Advanced Machine Learning
Lecture 19

Deep Reinforcement Learning

30.01.2017

Bastian Leibe

RWTH Aachen
http://www.vision.rwth-aachen.de/

({e]
F
.
Q
P
IE
(@)]
=
c
—-—
®
(b}
-
(b}
=
e
(@)
©
=
©
(D]
(&)
C
®
>
©
<

leibe®@vision.rwth-aachen.de

RWNTH
This Lecture: Advanced Machine Learning

e Regression Approaches f X = R

Linear Regression

Regularization (Ridge, Lasso) J
Kernels (Kernel Ridge Regression)
~ Gaussian Processes (, - e

Y

M=9 L
0.5 ,

Y

Y

e Approximate Inference m—

- Sampling Approaches
> MCMC

e Deep Learning
> Linear Discriminants
> Neural Networks
~ Backpropagation & Optimization
> CNNs, ResNets, RNNs, Deep RL, etc.

B. Leibe

({e]
F
.
Q
-
IE
(@)]
=
c
| -
®
(0D}
|
(D)
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

RWNTH
Recap: Long Short-Term Memory

& O, ®
1 f

A
4) "z) 4)
—>—® © T > —>
A 1 4 2 A
Iclrllclrlltalnhlljl . N
\I)_’T) \I p

Neural Network Pointwise Vector
Layer Operation Transfer

Concatenate Copy

e LSTMs

> Inspired by the design of memory cells
» Each module has 4 layers, interacting in a special way.

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(0D}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

4
Image source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recap: Elements of LSTMs

e Forget gate layer

- Look at h, ; and x, and output a
number between 0 and 1 for each /
dimension in the cell state C, ;.

0: completely delete this,
1: completely keep this.

Lt

=0 (Wy-lhi—1, 2] + b
» Update gate layer fo=oWy-lhi—y, @] + bf)

> Decide what information to store
in the cell state.

> Sigmoid network (input gate layer) g
decides which values are updated. =
> tanh layer creates a vector of new T

candidate values that could be .
= W’I;' h 1, b%
added to the state. iy = o (Wirlhe1, 2] + by)

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(D]
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

C~’t = tanh(We - |hi—1,2¢] + bcH

Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Recap: Elements of LSTMs

e Output gate layer "
~ Output is a filtered version of our
gate state.) %D
~ First, apply sigmoid layer to decide] .
what parts of the cell state to = >
output. r

> Then, pass the cell state through a
tanh (to push the values to be
between -1 and 1) and multiply it

with the output of the sigmoid gate. ' = ot * tanh (Ct)

o (W [hev,] + by)

Q
+
|

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

6
Source: Christopher Olah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

RWTH
Recap: Gated Recurrent Units (GRU)

e Simpler model than LSTM hI

> Combines the forget and input D
gates into a single update gate z,. % i_éjh

- Similar definition for a reset gate r,, =
but with different weights. —

> In both cases, merge the cell state
and hidden state.

Tt

st — 0 (Wz . [ht_l,ﬂft])

o Empirical results re =0 (Wr - [hi—1, 24])

- Both LSTM and GRU can learn much p, — tanh (W - [r, % hy_1, z4])
longer-term dependencies than ~
regular RNNs he = (1—2z)xhi—1 + 2z % hy

> GRU performance similar to LSTM
(no clear winner yet), but fewer
parameters.

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

7
Source: Christgphlé?B?ah, http://colah.github.io/posts/2015-08-Understanding-LSTMs/

http://colah.github.io/posts/2015-08-Understanding-LSTMs/

Topics of This Lecture

e Reinforcement Learning
> Introduction
> Key Concepts
> Optimal policies
» Exploration-exploitation trade-off

e Temporal Difference Learning
> SARSA
> Q-Learning

e Deep Reinforcement Learning
~ Value based Deep RL
~ Policy based Deep RL
> Model based Deep RL

e Applications

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

B. Leibe

Reinforcement Learning

e Motivation
~ General purpose framework for decision making.
~ Basis: Agent with the capability to interact with its environment
~ Each action influences the agent’s future state.
~ Success is measured by a scalar reward signal.
~ Goal: select actions to maximize future rewards.

