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RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

Linear Regression

Regularization (Ridge, Lasso) J
Kernels (Kernel Ridge Regression)
~ Gaussian Processes (, - e

Y

M=9 L
0.5 ,

Y

Y

e Approximate Inference m—

- Sampling Approaches
> MCMC

e Deep Learning
> Linear Discriminants
> Neural Networks
~ Backpropagation & Optimization
> CNNs, ResNets, RNNs, Deep RL, etc.

B. Leibe
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RWNTH
Recap: Long Short-Term Memory

& O, ®
1 f

A
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Iclrllclrlltalnhlljl . N
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Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

e LSTMs

> Inspired by the design of memory cells
» Each module has 4 layers, interacting in a special way.
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Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/



http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recap: Elements of LSTMs

e Forget gate layer

- Look at h, ; and x, and output a
number between 0 and 1 for each /
dimension in the cell state C, ;.

0: completely delete this,
1: completely keep this.

Lt

=0 (Wy-lhi—1, 2] + b
» Update gate layer fo=oWy-lhi—y, @] + bf)

> Decide what information to store
in the cell state.

> Sigmoid network (input gate layer) g
decides which values are updated. =
> tanh layer creates a vector of new T

candidate values that could be .
= W’I;' h 1, b%
added to the state. iy = o (Wirlhe1, 2] + by)
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C~’t = tanh(We - |hi—1,2¢] + bcH

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Recap: Elements of LSTMs

e Output gate layer "
~ Output is a filtered version of our
gate state. ) %D
~ First, apply sigmoid layer to decide ] .
what parts of the cell state to = >
output. r

> Then, pass the cell state through a
tanh (to push the values to be
between -1 and 1) and multiply it

with the output of the sigmoid gate. ' = ot * tanh (Ct)

o (W [hev, ] + by)
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Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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RWTH
Recap: Gated Recurrent Units (GRU)

e Simpler model than LSTM hI

> Combines the forget and input D
gates into a single update gate z,. % i_éjh

- Similar definition for a reset gate r,, =
but with different weights. —

> In both cases, merge the cell state
and hidden state.

Tt

st — 0 (Wz . [ht_l,ﬂft])

o Empirical results re =0 (Wr - [hi—1, 24])

- Both LSTM and GRU can learn much  p, — tanh (W - [r, % hy_1, z4])
longer-term dependencies than ~
regular RNNs he = (1—2z)xhi—1 + 2z % hy

> GRU performance similar to LSTM
(no clear winner yet), but fewer
parameters.
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Source: Christgphlé?B?ah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/
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Topics of This Lecture

e Reinforcement Learning
> Introduction
> Key Concepts
> Optimal policies
» Exploration-exploitation trade-off

e Temporal Difference Learning
> SARSA
> Q-Learning

e Deep Reinforcement Learning
~ Value based Deep RL
~ Policy based Deep RL
> Model based Deep RL

e Applications
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Reinforcement Learning

e Motivation
~ General purpose framework for decision making.
~ Basis: Agent with the capability to interact with its environment
~ Each action influences the agent’s future state.
~ Success is measured by a scalar reward signal.
~ Goal: select actions to maximize future rewards.

action

N

Apgent Environment

"

observation, reward

» Formalized as a partially observable Markov decision process
(POMDP)
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Slide adapted from: David Silver, Sergey Levine
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Reinforcement Learning

e Differences to other ML paradigms
~ There is no supervisor, just a reward signal
~ Feedback is delayed, not instantaneous
Time really matters (sequential, non i.i.d. data)
~ Agent’s actions affect the subsequent data it receives

Y

= We don’t have full access to the function we’re trying to
optimize, but must query it through interaction.

Slide adapted from: David Silver, Sergey Levine
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The Agent-Environment Interface

j Agent ||
state | | reward action
S R, A

| R |
_i:sr_, | Environment ]<—

e Let’s formalize this

~ Agent and environment interact at discrete time
stepst =0,1, 2, ...

» Agent observes state at time t: S, €S

> Produces an action at time t: A; € A(S;)

» Gets a resulting reward R.,;ER cR
> And a resulting next state: Sti1

Slide adapted from: Sutton & Barto B. Leibe

11



({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

Note about Rewards

e Reward
~ At each time step t, the agent receives a reward R,

e Important note

> We need to provide those rewards to truly indicate what we
want the agent to accomplish.

- E.g., learning to play chess:
- The agent should only be rewarded for winning the game.
- Not for taking the opponent’s pieces or other subgoals.

- Else, the agent might learn a way to achieve the subgoals without
achieving the real goal.

=> This means, non-zero rewards will typically be very rare!

B. Leibe
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Reward vs. Return

e Objective of learning

> We seek to maximize the expected return G; as some
function of the reward sequence R;,{,R;,5, Rt 43, -

~ Standard choice: expected discounted return
Gt = Reyq1 + YRey2 +V?Regz + o = Z Vth+k+1
k=0
where 0 <y < 1 is called the discount rate.

e Difficulty
> We don’t know which past actions caused the reward.
= Temporal credit assignment problem
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Markov Decision Process (MDP)

e Markov Decision Processes
~ We consider decision processes that fulfill the Markov property.

