succ There will always be at least one optimal policy π_* .
 - The optimal state-value function is defined as

$$v_*(s) = \max_{\pi} v_{\pi}(s)$$

The optimal action-value function is defined as

$$q_*(s,a) = \max_{\pi} q_{\pi}(s,a)$$

Optimal Value Functions

- Bellman optimality equations
 - \succ For the optimal state-value function v_* :

$$v_*(s) = \max_{a \in \mathcal{A}(s)} q_{\pi_*}(s, a)$$
$$= \max_{a \in \mathcal{A}(s)} \sum_{s', r} p(s', r|s, a) [r + \gamma v_*(s')]$$

- > v_st is the unique solution to this system of nonlinear equations.
- \succ For the optimal action-value function q_* :

$$q_*(s,a) = \sum_{s',r} p(s',r|s,a) \left[r + \gamma \max_{a'} q_*(s',a') \right]$$

- $ightarrow q_*$ is the unique solution to this system of nonlinear equations.
- \Rightarrow If the dynamics of the environment p(s',r|s,a) are known, then in principle one can solve those equation systems.

Optimal Policies

- Why optimal state-value functions are useful
 - > Any policy that is greedy w.r.t. v_* is an optimal policy.
 - \Rightarrow Given v_* , one-step-ahead search produces the long-term optimal results.
 - \Rightarrow Given q_* , we do not even have to do one-step-ahead search

$$\pi_*(s) = \operatorname*{argmax}_{a \in \mathcal{A}(s)} q_*(s, a)$$

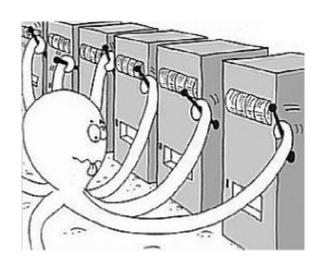
Challenge

- ightarrow Many interesting problems have too many states for solving $v_*.$
- Many Reinforcement Learning methods can be understood as approximately solving the Bellman optimality equations, using actually observed transitions instead of the ideal ones.

Exploration-Exploitation Trade-off

Example: N-armed bandit problem

- Suppose we have the choice between N actions a_1, \dots, a_N .
- If we knew their value functions $q_*(s, a_i)$, it would be trivial to choose the best.
- However, we only have estimates based on our previous actions and their returns.



We can now

- Exploit our current knowledge
 - And choose the greedy action that has the highest value based on our current estimate.
- Explore to gain additional knowledge
 - And choose a non-greedy action to improve our estimate of that action's value.

Simple Action Selection Strategies

• ∈-greedy

- > Select the greedy action with probability (1ϵ) and a random one in the remaining cases.
- ⇒ In the limit, every action will be sampled infinitely often.
- \Rightarrow Probability of selecting the optimal action becomes $> (1 \epsilon)$.
- But: many bad actions are chosen along the way.

Softmax

> Choose action a_i at time t according to the softmax function

$$\frac{e^{q_t(a_i)/\tau}}{\sum_{j=1}^N e^{q_t(a_j)/\tau}}$$

where τ is a temperature parameter (start high, then lower it).

Seneralization: replace q_t by a preference function H_t that is learned by stochastic gradient ascent ("gradient bandit").

Topics of This Lecture

- Reinforcement Learning
 - > Introduction
 - Key Concepts
 - Optimal policies
 - Exploration-exploitation trade-off
- Temporal Difference Learning
 - > SARSA
 - Q-Learning
- Deep Reinforcement Learning
 - Value based Deep RL
 - Policy based Deep RL
 - Model based Deep RL
- Applications

UNIVERSITY

Temporal Difference Learning (TD-Learning)

- Policy evaluation (the prediction problem)
 - ightarrow For a given policy π , compute the state-value function v_{π} .
- One option: Monte-Carlo methods
 - Play through a sequence of actions until a reward is reached, then backpropagate it to the states on the path.

$$V(S_t) \leftarrow V(S_t) + \alpha [G_t - V(S_t)]$$

Target: the actual return after time t

- Temporal Difference Learning TD(λ)
 - > Directly perform an update using the estimate $V(S_{t+\lambda+1})$.

$$V(S_t) \leftarrow V(S_t) + \alpha [R_{t+1} + \gamma V(S_{t+1}) - V(S_t)]$$

Target: an estimate of the return (here: TD(0))

SARSA: On-Policy TD Control

Idea

Turn the TD idea into a control method by always updating the policy to be greedy w.r.t. the current estimate

Procedure

- Estimate $q_{\pi}(s, a)$ for the current policy π and for all states s and actions a.
- TD(0) update equation

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha [R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t)]$$

- > This rule is applied after every transition from a nonterminal state S_t .
- It uses every element of the quintuple $(S_t, A_t, R_{t+1}, S_{t+1}, A_{t+1})$.
- \Rightarrow Hence, the name SARSA.