action

N

Apgent Environment

"

observation, reward

» Formalized as a partially observable Markov decision process
(POMDP)

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

Slide adapted from: David Silver, Sergey Levine

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

Reinforcement Learning

e Differences to other ML paradigms
~ There is no supervisor, just a reward signal
~ Feedback is delayed, not instantaneous
Time really matters (sequential, non i.i.d. data)
~ Agent’s actions affect the subsequent data it receives

Y

= We don’t have full access to the function we’re trying to
optimize, but must query it through interaction.

Slide adapted from: David Silver, Sergey Levine

10

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

The Agent-Environment Interface

j Agent ||
state | | reward action
S R, A

| R |
i:sr, | Environment]<—

e Let’s formalize this

~ Agent and environment interact at discrete time
stepst =0,1, 2, ...

» Agent observes state at time t: S, €S

> Produces an action at time t: A; € A(S;)

» Gets a resulting reward R.,;ER cR
> And a resulting next state: Sti1

Slide adapted from: Sutton & Barto B. Leibe

11

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

Note about Rewards

e Reward
~ At each time step t, the agent receives a reward R,

e Important note

> We need to provide those rewards to truly indicate what we
want the agent to accomplish.

- E.g., learning to play chess:
- The agent should only be rewarded for winning the game.
- Not for taking the opponent’s pieces or other subgoals.

- Else, the agent might learn a way to achieve the subgoals without
achieving the real goal.

=> This means, non-zero rewards will typically be very rare!

B. Leibe

12

Reward vs. Return

e Objective of learning

> We seek to maximize the expected return G; as some
function of the reward sequence R;,{,R;,5, Rt 43, -

~ Standard choice: expected discounted return
Gt = Reyq1 + YRey2 +V?Regz + o = Z Vth+k+1
k=0
where 0 <y < 1 is called the discount rate.

e Difficulty
> We don’t know which past actions caused the reward.
= Temporal credit assignment problem

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

13

B. Leibe

Markov Decision Process (MDP)

e Markov Decision Processes
~ We consider decision processes that fulfill the Markov property.

- l.e., where the environments response at time t depends only
on the state and action representation at ¢.

e To define an MDP, we need to specify
> State and action sets
» One-step dynamics defined by state transition probabilities

p(s'ls,a) =Pr{Sey1 =5'IS; =s,Ar =a} = Z p(s',rls, a)

TER

> Expected rewards for next state-action-next-state triplets

' n_ 2rer? P(s’,7|s,a)
r(s,a,5") = E[Re31] St = 5,4 = 4,81 = 5] = = p(s'[s, a)

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

14

B. Leibe

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(0D}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

Policy

e Definition
~ A policy determines the agent’s behavior
> Map from state to action m:§ - A

e Two types of policies
> Deterministic policy: a = n(s)
> Stochastic policy: n(als) = Pr{A; = a|S; = s}

e Note
» m(a|s) denotes the probability of taking action a when in state s.

15
B. Leibe

Value Function

e |dea
~ Value function is a prediction of future reward
» Used to evaluate the goodness/badness of states
> And thus to select between actions

e Definition

> The value of a state s under a policy 7, denoted v.(s), is the
expected return when starting in s and following = thereafter.

U (s) = Ex[GelSe = s] = Ex[Xizo Y*Resres1 |Se = 5]

> The value of taking action a in state s under a policy 7,
denoted ¢, (s,a), is the expected return starting from s,
taking action a, and following 7 thereafter.

qr(s,a) = E;[G¢|S; = 5,4 = a] = Ex[Xx=0 Vth+k+1 |St =s,A; = al

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

16

B. Leibe

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
()]
|
(b}
=
e
(@)
©
=
©
(D]
(&)
[
©
>
©
<

Bellman Equation

e Recursive Relationship
» For any policy 7 and any state s, the following consistency holds

v (s) = Eg[G,|S; = s]
S¢ = S]