- l.e., where the environments response at time t depends only
on the state and action representation at ¢.

e To define an MDP, we need to specify
> State and action sets
» One-step dynamics defined by state transition probabilities

p(s'ls,a) =Pr{Sey1 =5'IS; =s,Ar =a} = Z p(s',rls, a)

TER

> Expected rewards for next state-action-next-state triplets

' n_ 2rer? P(s’,7|s,a)
r(s,a,5") = E[Re31] St = 5,4 = 4,81 = 5] = = p(s'[s, a)
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Policy

e Definition
~ A policy determines the agent’s behavior
> Map from state to action m:§ - A

e Two types of policies
> Deterministic policy: a = n(s)
> Stochastic policy: n(als) = Pr{A; = a|S; = s}

e Note
» m(a|s) denotes the probability of taking action a when in state s.

15
B. Leibe



Value Function

e |dea
~ Value function is a prediction of future reward
» Used to evaluate the goodness/badness of states
> And thus to select between actions

e Definition

> The value of a state s under a policy 7, denoted v.(s), is the
expected return when starting in s and following = thereafter.

U (s) = Ex[GelSe = s] = Ex[Xizo Y*Resres1 |Se = 5]

> The value of taking action a in state s under a policy 7,
denoted ¢, (s,a), is the expected return starting from s,
taking action a, and following 7 thereafter.

qr(s,a) = E;[G¢|S; = 5,4 = a] = Ex[Xx=0 Vth+k+1 |St =s,A; = al
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Bellman Equation

e Recursive Relationship
» For any policy 7 and any state s, the following consistency holds

v (s) = Eg[G,|S; = s]
S¢ = S]

= Eg ZV Ritkt1

=E; |Res1 +Y Z )4 Rt+k+2

S; = S]
Eﬂ(aIS)ZEP(S rls,a)|r +vEg [zy Revk+2

= En(als)Zp(s’,rls, a)|r + yv,(s")], VSES

a

ses = |

> This is the Bellman equation for v, (s). -

B. Leibe



RWTH
Bellman Equation

v.(s) = z m(als) Z p(s’,r|s,a)[r + yv,(s")], VSES

a

e Interpretation
> Think of looking ahead from a state to each successor state.

N N,

OO OO OO ¢ b ¢ va

- The Bellman equation states that the value of the start state
must equal the (discounted) value of the expected next state,
plus the reward expected along the way.

» We will use this equation in various forms to learn v, (s).
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Optimal Value Functions

e For finite MDPs, policies can be partially ordered
- There will always be at least one optimal policy ..

> The optimal state-value function is defined as
v,(s) = maxv(s)
T

~ The optimal action-value function is defined as
q.(s,a) = maxq(s,a)
T

B. Leibe
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Optimal Value Functions

e Bellman optimality equations
» For the optimal state-value function v,:

v,(s) = max_q, (s, a)

acA(s)
= arenﬂa()é),z p(s’,rls,a)|r + yv.(s')]
s'r

» v, is the unique solution to this system of nonlinear equations.

~ For the optimal action-value function g,:

0.(5,@) = ) p(s',rls,0) [r +y maxq.(s',a)]
shr

> g, is the unique solution to this system of nonlinear equations.

= If the dynamics of the environment p(s’,r|s,a) are known, then
in principle one can solve those equation systems.
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Optimal Policies

e Why optimal state-value functions are useful
~ Any policy that is greedy w.r.t. v, is an optimal policy.

= Given v,, one-step-ahead search produces the long-term
optimal results.

= Given ¢q,, we do not even have to do one-step-ahead search

m.(s) = argmaxq.(s, a)
a€cA(s)

e Challenge

> Many interesting problems have too many states for solving v,.

> Many Reinforcement Learning methods can be understood as
approximately solving the Bellman optimality equations, using
actually observed transitions instead of the ideal ones.

B. Leibe
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Exploration-Exploitation Trade-off

e Example: N-armed bandit problem

~ Suppose we have the choice between
N actions a4, ..., ay.

> |If we knew their value functions q.(s, q;), &
it would be trivial to choose the best. \(
\

- However, we only have estimates based
on our previous actions and their returns.

o

e We can now

> Exploit our current knowledge

- And choose the greedy action that has the highest value based on
our current estimate.

> Explore to gain additional knowledge

- And choose a non-greedy action to improve our estimate of that
action’s value.
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Image source: research.microsoft.com
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RWTH
Simple Action Selection Strategies

e c-greedy
~ Select the greedy action with probability (1 — ¢) and a random
one in the remaining cases.
= In the limit, every action will be sampled infinitely often.
= Probability of selecting the optimal action becomes > (1 — ¢).
> But: many bad actions are chosen along the way.

e Softmax

~ Choose action q; at time t according to the softmax function
pdt(ap)/

N pai(aj)/t
j=1€""

where 7 is a temperature parameter (start high, then lower it).