SARSA: On-Policy TD Control

Algorithm

```
Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from Q (e.g., \varepsilon-greedy)
Repeat (for each step of episode):
Take action a, observe r, s'
Choose a' from s' using policy derived from Q (e.g., \varepsilon-greedy)
Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma Q(s',a') - Q(s,a)]
s \leftarrow s'; \ a \leftarrow a';
until s is terminal
```


Q-Learning: Off-Policy TD Control

Idea

> Directly approximate the optimal action-value function q_{st} , independent of the policy being followed.

Procedure

TD(0) update equation

$$Q(S_t, A_t) \leftarrow Q(S_t, A_t) + \alpha \left[R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right]$$

- Dramatically simplifies the analysis of the algorithm.
- All that is required for correct convergence is that all pairs continue to be updated.

Q-Learning: Off-Policy TD Control

Algorithm

```
Initialize Q(s,a) arbitrarily Repeat (for each episode):

Initialize s
Repeat (for each step of episode):

Choose a from s using policy derived from Q (e.g., \varepsilon-greedy)

Take action a, observe r, s'
Q(s,a) \leftarrow Q(s,a) + \alpha[r + \gamma \max_{a'} Q(s',a') - Q(s,a)]
s \leftarrow s';
until s is terminal
```


Topics of This Lecture

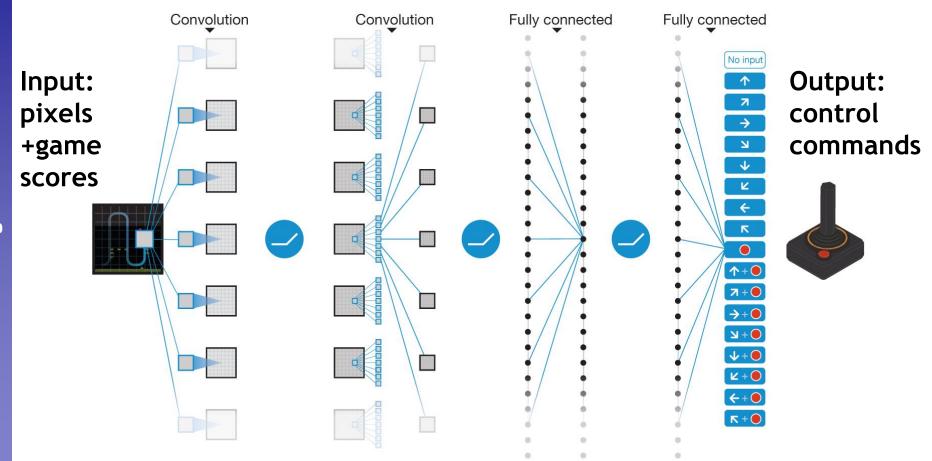
- Reinforcement Learning
 - > Introduction
 - Key Concepts
 - Optimal policies
 - Exploration-exploitation trade-off
- Temporal Difference Learning
 - > SARSA
 - Q-Learning
- Deep Reinforcement Learning
 - Value based Deep RL
 - Policy based Deep RL
 - Model based Deep RL
- Applications

Deep Reinforcement Learning

- RL using deep neural networks to approximate functions
 - Value functions
 - Measure goodness of states or state-action pairs
 - Policies
 - Select next action
 - Dynamics Models
 - Predict next states and rewards