= Eg ZV Ritkt1

=E; |Res1 +Y Z)4 Rt+k+2

S; = S]
Eﬂ(aIS)ZEP(S rls,a)|r +vEg [zy Revk+2

= En(als)Zp(s’,rls, a)|r + yv,(s")], VSES

a

ses = |

> This is the Bellman equation for v, (s). -

B. Leibe

RWTH
Bellman Equation

v.(s) = z m(als) Z p(s’,r|s,a)[r + yv,(s")], VSES

a

e Interpretation
> Think of looking ahead from a state to each successor state.

N N,

OO OO OO ¢ b ¢ va

- The Bellman equation states that the value of the start state
must equal the (discounted) value of the expected next state,
plus the reward expected along the way.

» We will use this equation in various forms to learn v, (s).

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

18

B. Leibe

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(0D}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

Optimal Value Functions

e For finite MDPs, policies can be partially ordered
- There will always be at least one optimal policy ..

> The optimal state-value function is defined as
v,(s) = maxv(s)
T

~ The optimal action-value function is defined as
q.(s,a) = maxq(s,a)
T

B. Leibe

19

Optimal Value Functions

e Bellman optimality equations
» For the optimal state-value function v,:

v,(s) = max_q, (s, a)

acA(s)
= arenﬂa()é),z p(s’,rls,a)|r + yv.(s')]
s'r

» v, is the unique solution to this system of nonlinear equations.

~ For the optimal action-value function g,:

0.(5,@) =) p(s',rls,0) [r +y maxq.(s',a)]
shr

> g, is the unique solution to this system of nonlinear equations.

= If the dynamics of the environment p(s’,r|s,a) are known, then
in principle one can solve those equation systems.

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

20

B. Leibe

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(D]
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

Optimal Policies

e Why optimal state-value functions are useful
~ Any policy that is greedy w.r.t. v, is an optimal policy.

= Given v,, one-step-ahead search produces the long-term
optimal results.

= Given ¢q,, we do not even have to do one-step-ahead search

m.(s) = argmaxq.(s, a)
a€cA(s)

e Challenge

> Many interesting problems have too many states for solving v,.

> Many Reinforcement Learning methods can be understood as
approximately solving the Bellman optimality equations, using
actually observed transitions instead of the ideal ones.

B. Leibe

21

Exploration-Exploitation Trade-off

e Example: N-armed bandit problem

~ Suppose we have the choice between
N actions a4, ..., ay.

> |If we knew their value functions q.(s, q;), &
it would be trivial to choose the best. \(
\

- However, we only have estimates based
on our previous actions and their returns.

o

e We can now

> Exploit our current knowledge

- And choose the greedy action that has the highest value based on
our current estimate.

> Explore to gain additional knowledge

- And choose a non-greedy action to improve our estimate of that
action’s value.

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

22

Image source: research.microsoft.com

B. Leibe

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(D]
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

RWTH
Simple Action Selection Strategies

e c-greedy
~ Select the greedy action with probability (1 — ¢) and a random
one in the remaining cases.
= In the limit, every action will be sampled infinitely often.
= Probability of selecting the optimal action becomes > (1 — ¢).
> But: many bad actions are chosen along the way.

e Softmax

~ Choose action q; at time t according to the softmax function
pdt(ap)/

N pai(aj)/t
j=1€""

where 7 is a temperature parameter (start high, then lower it).

> Generalization: replace g; by a preference function H; that is
learned by stochastic gradient ascent (“gradient bandit”).

B. Leibe

23

R\N11-I AACHEN
o o U.“ UJ | J‘H |
Topics of This Lecture

e Temporal Difference Learning
> SARSA
> Q-Learning

({e]
F
.
Q
-
IE
(@)]
=
c
| -
®
(0D}
|
(0D}
=
e
(@)
©
=
©
(¢b}
(&)
C
©
>
©
<

25
B. Leibe

RWTH
Temporal Difference Learning (TD-Learning)

e Policy evaluation (the prediction problem)
~ For a given policy m, compute the state-value function v .

e One option: Monte-Carlo methods

» Play through a sequence of actions until a reward is reached,
then backpropagate it to the states on the path.