> Generalization: replace g; by a preference function H; that is
learned by stochastic gradient ascent (“gradient bandit”).

B. Leibe
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Topics of This Lecture

e Temporal Difference Learning
> SARSA
> Q-Learning
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RWTH
Temporal Difference Learning (TD-Learning)

e Policy evaluation (the prediction problem)
~ For a given policy m, compute the state-value function v .

e One option: Monte-Carlo methods

» Play through a sequence of actions until a reward is reached,
then backpropagate it to the states on the path.

V(Se) « V(S + alG: — V(Se)]

Target: the actual return after time ¢

e Temporal Difference Learning - TD(4)
> Directly perform an update using the estimate V(S;,3:1)-

V(Sy) « V(S) + al[RHl + VV(St+12 —V(Se)]

v

Target: an estimate of the return (here: TD(0))
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SARSA: On-Policy TD Control

e Idea

> Turn the TD idea into a control method by always updating the
policy to be greedy w.r.t. the current estimate

e Procedure

> Estimate g, (s, a) for the current policy = and for all states s and
actions a.

> TD(0) update equation
Q(StrAt) < Q(St'At) + a[Rt+1 + VQ(St+1;At+1) - Q(St'At)]

> This rule is applied after every transition from a nonterminal
state S;.

> It uses every element of the quintuple (S;, A¢, Riy1, St+1,At41)-
= Hence, the name SARSA.
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Image source: Sutton & Barto
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SARSA: On-Policy TD Control

e Algorithm

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s’
Choose a' from s’ using policy derived from @ (e.g., e-greedy)
Q(s,a) — Q(s,a) + afr +1Q(s,a) — Q(s, )]
s+ 8 a—a"

until s is terminal
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Image source: Sutton & Barto
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Q-Learning: Off-Policy TD Control

e Idea

~ Directly approximate the optimal action-value function ¢,
independent of the policy being followed.

 Procedure
> TD(0) update equation

Q(St, Ae) <« Q(Sp, Ap) t+ [Rt+1 + Yy max Q(Sts1,a) — Q(St»At)]

> Dramatically simplifies the analysis of the algorithm.

~ All that is required for correct convergence is that all pairs
continue to be updated.
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Image source: Sutton & Barto
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A INVERSITY
Q-Learning: Off-Policy TD Control

e Algorithm

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @ (e.g., e-greedy)
Take action a, observe r, s
Q(s,a) +— Q(s,a) + a[r + ymaxy Q(s, a’) — Q(s, a)]
5+ g';

until s is terminal
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Topics of This Lecture

e Deep Reinforcement Learning
~ Value based Deep RL

~ Policy based Deep RL
> Model based Deep RL

({e]
F
.
Q
P
IE
(@)]
=
c
| -
®
(0D}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

31
B. Leibe



({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(0D}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

Deep Reinforcement Learning

e RL using deep neural networks to approximate functions
> Value functions
- Measure goodness of states or state-action pairs
~ Policies
- Select next action

> Dynamics Models
- Predict next states and rewards

32
Slide credit: Sergey Levine B. Leibe



Deep Reinforcement Learning

e Application: Learning to play Atari games

Convglution Convglution Fully cgnnected Fully ccvmnected
Input: | = o\ e . Output:
pixels 9 . - control
+game i o\ | e E® commands
8 ? i
scores af A\ )
S e N\
QHE Q: ! 9 =
céo\:l

+

AINMIRJEJe VN>
+ 1+ f+ + 1+ 1+ 01+
@] (@] (@) (@] (@) (@] (@) (e

/NN /
ufa=alalal= = s

V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518,
pp. 529-533, 2015 33
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http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

|ldea Behind the Model

e Interpretation
> Assume finite number of actions

> Each number here is a real-valued
ConvNet quantity that represents the

Q function in Reinforcement Learning

e L2 Regression Loss

A action values Q(s,a)

e Collect experience dataset:
> Set of tuples {(s,a,s’,r), ... }

~ (State, Action taken, New state, Reward
received

target value predicted value

2
Li(0;) =Fi(s.ar.¢)~U(D) {(H— ymax Q(s".a"; 0, )|-|0(s.a: U;I:)
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Current reward + estimate of future reward, discounted by y y
Slide credit: Andrej Karpaty B. Leibe




Results: Space Invaders
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R\WNTH

B. Leibe
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Advanced Machine Learning Winter’16

Video Pinball

Star Gunner
Robotank
Atlantis
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Demon Attack
Name This Game
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James Bond
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Comparison with Human Performance
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%
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e t-SNE embedding of DQN last hidden layer (Space Inv.)

Learned Representation
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RWTH
References and Further Reading

e More information on Reinforcement Learning can be
found in the following book

Reinforcement .
Learning

Richard S. Sutton, Andrew G. Barto
Reinforcement Learning: An Introduction
MIT Press, 1998

e The complete text is also freely available online
https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html
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