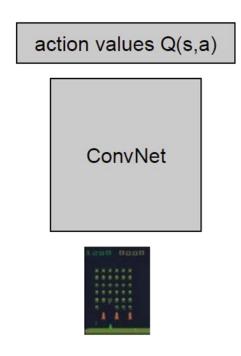
Deep Reinforcement Learning

Application: Learning to play Atari games



V. Mnih et al., <u>Human-level control through deep reinforcement learning</u>, Nature Vol. 518, pp. 529-533, 2015

Idea Behind the Model



- Interpretation
 - Assume finite number of actions
 - Each number here is a real-valued quantity that represents the Q function in Reinforcement Learning
- Collect experience dataset:
 - Set of tuples {(s,a,s',r), ... }
 - State, Action taken, New state, Reward received
- L2 Regression Loss

$$L_{i}(\theta_{i}) = \mathbb{E}_{(s,a,r,s') \sim U(D)} \left[\left(r + \gamma \max_{a'} Q(s',a';\theta_{i}^{-}) - Q(s,a;\theta_{i}) \right)^{2} \right]$$

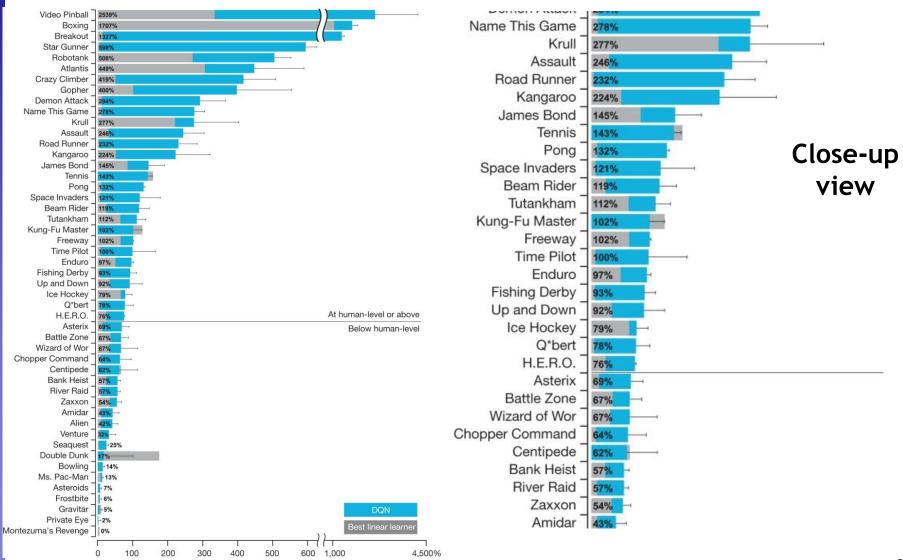
Current reward + estimate of future reward, discounted by γ

34

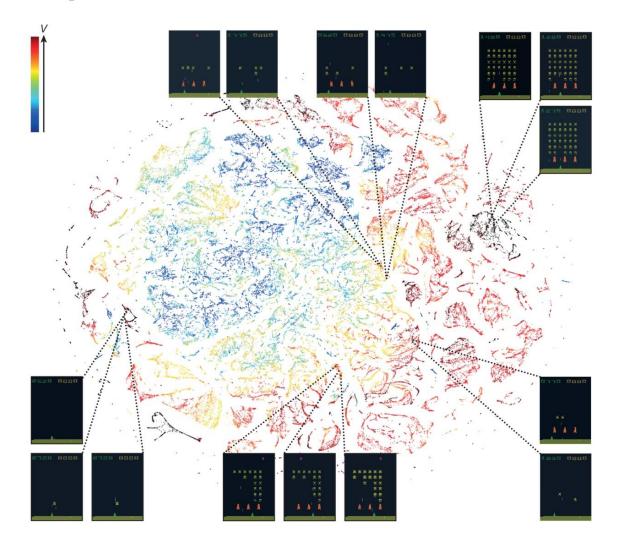
Results: Space Invaders

Results: Breakout

Comparison with Human Performance



Learned Representation

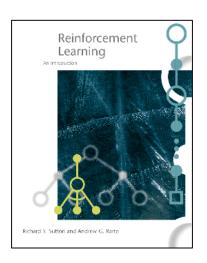


t-SNE embedding of DQN last hidden layer (Space Inv.)

References and Further Reading

 More information on Reinforcement Learning can be found in the following book

> Richard S. Sutton, Andrew G. Barto Reinforcement Learning: An Introduction MIT Press, 1998



 The complete text is also freely available online https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html