V(Se) « V(S + alG: — V(Se)]

Target: the actual return after time ¢

e Temporal Difference Learning - TD(4)
> Directly perform an update using the estimate V(S;,3:1)-

V(Sy) « V(S) + al[RHl + VV(St+12 —V(Se)]

v

Target: an estimate of the return (here: TD(0))

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

26

B. Leibe

SARSA: On-Policy TD Control

e Idea

> Turn the TD idea into a control method by always updating the
policy to be greedy w.r.t. the current estimate

e Procedure

> Estimate g, (s, a) for the current policy = and for all states s and
actions a.

> TD(0) update equation
Q(StrAt) < Q(St'At) + a[Rt+1 + VQ(St+1;At+1) - Q(St'At)]

> This rule is applied after every transition from a nonterminal
state S;.

> It uses every element of the quintuple (S;, A¢, Riy1, St+1,At41)-
= Hence, the name SARSA.

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

27

Image source: Sutton & Barto

B. Leibe

RWTHAACHEN
UNIVERSITY

SARSA: On-Policy TD Control

e Algorithm

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Choose a from s using policy derived from @ (e.g., e-greedy)
Repeat (for each step of episode):
Take action a, observe r, s’
Choose a' from s’ using policy derived from @ (e.g., e-greedy)
Q(s,a) — Q(s,a) + afr +1Q(s,a) — Q(s,)]
s+ 8 a—a"

until s is terminal

({e]
F
.
Q
-
IE
(@)}
=
c
| -
®
(0D}
|
(0D}
=
e
(@)
©
=
©
(¢b}
(&)
c
©
>
©
<

28

Image source: Sutton & Barto

B. Leibe

RWTH
Q-Learning: Off-Policy TD Control

e Idea

~ Directly approximate the optimal action-value function ¢,
independent of the policy being followed.

 Procedure
> TD(0) update equation

Q(St, Ae) <« Q(Sp, Ap) t+ [Rt+1 + Yy max Q(Sts1,a) — Q(St»At)]

> Dramatically simplifies the analysis of the algorithm.

~ All that is required for correct convergence is that all pairs
continue to be updated.

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

29

Image source: Sutton & Barto

B. Leibe

A INVERSITY
Q-Learning: Off-Policy TD Control

e Algorithm

Initialize Q(s,a) arbitrarily
Repeat (for each episode):
Initialize s
Repeat (for each step of episode):
Choose a from s using policy derived from @ (e.g., e-greedy)
Take action a, observe r, s
Q(s,a) +— Q(s,a) + a[r + ymaxy Q(s, a’) — Q(s, a)]
5+ g';

until s is terminal

({e]
F
.
Q
-
IE
(@)}
=
c
| -
®
(0D}
|
(0D}
=
e
(@)
©
=
©
(¢b}
(&)
c
©
>
©
<

30

B. Leibe Image source: Sutton & Barto

Topics of This Lecture

e Deep Reinforcement Learning
~ Value based Deep RL

~ Policy based Deep RL
> Model based Deep RL

({e]
F
.
Q
P
IE
(@)]
=
c
| -
®
(0D}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

31
B. Leibe

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(0D}
|
(b}
=
e
(@)
©
=
©
(b}
(&)
[
©
>
©
<

Deep Reinforcement Learning

e RL using deep neural networks to approximate functions
> Value functions
- Measure goodness of states or state-action pairs
~ Policies
- Select next action

> Dynamics Models
- Predict next states and rewards

32
Slide credit: Sergey Levine B. Leibe

Deep Reinforcement Learning

e Application: Learning to play Atari games

Convglution Convglution Fully cgnnected Fully ccvmnected
Input: | = o\ e . Output:
pixels 9 . - control
+game i o\ | e E® commands
8 ? i
scores af A\)
S e N\
QHE Q: ! 9 =
céo\:l

+

AINMIRJEJe VN>
+ 1+ f+ + 1+ 1+ 01+
@] (@] (@) (@] (@) (@] (@) (e

/NN /
ufa=alalal= = s

V. Mnih et al., Human-level control through deep reinforcement learning, Nature Vol. 518,
pp. 529-533, 2015 33

({e]
F
.
Q
-
IE
(@)]
=
c
| -
®
(0D}
|
(0D}
=
e
(@)
©
=
©
(b}
(&)
C
©
>
©
<

B. Leibe

http://www.nature.com/nature/journal/v518/n7540/full/nature14236.html

|ldea Behind the Model

e Interpretation
> Assume finite number of actions

> Each number here is a real-valued
ConvNet quantity that represents the

Q function in Reinforcement Learning

e L2 Regression Loss

A action values Q(s,a)

e Collect experience dataset:
> Set of tuples {(s,a,s’,r), ... }

~ (State, Action taken, New state, Reward
received

target value predicted value

2
Li(0;) =Fi(s.ar.¢)~U(D) {(H— ymax Q(s".a"; 0,)|-|0(s.a: U;I:)

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

Current reward + estimate of future reward, discounted by y y
Slide credit: Andrej Karpaty B. Leibe

Results: Space Invaders

({o]
F
.
Q
-
IE
(@)]
=
c
|-
®
(¢b]
|
(D]

({o]
F
.
Q
-
IE
(@)]
=
c
|-
®
(¢b]
|
(D]
=

Results: Breakout

R\WNTH

B. Leibe

36

Advanced Machine Learning Winter’16

Video Pinball

Star Gunner
Robotank
Atlantis

Crazy Climber

Demon Attack
Name This Game

Road Runner
Kangaroo
James Bond
Tennis

Space Invaders
Beam Rider
Tutankham
Kung-Fu Master
Freeway

Time Pilot

Fishing Derby
Up and Down
Ice Hockey

H.E.R.O.

Asterix

Battle Zone

Wizard of Wor
Chopper Command
Centipede

Bank Heist

River Raid

Venture
Seaquest
Double Dunk
Bowling

Ms. Pac-Man
Asteroids
Frostbite
Gravitar
Private Eye
Montezuma's Revenge

0%

At human-level or above

ggzEzzlg!!!lll!!Fll||.lll!lll.!lll’||!l'.

Below human-level

Best linear learner

P LA

R

Name This Game |

Krull]
Assault

Road Runner |

Kangaroo |
James Bond |
Tennis |

Pong |

Space Invaders |

Beam Rider :
Tutankham

Kung-Fu Master :

Freeway]
Time Pilot il
Enduro

Fishing Derby |
Up and Down

Ice Hockey |
Q'bert |
H.E.R.O.]
Asterix |
Battle Zone |

Wizard of Wor |

Chopper Command |

o =

100

200

I
300

400

500

4,500%

B. Leibe

Centipede |
Bank Heist |
River Raid |

Zaxxon |

Amidar |

CHEN
UNIVERSITY

Comparison with Human Performance
S —

Close-up
view

S
o
s I
e =
-
-
o
T -
iy =
o
oo
o

T -

e I

o

ol
o
=
B

st

e

seodl

%

37

38

B. Leibe

%
IA

e t-SNE embedding of DQN last hidden layer (Space Inv.)

Learned Representation

9. J9JUIp BuiuIeaT] aulyde\ padueApy

RWTH
References and Further Reading

e More information on Reinforcement Learning can be
found in the following book

Reinforcement .
Learning

Richard S. Sutton, Andrew G. Barto
Reinforcement Learning: An Introduction
MIT Press, 1998

e The complete text is also freely available online
https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html

({o]
F
.
Q
-
IE
(@)]
=
c
| -
®
(b}
|
(b}
=
e
(@)
®
=
©
(D]
(&)
[
©
>
©
<

41

B. Leibe

https://webdocs.cs.ualberta.ca/~sutton/book/ebook/the-book.html

